Steinitz classes of tamely ramified nonabelian extensions of odd prime power order

by

Alessandro Cobbe (Pisa)

1. Introduction. Let K/k be an extension of number fields and let \mathcal{O}_K and \mathcal{O}_k be their rings of integers. By Theorem 1.13 in [Na] we know that

$$\mathcal{O}_K \cong \mathcal{O}_k^{[K:k]-1} \oplus I,$$

where I is an ideal of \mathcal{O}_k . By Theorem 1.14 in [Na] the \mathcal{O}_k -module structure of \mathcal{O}_K is determined by [K:k] and the ideal class of I. This class is called the *Steinitz class* of K/k and we will indicate it by $\operatorname{st}(K/k)$. Let k be a number field and G a finite group; then we define

$$R_t(k,G) = \{x \in Cl(k) : \exists K/k \text{ tame}, Gal(K/k) \cong G, st(K/k) = x\}.$$

It is conjectured that this subset of Cl(k) is always a subgroup. The problem has been studied by a lot of authors since the 1960s and $R_t(k, G)$ has been proved to be a group for some particular choices of G. In particular the conjecture for finite abelian groups is a consequence of a paper by Leon Mc-Culloh of 1987 ([MC2]). Other results from literature cover some particular nonabelian groups: see for example [B], [BS], [BGS], [Ca1], [Ca2], [CaS], [E], [GS1], [GS2], [Lo1], [Lo2], [MS], [MC1], [S1], [S2] and [Sov].

The study of realizable Steinitz classes is closely connected to a similar question involving Galois module structure. In that context $R_t(\mathcal{O}_k[G])$ denotes a subset of the locally free class group $Cl(\mathcal{O}_k[G])$ and is defined in a similar way to $R_t(k, G)$. Again $R_t(\mathcal{O}_k[G])$ is conjectured to be a group, which is in some sense a generalization of the conjecture about Steinitz classes.

In this paper we will study $R_t(k, G)$ when G is a semidirect product of the form $C(l^n) \rtimes C(l)$, where l is an odd prime number and C(m) denotes a cyclic group of order m. We will use the notation and some techniques from [C2] to prove the conjecture for such groups and to give an explicit

DOI: 10.4064/aa149-4-4

²⁰¹⁰ Mathematics Subject Classification: Primary 11R32; Secondary 11R37.

Key words and phrases: Steinitz classes, realizable classes, tame extensions of number fields, class field theory.

description of $R_t(k, G)$. In particular the case n = 2 is interesting because, together with [B], it completes the study of realizable Steinitz classes for groups of order l^3 . We will also give an alternative proof of the results of [B], based on class field theory.

Some of the results in this paper are parts of the author's PhD thesis [C1].

2. Preliminary results. We start by recalling the following two fundamental results.

Theorem 2.1. If K/k is a finite tame Galois extension then

$$d(K/k) = \prod_{\mathfrak{p}} \mathfrak{p}^{(e_{\mathfrak{p}}-1)[K:k]/e_{\mathfrak{p}}},$$

where $e_{\mathfrak{p}}$ is the ramification index of \mathfrak{p} .

Proof. This follows by Propositions 8 and 14 of Chapter III of [L].

Theorem 2.2. Assume K is a finite Galois extension of a number field k.

- (a) If the Galois group of K/k either has odd order or has a noncyclic 2-Sylow subgroup then d(K/k) is the square of an ideal and this ideal represents the Steinitz class of the extension.
- (b) If the Galois group is of even order with a cyclic 2-Sylow subgroup and α is any element of k whose square root generates the quadratic subextension of K/k then $d(K/k)/\alpha$ is the square of a fractional ideal and this ideal represents the Steinitz class of the extension.

Proof. This is a corollary of Theorem I.1.1 in [E]. In particular it is shown in [E] that in case (b), K/k has exactly one quadratic subextension.

Further, considering Steinitz classes in towers of extensions, we will need the following proposition.

Proposition 2.3. Suppose K/k_1 and k_1/k are extensions of number fields. Then

$$st(K/k) = st(k_1/k)^{[K:k_1]} N_{k_1/k}(st(K/k_1)).$$

Proof. This is Proposition I.1.2 in [E].

We will also use some other preliminary results.

LEMMA 2.4. Let m, n, x, y be integers. If $x \equiv y \pmod{m}$ and any prime q dividing n also divides m then

$$x^n \equiv y^n \pmod{mn}$$
.

Proof. Let $n = q_1 \dots q_r$ be the prime decomposition of n (q_i and q_j with $i \neq j$ are allowed to be equal). We prove by induction on r that $x^n \equiv y^n \pmod{mn}$. If r = 1, then $mn = mq_1$ must divide m^{q_1} and there exists $b \in \mathbb{N}$

such that

$$x^{n} = (y + bm)^{q_{1}} = y^{q_{1}} + \sum_{i=1}^{q_{1}-1} {q_{1} \choose i} (bm)^{i} y^{q_{1}-i} + (bm)^{q_{1}} \equiv y^{n} \pmod{mn}.$$

Let us assume that the lemma is true for r-1 and prove it for r. Since $q_r \mid m$, as above, for some $c \in \mathbb{N}$ we have

$$x^{n} = (y^{q_{1} \dots q_{r-1}} + cmq_{1} \dots q_{r-1})^{q_{r}}$$

$$= y^{n} + \sum_{i=1}^{q_{r}} {q_{r} \choose i} (cmq_{1} \dots q_{r-1})^{i} y^{q_{1} \dots q_{r-1}(q_{r}-i)} \equiv y^{n} \pmod{mn}. \blacksquare$$

DEFINITION 2.5. Let K/k be a finite abelian extension of number fields, let J_k be the group of ideals of k, let P_k be the group of principal ideals, let \mathfrak{m} be a cycle of declaration of K/k and let $H_{K/k}^{\mathfrak{m}}$ be the kernel of the Artin symbol $\left(\frac{K/k}{k}\right):J_k^{\mathfrak{m}}\to \mathrm{Gal}(K/k)$, where $J_k^{\mathfrak{m}}$ is the group of all ideals of k prime to \mathfrak{m} . Then we define the subgroup W(k,K) of the ideal class group of k in the following equivalent ways (the equivalence is shown in [C2, Proposition 2.10]):

$$W(k,K) = H_{K/k}^{\mathfrak{m}} \cdot P_k / P_k,$$

 $W(k, K) = \{x \in J_k/P_k : x \text{ contains infinitely many primes of absolute degree 1 splitting completely in } K\},$

$$W(k,K) = \{x \in J_k/P_k : x \text{ contains a prime splitting completely in } K\},$$

 $W(k,K) = N_{K/k}(J_K) \cdot P_k/P_k.$

In the case of cyclotomic extensions we will also use the shorter notation $W(k,m) = W(k,k(\zeta_m))$.

LEMMA 2.6. Let m, n be integers. If any prime q dividing n also divides m then $W(k, m)^n \subseteq W(k, mn)$.

Proof. Let $x \in W(k,m)$. By definition and by Lemma 2.11 from [C2], x contains a prime ideal $\mathfrak p$ prime to mn and such that $\mathrm{N}_{k/\mathbb Q}(\mathfrak p) \in P^{\mathfrak m}_{\mathbb Q}$, where $\mathfrak m = m \cdot p_{\infty}$ and $P^{\mathfrak m}_{\mathbb Q}$ is the group of all principal ideals in $\mathbb Z$ generated by a natural number $a \equiv 1 \pmod{m}$. Then, by Lemma 2.4, $\mathrm{N}_{k/\mathbb Q}(\mathfrak p^n) \in P^{\mathfrak n}_{\mathbb Q}$ with $\mathfrak n = mn \cdot p_{\infty}$, and it follows from Lemma 2.12 of [C2] that $x^n \in W(k,mn)$.

We conclude this section by recalling a technical definition from [C2].

DEFINITION 2.7. We will call a finite group G of order m good if the following properties are satisfied:

- 1. For any number field k, $R_t(k,G)$ is a group.
- 2. For any tame G-extension K/k of number fields there exists an element $\alpha_{K/k} \in k$ such that:

- (a) If G is of even order with a cyclic 2-Sylow subgroup, then a square root of $\alpha_{K/k}$ generates the quadratic subextension of K/k; if G either has odd order or has a noncyclic 2-Sylow subgroup, then $\alpha_{K/k} = 1$.
- (b) For any prime \mathfrak{p} , with ramification index $e_{\mathfrak{p}}$ in K/k, the ideal class (1) of

$$(\mathfrak{p}^{(e_{\mathfrak{p}}-1)m/e_{\mathfrak{p}}-v_{\mathfrak{p}}(\alpha_{K/k})})^{1/2}$$

is in $R_t(k,G)$.

3. For any tame G-extension K/k of number fields, for any prime ideal \mathfrak{p} of k and any rational prime l dividing its ramification index $e_{\mathfrak{p}}$, the class of the ideal

$$\mathfrak{p}^{(l-1)\frac{m}{e_{\mathfrak{p}}(l)}},$$

is in $R_t(k, G)$, where $e_{\mathfrak{p}}(l)$ is the exact power of l dividing $e_{\mathfrak{p}}$, and, if 2 divides $(l-1)\frac{m}{e_{\mathfrak{p}}(l)}$, the class of

$$\mathfrak{p}^{\frac{l-1}{2}\frac{m}{e_{\mathfrak{p}}(l)}}$$

is in $R_t(k,G)$.

4. G is such that for any number field k, for any class $x \in R_t(k, G)$ and any integer a, there exists a tame G-extension K with Steinitz class x and such that every nontrivial subextension of K/k is ramified at some primes which are unramified in $k(\zeta_a)/k$.

The importance of this definition lies in the fact that for good groups G we can apply Theorems 3.19 and 3.22 of [C2] to obtain a description of $R_t(k, \tilde{G})$ for certain group extensions \tilde{G} of G.

3. Some l-groups. In [B], Clément Bruche proved that if G is a non-abelian group of order $l^3 = uv$ and exponent v, where l is an odd prime, then $R_t(k,G) = W(k,l)^{u(l-1)/2}$ under the hypothesis that the extension $k(\zeta_v)/k(\zeta_l)$ is unramified, thereby giving an unconditional result when G has exponent l.

In this section we prove that $R_t(k, C(l^2) \rtimes_{\mu} C(l)) = W(k, l)^{l(l-1)/2}$, without any additional hypothesis on the number field k. Indeed we will consider a more general situation, studying groups of the form $G = C(l^n) \rtimes_{\mu} C(l)$, with $n \geq 2$, where μ sends a generator of C(l) to the elevation to the $(l^{n-1}+1)$ th power. Together with Bruche's result this will conclude the study of realizable Steinitz classes for tame Galois extensions of degree l^3 .

⁽¹⁾ Actually $\mathfrak{p}^{(e_{\mathfrak{p}}-1)m/e_{\mathfrak{p}}-v_{\mathfrak{p}}(\alpha_{K/k})}$ is the square of an ideal by Theorems 2.1 and 2.2.

LEMMA 3.1. Let l be an odd prime. The group $G = C(l^n) \rtimes_{\mu} C(l)$ with $n \geq 2$ is identified by the exact sequence

$$1 \to C(l^n) \to G \to C(l) \to 1$$

if the action of C(l) on $C(l^n)$ is given by μ . Further G is isomorphic to

$$\langle \sigma, \tau : \sigma^l = \tau^{l^n} = 1, \, \sigma \tau \sigma^{-1} = \tau^{l^{n-1}+1} \rangle.$$

Proof. Let G be the group in the above exact sequence, let H be a subgroup of G isomorphic to $C(l^n)$ and generated by τ ; let $x \in G$ be such that its class modulo H generates G/H, which is cyclic of order l, and such that $x\tau x^{-1} = \tau^{l^{n-1}+1}$, i.e. $x\tau = \tau^{l^{n-1}+1}x$. Then $x^l = \tau^a$ for some $a \in \mathbb{N}$. Since G is of order l^{n+1} and it is not cyclic, the order of x must divide l^n and so

$$\tau^{al^{n-1}} = x^{l^n} = 1,$$

i.e. l divides a and there exists $b \in \mathbb{N}$ such that a = bl. By induction we prove that, for $m \ge 1$,

$$(\tau^{-b}x)^m = \tau^{-bm-bl^{n-1}(m-1)m/2}x^m.$$

This is obvious for m = 1; we have to prove the inductive step:

$$\begin{split} (\tau^{-b}x)^m &= \tau^{-b(m-1)-bl^{n-1}(m-2)(m-1)/2} x^{m-1} \tau^{-b} x \\ &= \tau^{-b(m-1)-bl^{n-1}(m-2)(m-1)/2} x^{m-1} \tau^{-b} x^{-(m-1)} x^m \\ &= \tau^{-b(m-1)-bl^{n-1}(m-2)(m-1)/2} \tau^{-b(1+l^{n-1})^{m-1}} x^m \\ &= \tau^{-b(m-1)-bl^{n-1}(m-2)(m-1)/2-b-b(m-1)l^{n-1}} x^m \\ &= \tau^{-bm-bl^{n-1}(m-1)m/2} x^m. \end{split}$$

Then writing $\sigma = \tau^{-b}x$, we obtain

$$\sigma^{l} = (\tau^{-b}x)^{l} = \tau^{-bl}x^{l} = \tau^{-a+a} = 1.$$

Further

$$\sigma \tau \sigma^{-1} = \tau^{-b} x \tau x^{-1} \tau^b = \tau^{-b} \tau^{l^{n-1}+1} \tau^b = \tau^{l^{n-1}+1}$$

and σ, τ are generators of G. Thus G must be a quotient of the group

$$\langle \sigma, \tau : \sigma^l = \tau^{l^n} = 1, \, \sigma \tau \sigma^{-1} = \tau^{l^{n-1}+1} \rangle.$$

But this group has the same order as G and thus they must be isomorphic. \blacksquare

It follows that to study $R_t(k, C(l^n) \rtimes_{\mu} C(l))$, for any number field k, we can use Proposition 3.13 of [C2].

For any $\gamma \in C(l^n)$ of order $o(\gamma)$ we define $E_{k,\mu,\gamma}$ as the fixed field in $k(\zeta_{o(\gamma)})$ of

$$G_{k,\mu,\gamma} = \{ g \in \text{Gal}(k(\zeta_{o(\gamma)})/k) : \exists g_1 \in C(l), \, \mu(g_1)(\gamma) = \gamma^{\nu_{k,\gamma}(g)} \},$$

where $g(\zeta_{o(\gamma)}) = \zeta_{o(\gamma)}^{\nu_{k,\gamma}(g)}$ for any $g \in \operatorname{Gal}(k(\zeta_{o(\gamma)})/k)$.

LEMMA 3.2. Let τ be a generator of $C(l^n)$. Then $E_{k,\mu,\tau} = k(\zeta_{l^{n-1}})$.

Proof. By definition $E_{k,\mu,\tau}$ is the fixed field in $k(\zeta_{l^n})$ of

$$G_{k,\mu,\tau} = \{ g \in \operatorname{Gal}(k(\zeta_{l^n})/k) : \exists g_1 \in C(l), \, \mu(g_1)(\tau) = \tau^{\nu_{k,\tau}(g)} \}$$

$$= \{ g \in \operatorname{Gal}(k(\zeta_{l^n})/k) : \exists a \in \mathbb{N}, \, \tau^{al^{n-1}+1} = \tau^{\nu_{k,\tau}(g)} \}$$

$$= \{ g \in \operatorname{Gal}(k(\zeta_{l^n})/k) : \nu_{k,\tau}(g) \equiv 1 \, (\text{mod } l^{n-1}) \}$$

$$= \{ g \in \operatorname{Gal}(k(\zeta_{l^n})/k) : g(\zeta_{l^{n-1}}) = \zeta_{l^{n-1}} \} = \operatorname{Gal}(k(\zeta_{l^n})/k(\zeta_{l^{n-1}})).$$

Hence $E_{k,\mu,\tau} = k(\zeta_{l^{n-1}})$.

Lemma 3.3. We have

$$R_t(k, C(l^n) \rtimes_{\mu} C(l)) \supseteq W(k, l^{n-1})^{(l-1)l/2}.$$

Further, for any $x \in W(k, l^{n-1})$ and any positive integer a, there exists a tame G-extension K of k with Steinitz class $x^{(l-1)l/2}$ and such that any nontrivial subextension of K/k is ramified at some primes which are unramified in $k(\zeta_a)/k$.

Proof. By Theorem 3.23 of [C2], C(l) is a good group and so, recalling also Lemma 3.1, the hypotheses of Proposition 3.13 of [C2] are satisfied and we obtain

$$R_t(k, C(l^n) \rtimes_{\mu} C(l)) \supseteq R_t(k, C(l))^{l^n} \cdot W(k, E_{k,\mu,\tau})^{(l-1)l/2},$$

where τ is a generator of $C(l^n)$. We easily conclude the proof since $1 \in R_t(k, C(l))$ and, by Lemma 3.2, $E_{k,\mu,\tau} = k(\zeta_{l^{n-1}})$, i.e.

$$W(k, E_{k,\mu,\tau}) = W(k, l^{n-1}).$$

Further the extensions constructed in Lemmas 3.10 and 3.11 of [C2] can be chosen so that all their proper subextensions are ramified at some primes which are unramified in $k(\zeta_a)/k$. Hence, actually, the same is true for the extensions obtained using Proposition 3.13 of [C2].

To prove the opposite inclusion we need some lemmas.

LEMMA 3.4. Let τ be a generator of $C(l^n)$ and 0 < c < n be an integer. Then

$$\tilde{G}_{k,\mu,\tau^{l^c}}^{l^c} \subseteq G_{k,\mu,\tau},$$

where $\tilde{G}_{k,\mu,\tau^{l^c}}$ is the subgroup of $\operatorname{Gal}(k(\zeta_{l^n})/k)$ consisting of all the elements whose restrictions to $\operatorname{Gal}(k(\zeta_{l^{n-c}})/k)$ are in $G_{k,\mu,\tau^{l^c}}$.

Proof. For any positive integer a we define

$$\hat{\mu}_{\tau^a}: C(l) \to (\mathbb{Z}/o(\tau^a)\mathbb{Z})^*$$

by $\tau^{a\hat{\mu}_{\tau^a}(g_1)} = \mu(g_1)(\tau^a)$ for all $g_1 \in C(l)$. To simplify notation, for $g \in \tilde{G}_{k,\mu,\tau^{l^c}}$ we will write $\nu_{k,\tau^{l^c}}(g)$ instead of $\nu_{k,\tau^{l^c}}(g|_{k(\zeta_{l^{n-c}})})$. By definition, if

 $g \in \tilde{G}_{k,u,\tau^{l^c}}$, then there exists $g_1 \in C(l)$ such that

$$\tau^{l^c \nu_{k,\tau^{l^c}}(g)} = \mu(g_1)(\tau^{l^c}) = \tau^{l^c \hat{\mu}_{\tau^{l^c}}(g_1)}$$

We also observe that

$$\zeta_{l^{n-c}}^{\nu_{k,\tau}(g)} = \zeta_{l^n}^{l^c \nu_{k,\tau}(g)} = g(\zeta_{l^n})^{l^c} = g(\zeta_{l^{n-c}}) = \zeta_{l^{n-c}}^{\nu_{k,\tau^{l^c}}(g)}$$

and

$$\tau^{l^c \hat{\mu}_{\tau^{l^c}}(g_1)} = \mu(g_1)(\tau^{l^c}) = \mu(g_1)(\tau)^{l^c} = \tau^{l^c \hat{\mu}_{\tau}(g_1)}.$$

From the above equalities we deduce

$$\nu_{k,\tau}(g) \equiv \nu_{k,\tau^{l^c}}(g) \equiv \hat{\mu}_{\tau^{l^c}}(g_1) \equiv \hat{\mu}_{\tau}(g_1) \pmod{l^{n-c}}$$

and therefore by Lemma 2.4 we obtain

$$\nu_{k,\tau}(g^{l^c}) \equiv \hat{\mu}_{\tau}(g_1^{l^c}) \pmod{l^n}.$$

We conclude that

$$\tau^{\nu_{k,\tau}(g^{l^c})} = \tau^{\hat{\mu}_{\tau}(g^{l^c}_1)} = \mu(g^{l^c}_1)(\tau)$$

and hence $g^{l^c} \in G_{k,\mu,\tau}$.

Lemma 3.5. Let τ be a generator of $C(l^n)$ and 0 < c < n be an integer. Then

$$W(k, E_{k,\mu,\tau^{l^c}})^{l^c} \subseteq W(k, l^{n-1}).$$

Proof. Let x be a class in $W(k, E_{k,\mu,\tau^{l^c}})$. By definition there exists a prime $\mathfrak p$ in the class of x splitting completely in $E_{k,\mu,\tau^{l^c}}/k$. By Theorem IV.8.4 in [Ne],

$$\mathfrak{p}\in H^{\mathfrak{m}}_{E_{k,\mu,\tau^{l^c}}/k},$$

where $\mathfrak m$ is a cycle of declaration of $E_{k,\mu,\tau^{l^c}}/k$ and $H^{\mathfrak m}_{E_{k,\mu,\tau^{l^c}}/k}$ is the kernel of the Artin symbol

$$\left(\frac{E_{k,\mu,\tau^{l^c}}/k}{\cdot}\right):J_k^{\mathfrak{m}} o \mathrm{Gal}(E_{k,\mu,\tau^{l^c}}/k).$$

Then, by Proposition II.3.3 in [Ne],

$$\left(\frac{k(\zeta_{l^n})/k}{\mathfrak{p}}\right)\bigg|_{E_{k,\mu,\tau^{l^c}}} = \left(\frac{E_{k,\mu,\tau^{l^c}}/k}{\mathfrak{p}}\right) = 1.$$

Thus

$$\left(\frac{k(\zeta_{l^n})/k}{\mathfrak{p}}\right) \in \operatorname{Gal}(k(\zeta_{l^n})/E_{k,\mu,\tau^{l^c}}) = \tilde{G}_{k,\mu,\tau^{l^c}}$$

and it follows by Lemma 3.4 that

$$\left(\frac{k(\zeta_{l^n})/k}{\mathfrak{p}^{l^c}}\right) = \left(\frac{k(\zeta_{l^n})/k}{\mathfrak{p}}\right)^{l^c} \in \tilde{G}_{k,\mu,\tau^{l^c}}^{l^c} \subseteq G_{k,\mu,\tau} = \operatorname{Gal}(k(\zeta_{l^n})/E_{k,\mu,\tau}).$$

Then

$$\left(\frac{E_{k,\mu,\tau}/k}{\mathfrak{p}^{l^c}}\right) = \left(\frac{k(\zeta_{l^n})/k}{\mathfrak{p}^{l^c}}\right)\Big|_{E_{k,\mu,\tau}} = 1$$

and so the class x^{l^c} of \mathfrak{p}^{l^c} is in $W(k, E_{k,\mu,\tau})$, which is equal to $W(k, l^{n-1})$ by Lemma 3.2. \blacksquare

LEMMA 3.6. Let K/k be a tamely ramified abelian extension of number fields and let \mathfrak{p} be a prime ideal in k whose ramification index in K/k is $e_{\mathfrak{p}}$. Then $N_{k/\mathbb{Q}}(\mathfrak{p}) \in P_{\mathbb{Q}}^{\mathfrak{m}}$, where $\mathfrak{m} = e_{\mathfrak{p}} \cdot p_{\infty}$, i.e. $N_{k/\mathbb{Q}}(\mathfrak{p})$ is an ideal of \mathbb{Z} generated by a natural number $a \equiv 1 \pmod{e_{\mathfrak{p}}}$. In particular, by Lemma 2.12 of [C2], $\mathfrak{p} \in H_{k(\zeta_{e_{\mathfrak{p}}})/k}^{\mathfrak{m}}$ and so its class is in $W(k, e_{\mathfrak{p}})$.

Proof. This is Lemma I.2.1 of [E].

LEMMA 3.7. Let K/k be a tame $C(l^n) \rtimes_{\mu} C(l)$ -extension of number fields and let \mathfrak{p} be a ramifying prime, with ramification index $e_{\mathfrak{p}}$. Then the classes of

$$\mathfrak{p}^{\frac{e_{\mathfrak{p}}-1}{2}\frac{l^{n+1}}{e_{\mathfrak{p}}}} \quad and \quad \mathfrak{p}^{\frac{l-1}{2}\frac{l^{n+1}}{e_{\mathfrak{p}}}}$$

are both in $W(k, l^{n-1})^{(l-1)l/2}$.

Proof. The Galois group of K/k is $C(l^n) \rtimes_{\mu} C(l)$, which is isomorphic to

$$G = \langle \sigma, \tau : \sigma^l = \tau^{l^n} = 1, \, \sigma \tau \sigma^{-1} = \tau^{l^{n-1}+1} \rangle,$$

by Lemma 3.1.

Since the ramification is tame, the inertia group at \mathfrak{p} is cyclic, generated by an element $\tau^a \sigma^b$; by induction we obtain

$$(\tau^a \sigma^b)^m = \tau^{am+abl^{n-1}(m-1)m/2} \sigma^{bm}.$$

The order $e_{\mathfrak{p}}$ of $\tau^a \sigma^b$ must be a multiple of l, since the element $\tau^a \sigma^b$ is nontrivial and G is an l-group. Hence, recalling that $\tau^{l^n} = 1$, we find that $e_{\mathfrak{p}}$ is the smallest positive integer such that

$$\tau^{ae_{\mathfrak{p}}}\sigma^{be_{\mathfrak{p}}}=1.$$

First of all we assume that l^2 divides $e_{\mathfrak{p}}$. If l^{β} is the exact power of l dividing a, we obtain $e_{\mathfrak{p}} = l^{n-\beta}$ and in particular $\beta \leq n-2$. So we have

$$\sigma(\tau^{a}\sigma^{b})\sigma^{-1} = \tau^{a(l^{n-1}+1)}\sigma^{b} = (\tau^{a}\sigma^{b})^{l^{n-1}+1}$$

and

$$\tau(\tau^a \sigma^b)\tau^{-1} = \tau^{a-bl^{n-1}}\sigma^b = (\tau^a \sigma^b)^{-\tilde{a}bl^{n-1-\beta}+1},$$

where $a\tilde{a} \equiv l^{\beta} \pmod{l^n}$. Hence, in particular, the inertia group is a normal subgroup of G. Thus we can decompose our extension in K/k_1 and k_1/k , which are both Galois and such that \mathfrak{p} is totally ramified in K/k_1 and unramified in k_1/k . By Lemma 3.14 of [C2] the class of \mathfrak{p} is in $W(k, E_{k,\rho,\tau^a\sigma^b})$,

where the action ρ is induced by the conjugation in G and, in particular, it sends the class of τ in $\operatorname{Gal}(k_1/k) = G/\langle \tau^a \sigma^b \rangle$ to elevation to the $(-\tilde{a}bl^{n-1-\beta}+1)$ th power, as seen above, and the class of σ to elevation to the $(l^{n-1}+1)$ th power. The group $G_{k,\rho,\tau^a\sigma^b}$ consists of those elements g of $\operatorname{Gal}(k(\zeta_{l^{n-\beta}})/k)$ such that $\nu_{k,\tau^a\sigma^b}(g)$ is congruent to a product of powers of $l^{n-1}+1$ and $-\tilde{a}bl^{n-1-\beta}+1$ modulo $l^{n-\beta}$. But all these are congruent to 1 modulo $l^{n-1-\beta}$ and thus $G_{k,\rho,\tau^a\sigma^b}|_{k(\zeta_{m-1-\beta})}=\{1\}$. Hence

$$E_{k,\rho,\tau^a\sigma^b} \supseteq k(\zeta_{l^{n-1-\beta}}) = k(\zeta_{e_{\mathfrak{p}}/l}),$$

i.e.

$$W(k, E_{k,\rho,\tau^a\sigma^b}) \subseteq W(k, e_{\mathfrak{p}}/l).$$

Therefore, by the assumption that $l^2 \mid e_{\mathfrak{p}}$ and by Lemma 2.6, the class of $\mathfrak{p}^{\frac{l-1}{2}\frac{l^{n+1}}{e_{\mathfrak{p}}}}$ is in

$$W(k,e_{\mathfrak{p}}/l)^{\frac{l-1}{2}\frac{l^{n+1}}{e_{\mathfrak{p}}}} \subseteq W(k,l^{n-1})^{(l-1)l/2}$$

and the same is true for $\mathfrak{p}^{\frac{e_{\mathfrak{p}}-1}{2}\frac{l^{n+1}}{e_{\mathfrak{p}}}}$.

It remains to consider the case $e_{\mathfrak{p}}=l$. We now define k_1 as the fixed field of τ and we first assume that \mathfrak{p} ramifies in K/k_1 . Then its inertia group in $\mathrm{Gal}(K/k_1)=C(l^n)$ is of order l and thus must be generated by $\tau^{l^{n-1}}$. Hence by Lemma 3.14 of [C2] the class of \mathfrak{p} is in $W(k,E_{k,\mu,\tau^{l^{n-1}}})$ and $\mathfrak{p}^{(l-1)l^{n+1}/e_{\mathfrak{p}}}$ is the square of an ideal of a class in $W(k,E_{k,\mu,\tau^{l^{n-1}}})^{(l-1)l^n/2}$, which is contained in $W(k,l^{n-1})^{(l-1)l/2}$ by Lemma 3.5.

Finally let us consider the case of \mathfrak{p} ramified in k_1/k . By Lemma 3.6 the class of \mathfrak{p} is in W(k,l). Hence the class of

$$\mathfrak{p}^{\frac{l-1}{2}\frac{l^{n+1}}{e\mathfrak{p}}}=\mathfrak{p}^{\frac{e\mathfrak{p}-1}{2}\frac{l^{n+1}}{e\mathfrak{p}}}$$

is in $W(k,l)^{(l-1)l^n/2}$. By Lemma 2.6,

$$W(k,l)^{(l-1)l^n/2} \subseteq W(k,l^{n-1})^{(l-1)l^2/2} \subseteq W(k,l^{n-1})^{(l-1)l/2}. \blacksquare$$

Theorem 3.8. We have

$$R_t(k, C(l^n) \rtimes_{\mu} C(l)) = W(k, l^{n-1})^{(l-1)l/2}.$$

Further the group $C(l^n) \rtimes_{\mu} C(l)$ is good.

Proof. From Theorems 2.1 and 2.2, by Lemmas 3.3 and 3.7, it is immediate that

$$R_t(k, C(l^n) \rtimes_{\mu} C(l)) = W(k, l^{n-1})^{(l-1)l/2}.$$

Now we prove that $C(l^n) \rtimes_{\mu} C(l)$ satisfies all the defining conditions of good groups:

1. This follows immediately, since $W(k, l^{n-1})^{(l-1)l/2}$ is a group.

- 2. This is part of Lemma 3.7.
- 3. This is also proved in Lemma 3.7.
- 4. This follows by Lemma 3.3. ■
- 4. Nonabelian extensions of order l^3 . As a particular case of Theorem 3.8 we state the following proposition.

Proposition 4.1. The group $C(l^2) \rtimes_{\mu} C(l)$ is good and

$$R_t(k, C(l^2) \rtimes_{\mu} C(l)) = W(k, l)^{(l-1)l/2}.$$

Up to isomorphism, the only other nonabelian group of order l^3 is

$$G = \langle x, y, \sigma : x^l = y^l = \sigma^l = 1, \ \sigma x = x\sigma, \ \sigma y = y\sigma, \ yx = xy\sigma \rangle,$$

which is a semidirect product of the normal subgroup $\langle x, \sigma \rangle \cong C(l) \times C(l)$ and the cyclic subgroup $\langle y \rangle$ of order l, where the action μ_1 is given by conjugation. Clément Bruche proved in [B] that

$$R_t(k,G) = W(k,l)^{(l-1)l^2/2}$$
.

We can give a different proof of Bruche's result, using class field theory. We will also prove that the nonabelian group of order l^3 and exponent l studied by Bruche is a good group.

Lemma 4.2. Let k be a number field. Then

$$R_t(k,G) \supseteq W(k,l)^{(l-1)l^2/2}$$
.

Further, for any $x \in W(k,l)$ and any positive integer a, there exists a tame G-extension of k with Steinitz class $x^{(l-1)l^2/2}$ and such that any nontrivial subextension of K/k is ramified at some primes which are unramified in $k(\zeta_a)/k$.

Proof. Let $x \in W(k, l)$. By Theorem 3.19 in [C2] there exists a C(l)-extension k_1 with Steinitz class $x^{(l-1)/2}$ and which is totally ramified at some prime ideals which are unramified in $k(\zeta_a)/k$. Let \mathfrak{p} be one of them.

Now we would like to use Lemma 3.10 of [C2] to obtain a $C(l) \times C(l)$ -extension of K/k_1 which is Galois over k, with $\operatorname{Gal}(K/k) \cong G$. Unfortunately this is not possible since the exact sequence

$$1 \to C(l) \times C(l) \to \mathcal{H} \to C(l) \to 1$$

does not identify the group \mathcal{H} uniquely as the group G. Nevertheless, the argument of that lemma at least produces a $C(l) \times C(l)$ -extension of k_1 which is Galois over k and with $\operatorname{st}(K/k_1) = 1$. Further we can assume that $\operatorname{Gal}(K/k)$ is nonabelian of order l^3 (since the action of C(l) on $C(l) \times C(l)$ is the given one and in particular it is not trivial), that K/k_1 is unramified at \mathfrak{p} and that any nontrivial subextension of K/k is ramified at some primes which are unramified in $k(\zeta_a)/k$.

We want to prove that $\operatorname{Gal}(K/k) \cong G$. To this aim, we assume that this is not the case, i.e. that $\operatorname{Gal}(K/k) \cong C(l^2) \rtimes_{\mu} C(l)$, and we derive a contradiction. First of all, by construction, $\operatorname{Gal}(K/k_1) \cong C(l) \times C(l)$ and this must be a subgroup of $\operatorname{Gal}(K/k) \cong C(l^2) \rtimes_{\mu} C(l)$: the only possibility is that it is the subgroup H consisting of all elements of $C(l^2) \rtimes_{\mu} C(l)$ having order 1 or l. Since the prime ideal $\mathfrak p$ ramifies in k_1/k and not in K/k_1 , its ramification index is l, and therefore its inertia group is contained in l. Hence by Galois theory we conclude that the inertia field of $\mathfrak p$ in l0 in l1 in l2. This is a contradiction, since l3 is ramified in l3 in l4.

Hence we have proved that in the above construction the extension K/k has Galois group G. By Proposition 2.3,

$$\operatorname{st}(K/k) = \operatorname{st}(k_1/k)^{[K:k_1]} N_{k_1/k} (\operatorname{st}(K/k_1)) = x^{(l-1)l^2/2}.$$

To prove the opposite inclusion we need the following lemma.

LEMMA 4.3. Let K/k be a tame G-extension of number fields. The ramification index of a prime ramifying in K/k is l and its class is contained in W(k,l).

Proof. The ramification index of a ramifying prime is equal to l, since the corresponding inertia group must be cyclic and any nontrivial element in G is of order l.

Let k_1 be the subfield of K fixed by the normal abelian subgroup $\langle x, \sigma \rangle$ of the Galois group G of K/k.

If a prime \mathfrak{p} ramifies in k_1/k , then its class is in W(k,l) by Lemma 3.6.

If a prime \mathfrak{p} ramifies in K/k_1 , then it is unramified in k_1/k (the ramification index is prime) and so its inertia group is generated by an element of the form $x^a\sigma^c$, where $a,c\in\{0,1,\ldots,l-1\}$ are not both 0. By Lemma 3.14 of [C2] the class of \mathfrak{p} is in $W(k,E_{k,\mu_1,x^a\sigma^c})$. For any $b\in\{0,1,\ldots,l-1\}$ we have

$$\mu_1(y^b)(x^a\sigma^c) = y^b x^a \sigma^c y^{-b} = x^a \sigma^{c+ab},$$

and this expression cannot be a nontrivial power of $x^a\sigma^c$. Hence, by definition, the group $G_{k,\mu_1,x^a\sigma^c}$ must be trivial and we conclude that $E_{k,\mu_1,x^a\sigma^c}=k(\zeta_l)$. Therefore, in particular, the class of the prime ideal $\mathfrak p$ is contained in W(k,l).

Proposition 4.4. The group G is good and

$$R_t(k,G) = W(k,l)^{(l-1)l^2/2}$$
.

Proof. The proof is straightforward using the preceding lemmas.

Acknowledgements. I am very grateful to Professor Cornelius Greither and to Professor Roberto Dvornicich for their advice and for the patience they showed, assisting me in the writing of my PhD thesis with a lot

of suggestions. I also wish to thank the Scuola Normale Superiore of Pisa, for its role in my mathematical education and for its support during the time I was working on my PhD thesis.

References

- [B] C. Bruche, Classes de Steinitz d'extensions non abéliennes de degré p³, Acta Arith. 137 (2009), 177–191.
- [BS] C. Bruche and B. Sodaïgui, On realizable Galois module classes and Steinitz classes of nonabelian extensions, J. Number Theory 128 (2008), 954–978.
- [BGS] N. P. Byott, C. Greither et B. Sodaïgui, Classes réalisables d'extensions non abéliennes, J. Reine Angew. Math. 601 (2006), 1–27
- [Ca1] J. E. Carter, Steinitz classes of a nonabelian extension of degree p³, Colloq. Math. 71 (1996), 297–303.
- [Ca2] —, Steinitz classes of nonabelian extensions of degree p^3 , Acta Arith. 78 (1997), 297–303.
- [CaS] J. E. Carter et B. Sodaïgui, Classes de Steinitz d'extensions quaternioniennes généralisées de degré 4p^r, J. London Math. Soc. (2) 76 (2007), 331–344.
- [C1] A. Cobbe, Steinitz classes of tamely ramified Galois extensions of algebraic number fields, PhD thesis, Scuola Normale Superiore, Pisa, 2010.
- [C2] —, Steinitz classes of tamely ramified Galois extensions of algebraic number fields,
 J. Number Theory 130 (2010), 1129–1154.
- [E] L. P. Endo, Steinitz classes of tamely ramified Galois extensions of algebraic number fields, PhD thesis, Univ. of Illinois at Urbana-Champaign, 1975.
- [GS1] M. Godin et B. Sodaïgui, Classes de Steinitz d'extensions à groupe de Galois A₄, J. Théor. Nombres Bordeaux 14 (2002), 241–248.
- [GS2] —, —, Module structure of rings of integers in octahedral extensions, Acta Arith. 109 (2003), 321–327.
- [L] S. Lang, Algebraic Number Theory, 2nd ed., Grad. Texts in Math. 110, Springer, New York, 1994.
- [Lo1] R. Long, Steinitz classes of cyclic extensions of degree l^r , Proc. Amer. Math. Soc. 49 (1975), 297–304.
- [Lo2] —, Steinitz classes of cyclic extensions of prime degree, J. Reine Angew. Math. 250 (1971), 87–98.
- [MS] R. Massy et B. Sodaïgui, Classes de Steinitz et extensions quaternioniennes, Proyecciones 16 (1997), 1–13.
- [MC1] L. R. McCulloh, Cyclic extensions without relative integral bases, Proc. Amer. Math. Soc. 17 (1966), 1191–1194.
- [MC2] —, Galois module structure of abelian extensions, J. Reine Angew. Math. 375/376 (1987), 259–306.
- [Na] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd ed., Springer Monogr. Math., Springer, Berlin, 2004.
- [Ne] J. Neukirch, Class Field Theory, Grundlehren Math. Wiss. 280, Springer, Berlin, 1986.
- [S1] B. Sodaïgui, Classes de Steinitz d'extensions galoisiennes relatives de degré une puissance de 2 et problème de plongement, Illinois J. Math. 43 (1999), 47–60.
- [S2] —, Relative Galois module structure and Steinitz classes of dihedral extensions of degree 8, J. Algebra 223 (2000), 367–378.

[Sov] E. Soverchia, Steinitz classes of metacyclic extensions, J. London Math. Soc. (2) 66~(2002),~61-72.

Alessandro Cobbe Scuola Normale Superiore Piazza dei Cavalieri, 7 I-56126 Pisa, Italy E-mail: a.cobbe@sns.it

> Received on 19.1.2010 and in revised form on 24.1.2011 (6273)