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Connecting homomorphisms associated to Tate sequences

by

Paul Richard Buckingham (Edmonton)

1. Introduction. In [19, 21], Tate constructs, for a Galois extension
L/K of number fields with Galois group G, a Tate sequence 0 → O×L,S →
A→ B → X → 0 of Z[G]-modules whose extension class in Ext2Z[G](X,O

×
L,S)

is the so-called Tate canonical class, where O×L,S is the group of S-units in L
and X is a finitely generated, Z-torsion-free module which will be defined in
Section 2. This is done under the assumptions that S contains the ramified
places and that the S-class-group of L is trivial.

Tate’s construction shows that A and B may in fact be chosen finitely
generated and cohomologically trivial. This has the consequence that the
Galois cohomology of O×L,S can be identified with that of X, after a di-
mension shift of 2. This is reminiscent of the Artin–Tate formulation of
class field theory [1] in which the cohomology of the idele class-group is
identified with the cohomology of Z after a dimension shift of 2, with a
similar statement in the local case. In fact, this is no coincidence, since
it is via this interpretation of class field theory that the Tate sequence is
constructed.

The sequence is a primary feature in numerous applications to mul-
tiplicative Galois module structure. Tate uses it in [21, Ch. II] to prove
Stark’s Conjecture for rational characters, and Chinburg employs it in the
construction of his third Ω-invariant, which is central to his root number
conjecture—see [4, 5]. In fact, the Tate sequence also appears in the def-
inition of the lifted Ω-invariant in the Lifted Root Number Conjecture of
Gruenberg–Ritter–Weiss [9]. Further, a variant of the sequence is used to
construct the equivariant Tamagawa number in the Equivariant Tamagawa
Number Conjecture (ETNC) for the motive h0(Spec(L))(0), as in Burns–
Flach [2] for example.
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A significant step forward in the theory of Tate sequences was Ritter
and Weiss’s Tate sequence “for small S”, which allows the sequence to be
constructed for an arbitrary set of places S. More precisely, they found in [15]
a sequence

(1.1) 0→ O×L,S → A→ B → ∇→ 0

for a Galois extension L/K of number fields with Galois group G, with
no restriction on the set S other than that it contains the infinite places.
Whereas in the preceding theory of Tate sequences, the module in place of ∇
was the Z-torsion-free Z[G]-module X whose Galois structure is described
in terms of very basic arithmetic information, ∇ itself fits into an exact
sequence

(1.2) 0→ ClS(L)→ ∇→ X → 0.

An early use of this refined Tate sequence “for small S” was in the proof
by Ritter and Weiss [16] of the Strong Stark Conjecture for abelian ex-
tensions of Q. More recent applications have been the consideration of the
minus part of the ETNC for tame extensions, as in Nickel [13], and the
study of Fitting ideals of (duals of) minus parts of class-groups, as in Grei-
ther [8].

Despite the sequence’s growing use in multiplicative Galois module struc-
ture, one aspect of it that has not yet been determined is the precise effect
of the connecting homomorphisms that are naturally associated to the se-
quence. Our aim is to make certain such maps explicit, under some assump-
tions on the set S, namely that S will contain the infinite and ramified places
and at least one place with full decomposition group. We expect to be able to
remove this last assumption in the future. However, we emphasize that the
S-class-group will not be assumed trivial. The maps we make explicit are
the connecting homomorphism H−2(G,X) → H−1(G,ClS(L)) associated
to (1.2), and the map H−1(G,ClS(L)) → H1(G,O×L,S) that results from
H−1(G,ClS(L)) → H−1(G,∇) together with the appropriate connecting
homomorphisms (i.e. starting in dimension −1 then 0) obtained by splitting
(1.1) into two short exact sequences.

After building up preliminaries in Sections 2–5, we compute the maps in
Sections 6 and 7, and give some corollaries in Section 8.

2. Notation, assumptions and conventions. We will assume
throughout that L/K is Galois with Galois group G, and S will denote
a finite set of places of K containing the infinite and ramified places. By
a minor abuse of notation, OL,S will denote the SL-integers in L, where
SL consists of the places of L above those in S. Thus O×L,S is the group
of SL-units in L. The S-class-group of K will be written ClS(K), and the
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SL-class-group of L will be just ClS(L), the redundant subscript L again
being dropped.

By LS , we mean the Hilbert SL-class field of L, that is, the maximal
unramified abelian extension of L in which all places in SL split completely.
Gal(LS/L) is isomorphic, via the Artin map, to ClS(L).

We will denote the element
∑

σ∈G σ ∈ Z[G] by N . Multiplication by N
induces an endomorphism of ClS(L), but we stress that this is different
from the map Nm : ClS(L)→ ClS(K), induced by the norm of ideals, that
is featured in Section 8.

All number fields will lie in a fixed algebraic closure Q̄ of Q. If p is a place
of K, we will fix once and for all a place of Q̄ above p. Then given any number
field F containing K, p(F ) will denote the place of F below the chosen place
of Q̄ above p. For shorthand, we will denote the completion Fp(F ) by Fp, and
if F/K is Galois, the decomposition group Gal(F/K)p(F ) will be denoted
simply Gal(F/K)p. Note that if p ∈ S, then since p(L) splits completely in
LS , restriction Gal(LS/K)p → Gp defines an isomorphism, and we denote
by ιp the composition

Gp
'→ Gal(LS/K)p → Gal(LS/K).

For a finite place p of K, let ϕ̃p denote a lift in Gal(Lur
p /Kp) of the Frobe-

nius of Kur
p /Kp, and ϕ̄p its image in Gal(LS/K). Further, if p is unramified

in L/K, then ϕp will be the associated Frobenius element in Gp.
An important object appearing throughout the article is the Galois mod-

ule X defined below:

Definition 2.1. Let Y be the free abelian group on SL, and X the
kernel of the augmentation map Y → Z sending every place P ∈ SL to 1.

To give some context, we remark that X appears in the Dirichlet regu-
lator map, i.e. the isomorphism

R⊗Z O×L,S → R⊗Z X, 1⊗ u 7→
∑
w∈SL

log ‖u‖ww,

where the absolute values ‖ · ‖w are normalized in the particular canonical
way which makes the product formula hold, as in [12, Ch. III, Section 1].

For any group G, ∆G will denote its augmentation ideal, that is, the
kernel of the augmentation map Z[G]→ Z which sends each group element
to 1.

2.1. Key assumptions. In Sections 4 and 5.1, we assume that L/K
is Galois and S contains the ramified places. In Sections 5.2 and 6–8, we
further assume that there is a place p0 ∈ S such that Gp0 = G. We observe
that this last assumption forces G to be solvable, since then G is the Galois
group of a Galois extension of local fields.
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3. Group cohomology. Cohomology will be Tate cohomology through-
out. We will use the following model for Tate cohomology groups in negative
degrees, which we shall think of as homology groups, that is, H i(G,A) =
H−i−1(G,A) for i < −1: For n ≥ 0, let Pn be the free right Z[G]-module
on Gn, and for n ≥ 1 define a boundary map dn : Pn → Pn−1 by sending
[σ1, . . . , σn] to

[σ1, . . . , σn−1] · σn +
n−1∑
i=1

(−1)n−i[σ1, . . . , σiσi+1, . . . , σn] + (−1)n[σ2, . . . , σn].

Then P•
aug−−→ Z → 0 is a free resolution of Z as a right Z[G]-module, and

for a left Z[G]-module A, we view Hi(G,A) as the ith homology group of
the chain complex P• ⊗Z[G] A when i > 0. The Tate cohomology group
H−1(G,A) will be taken to mean

(3.1)
{a ∈ A |

∑
σ∈G σa = 0}

Z{(σ − 1)a | σ ∈ G, a ∈ A}
.

Note that the denominator in (3.1) is indeed a Z[G]-submodule, i.e. is closed
under the action of G.

Lemma 3.1. Let G be a finite group and H a subgroup. There is a well-
defined group isomorphism

Hab → H−2(G,Z[G]⊗Z[H] Z)

sending σ[H,H] to [σ]⊗ 1⊗ 1.

Proof. That Hab is isomorphic to H−2(G,Z[G] ⊗Z[H] Z) is simply
Shapiro’s Lemma—as in [22, Lemma 6.3.2] for example—together with the
fact that H−2(H,Z) ' Hab. The explicit description of the isomorphism is
left to the reader.

3.1. Extension classes. Suppose that A and C are Z[G]-modules and
that C is Z-free.

Lemma 3.2. There is a canonical isomorphism

Ext1Z[G](C,A) ' H1(G,HomZ(C,A)).

Proof. Since this is well known, we only sketch the proof. Supposing we
have an exact sequence 0 → A → B → C → 0 of Z[G]-modules, choose a
section s : C → B of the Z-module homomorphism B → C, so that s ∈
HomZ(C,B) maps to 1C in HomZ(C,C). This is possible by the assumption
on C. Then for each σ ∈ G, σs−s is the image of a unique fσ ∈ HomZ(C,A).
The map σ 7→ fσ is a 1-cocycle G→ HomZ(C,A).
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Conversely, given a 1-cocycle f : G → HomZ(C,A), we can endow the
direct sum B = A⊕ C of Z-modules with a G-action by

(3.2) σ(a, c) = (σa+ f(σ)(σc), σc).

One checks that these constructions pass to mutually inverse maps between
Ext1Z[G](C,A) and H1(G,HomZ(C,A)).

Lemma 3.3. Suppose 0 → A → B → C → 0 is an exact sequence of
Z[G]-modules such that C is Z-free. Viewing its extension class ξ as an
element of H1(G,HomZ(C,A)), the connecting homomorphism H i(G,C)
→ H i+1(G,A) is given by following cup-product with ξ by the evaluation
map

H i+1(G,C ⊗Z HomZ(C,A))→ H i+1(G,A).

Proof. See [3, Ch. XII, Prop. 6.1].

By Lemma 3.2, Ext1Z[G](∆G,A) ' H1(G,HomZ(∆G,A)) for each Z[G]-
module A. On the other hand, the exact sequence

0→ A→ HomZ(Z[G], A)→ HomZ(∆G,A)→ 0

together with the cohomological triviality of HomZ(Z[G], A) gives an iso-
morphism H1(G,HomZ(∆G,A))→ H2(G,A). Thus we have:

Lemma 3.4. For any Z[G]-module A, Ext1Z[G](∆G,A) ' H2(G,A).

4. The modules WS′, RS′ and BS′

4.1. The modules WS′ and RS′. We let S′ denote a finite set of places
of K containing S, and further satisfying:

(i)
⋃

p∈S′ Gp = G,
(ii) ClS′(L) = 0.

Such an S′ can always be chosen, by the Chebotarev Density Theorem.
Following [15, Section 1], we define

WS′ =
⊕
p∈S

∆pG⊕
⊕

q∈S′rS
Z[G],

where ∆pG is the left ideal in Z[G] generated by ∆Gp. We observe that
this description of WS′ relies on S containing the ramified primes. For a
treatment of the general case, see [15] itself.

As in [15, Section 4], we now define RS′ to be the kernel of the map
WS′ → ∆G that is inclusion on ∆pG and left multiplication by ϕq − 1 on
the copy of Z[G] corresponding to q ∈ S′ r S.
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4.2. The module BS′. After [15, Section 4], we let BS′ be the kernel
of the map ⊕

p∈S′
Z[G]→ Z[G]

that is the identity on the copy of Z[G] corresponding to p ∈ S, and mul-
tiplication by ϕq − 1 on the copy of Z[G] corresponding to q ∈ S′ r S. We
note that BS′ is projective, and therefore cohomologically trivial. To provide
more context, we note that BS′ is the module B appearing in (1.1). The map
RS′ → BS′ in (4.5) below is induced by the inclusion map

WS′ →
⊕
p∈S′

Z[G].

The map BS′ → X is induced by the map⊕
p∈S′

Z[G]→ Y

that is zero on Z[G] corresponding to q ∈ S′ r S and sends α ∈ Z[G]
corresponding to p ∈ S to αp(L).

4.3. Class field theory and diagrams. Denote the idele class-group
of L by CL. We let

0→ CL → V → ∆G→ 0

be the extension corresponding under the isomorphism of Lemma 3.4 to the
global fundamental class in H2(G,CL). In fact, for concreteness, we will take
the following description of V: Suppose the element ofH1(G,HomZ(∆G,CL))
corresponding to the global fundamental class is represented by the 1-cocy-
cle f . Then we view V as CL⊕∆G (direct sum as Z-modules) with G-action
given as in (3.2).

Ritter and Weiss also define local versions Vp of V for each p ∈ S′. For
p ∈ S, Vp is simply the analogous construction to V with CL replaced by L×p
and the global fundamental class replaced by the local one. For p ∈ S′ r S,
the definition is more subtle, but still uses local class-field-theoretic data.
We will only need the definitions in a very simple situation, which we will
turn to in Section 7.2. The reader wishing to see the complete definition
may refer to [15, Sections 1, 3]. Following Ritter and Weiss, we set

(4.1) VS′ =
(⊕

p∈S′
Z[G]⊗Z[Gp] Vp

)
⊕
( ⊕

P6∈S′L

UP

)
,

where UP is the group of units in LP. Note that the first direct sum runs
through primes p of K (in S′), whereas the second direct sum runs through
primes P of L (not above S′).
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The important diagrams involving the modules WS′ , RS′ and BS′ are

(4.2)

0

��

0

��

0

��
0 // O×L,S //

��

A //

��

RS′

��

ED
s

BC
GF

@A
//

0 // JS //

��

VS′ //

��

WS′
//

��

0

0 // CL //

��

V //

��

∆G //

��

0

ClS(L) //

��

0 0

0

and

(4.3)

0 // RS′ //

s
��

BS′ //

t

��

X //

1

��

0

0 // ClS(L) // ∇ // X // 0

In (4.2), the module A is defined to be the kernel of VS′ → V, and (4.2) is
simply the snake diagram arising from the middle two rows. The surjectivity
of VS′ → V in (4.2) and the origin of (4.3) are treated in [15, Section 4].

RS′ fits into an exact sequence

(4.4) 0→ O×L,S → A→ RS′
s→ ClS(L)→ 0,

where A is the (cohomologically trivial) Z[G]-module appearing in the Tate
sequence (1.1). Ritter and Weiss term the map s the “snake map” be-
cause it is the snake map of diagram (4.2)—see the discussion following
[15, Theorem 1]. The significance of the snake map is as follows: Applying
HomZ(−,ClS(L)) to the short exact sequence

(4.5) 0→ RS′ → BS′ → X → 0

occurring in (4.3), and remembering that X is Z-free, we obtain the exact
sequence

0→ HomZ(X,ClS(L))→ HomZ(BS′ ,ClS(L))→ HomZ(RS′ ,ClS(L))→ 0.

Upon identifying Ext1Z[G](X,ClS(L)) with H1(G,HomZ(X,ClS(L))), the ex-
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tension class of (1.2) is the image of the class of −s under the connecting
homomorphism

H0(G,HomZ(RS′ ,ClS(L)))→ H1(G,HomZ(X,ClS(L))).

Since (1.2) is central to our purpose, getting a strong hold on s will be one
of our main goals, and will be carried out in Section 5.

5. The snake map

5.1. Explicit description of s. In this section, L/K is a Galois exten-
sion of number fields and S a finite set of places of K containing the infinite
and ramified ones. We let GS = Gal(LS/K).

We now come to the description of the snake map s : RS′ → ClS(L)
given in [15, Section 5]. It is defined first of all as a prime-by-prime map
WS′ → H where

H =
∆GS

Ker(∆GS → ∆G)∆GS
.

(We note that an element σ of G acts on H by left multiplication by any
preimage of σ in GS .)

For p ∈ S, the map ∆pG → H sends βα to β(ιp(α)) for α ∈ ∆Gp and
β ∈ Z[G], where the bar denotes class in H.

Recall the element ϕ̄q ∈ GS = Gal(LS/K) defined in Section 2. For
q ∈ S′ r S, the image of an element β inside the copy of Z[G] in WS′

corresponding to q is mapped to β(ϕ̄q) in H.
There is an embedding Gal(LS/L) → H which sends σ to the class of

σ − 1, and the restriction of the map WS′ → H to RS′ has its image in
Im(Gal(LS/L) → H). Identifying Gal(LS/L) with ClS(L), we have thus
described the snake map s : RS′ → ClS(L).

5.2. The extension class of ∇. We now assume that there exists a
finite place p0 ∈ S such that Gp0 = G. For each p ∈ S, fix a set Dp of
representatives for (G/Gp)left containing 1, and given σ ∈ G let ρp(σ) be
the chosen representative of the coset σGp. It is possible to choose S′ as
in Section 4 with the further condition that every place q ∈ S′ r S splits
completely in L/K. For this, we are already using that

⋃
p∈S Gp = G. We

are assuming more, of course: Gp0 = G. With S′ chosen in this way, we have

(5.1) RS′ = Ker
(⊕

p∈S
∆pG→ ∆G

)
⊕

⊕
q∈S′rS

Z[G].

Definition 5.1. Given p ∈ S r {p0}, σ ∈ G and τ ∈ Dp, let r(p)σ,τ be
the element of RS′ = Ker(

⊕
p∈S ∆pG → ∆G) ⊕

⊕
q∈S′rS Z[G] which has

σρp(σ−1τ)− τ in the p-component, τ −σρp(σ−1τ) in the p0-component, and
zero elsewhere.
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Lemma 5.2. Define g : G→ HomZ(X,ClS(L)) by sending σ ∈ G to the
map

τp(L)− p0(L) 7→ s(r(p)σ,τ )

for τ ∈Dp, p ∈ Sr{p0}. Then the image of −s∈H0(G,HomZ(RS′ ,ClS(L)))
in H1(G,HomZ(X,ClS(L))) is g.

Proof. We follow the diagram

(5.2)

Map(G,HomZ(X,ClS(L)))

��
HomZ(BS′ ,ClS(L)) //

��

Map(G,HomZ(BS′ ,ClS(L)))

HomZ(RS′ ,ClS(L))

from bottom-left to top-right. Note that

BS′ = Ker
(⊕

p∈S
Z[G]→ Z[G]

)
⊕

⊕
q∈S′rS

Z[G].

We first look for a Z-splitting of 0→ RS′ → BS′ → X → 0. We use the
Z-basis ⋃

p∈Sr{p0}

{τp(L)− p0(L) | τ ∈ Dp}

of X. For p ∈ S, let ep be the element of
⊕

p∈S Z[G] which has 1 in the
p-component and zero everywhere else. Then a lift of τp(L)− p0(L) to BS′
is τep − τep0 . Therefore if Z is the Z-span of these lifts,

BS′ = RS′ ⊕ Z.

Define µ : BS′ → ClS(L) by µ|RS′ = −s and µ|Z = 0. Let f be the image
of µ under the horizontal map in (5.2), i.e. if σ ∈ G, then f(σ) = σµ − µ.
Now take τ ∈ Dp for some p ∈ S. Then

(σµ)(τep − τep0) = σµ(σ−1τep − σ−1τep0),

and one sees that σ−1τep − σ−1τep0 decomposes as

(5.3) [(σ−1τ − ρp(σ−1τ))ep + (ρp(σ−1τ)− σ−1τ)ep0 ]

+ [ρp(σ−1τ)ep − ρp(σ−1τ)ep0 ]

inRS′⊕Z. Also, we recognize the first bracketed element in (5.3) as−σ−1r
(p)
σ,τ .

Thus

(σµ)(τep − τep0) = −σµ(σ−1r(p)σ,τ ) = σs(σ−1r(p)σ,τ ) = s(r(p)σ,τ ).
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Since µ(τep − τep0) = 0, we therefore obtain

f(σ)(τep − τep0) = s(r(p)σ,τ ).

Further, the map g : G → HomZ(X,ClS(L)) appearing in the statement
of the lemma has image f in Map(G,HomZ(BS′ ,ClS(L))). The lemma is
proven.

Definition 5.3. If p ∈ S r {p0} and τ ∈ Gp, then ιp0(τ)−1ιp(τ) ∈
Gal(LS/L), and we let its image in ClS(L) under the Artin map be cp(τ).

Lemma 5.4. If p ∈ S r {p0}, τ ∈ Dp and σ ∈ G, then

s(r(p)σ,τ ) = τcp(τ−1σρp(σ−1τ)).

Proof. Since s is a Z[G]-module homomorphism, the statement of the
lemma is equivalent to s(τ−1r

(p)
σ,τ ) = cp(τ−1σρp(σ−1τ)). Now, recalling the

notation ep introduced in the proof of Lemma 5.2, we see that

τ−1r(p)σ,τ = (τ−1σρp(σ−1τ)− 1)ep − (τ−1σρp(σ−1τ)− 1)ep0 ,

whose image in H is

ιp(τ−1σρp(σ−1τ))− 1− ιp0(τ−1σρp(σ−1τ))− 1

by the discussion of Section 5.1. However, this is simply

(5.4) ιp(τ−1σρp(σ−1τ))− ιp0(τ−1σρp(σ−1τ)).

Now, one checks that if σ1, σ2 ∈ GS and σ−1
2 σ1 ∈ Gal(LS/L), then σ−1

2 σ1

has image σ1 − σ2 in H. Therefore the element of (5.4) is the image of

ιp0(τ−1σρp(σ−1τ))−1ιp(τ−1σρp(σ−1τ))

under Gal(LS/L)→ H. Thus s(τ−1r
(p)
σ,τ ) = cp(τ−1σρp(σ−1τ)) as desired.

For each q ∈ S′ r S, let sq : Z[G] → ClS(L) be the restriction of the
snake map to the copy of Z[G] in RS′ corresponding to q.

Lemma 5.5. sq(1) = q(L)OL,S, where q(L) is the distinguished prime of
L above q.

Proof. The map Z[G]→ RS′ → H corresponding to q sends 1 to ϕ̄q − 1
(recall the definition of ϕ̄p in Section 2), which is the image of ϕ̄q under
Gal(LS/L) → H. Note that ϕ̄q is indeed in Gal(LS/L) because Kq = Lq.
We also observe that ϕ̄q is, in this case, just the Frobenius in LS/L associated
to q(L), and therefore the image of q(L)OL,S under the Artin map ClS(L)→
Gal(LS/L) is ϕ̄q, completing the proof.

6. The map H−2(G,X) → H−1(G,ClS(L)). As in Section 5.2, we
assume that S contains the infinite and ramified places and that there exists
a finite place p0 ∈ S such that Gp0 = G. We will assume this for the
remainder of the article.
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Lemma 6.1. H−2(G,X) is generated over Z by

{[τ ]⊗ (p(L)− p0(L)) | p ∈ S r {p0}, τ ∈ Gp}.
Proof. Note that the exact sequence 0 → X → Y → Z → 0 gives an

exact sequence

(6.1) 0→ H−2(G,X)→ H−2(G, Y )→ H−2(G,Z)→ 0.

Indeed, the assumption Gp0 = G implies that H−1(G,X) is zero and that
H−3(G, Y )→ H−3(G,Z) is surjective. Now, Y is isomorphic to the module⊕

p∈S Z[G]⊗Z[Gp] Z, so by Lemma 3.1, there is an isomorphism⊕
p∈S

Gab
p → H−2(G, Y ), (τp[Gp, Gp])p 7→

∑
p∈S

[τp]⊗ p(L).

Given p ∈ Sr{p0} and τ ∈ Gp let xp(τ) be the element of
⊕

p∈S G
ab
p with

τ [Gp, Gp] in the p-component, τ−1[Gp0 , Gp0 ] in the p0-component and the
commutator group [Gq, Gq] in the q-component for q ∈ Sr {p0, p}. Observe
then that Ker(

⊕
p∈S G

ab
p → Gab) is generated by

{xp(τ) | p ∈ S r {p0}, τ ∈ Gp}.
This makes use of the fact that Gp0 = G.

Now, xp(τ) maps to

[τ ]⊗ p(L)− [τ ]⊗ p0(L) = [τ ]⊗ (p(L)− p0(L)),

which lies in the image of the injective map H−2(G,X) → H−2(G, Y ).
Since Ker(

⊕
p∈S G

ab
p → Gab) is generated by the elements xp(τ) as above,

we obtain an injective map

Ker
(⊕

p∈S
Gab

p → Gab
)
→ H−2(G,X)

which sends xp(τ) to [τ ]⊗ (p(L)− p0(L)). Since both sides have the same
order (they can be shown to be isomorphic by using the sequence in (6.1)
directly, together with Shapiro’s Lemma), this map is an isomorphism. This
completes our proof.

Remark. It is clear from the definition of the elements xp(τ) in the
above proof that, in the statement of Lemma 6.1, the elements τ need only
be taken from a set of representatives for the left cosets of [Gp, Gp] in Gp.

Lemma 6.2. Let A be a Z[G]-module and ξ ∈ H1(G,A) be represented
by the 1-cocycle g : G→ A. Then the map

H−2(G,X)→ H−1(G,X ⊗Z A)

obtained by taking cup-product with ξ sends the element [τ ]⊗ (p(L)− p0(L))
to (p(L)− p0(L))⊗ g(τ), where p ∈ S r {p0} and τ ∈ Gp.
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Proof. We dimension shift using the commutativity of the diagram

H−2(G,X)
c1 //

δ1
��

H−1(G,X ⊗Z A)

δ2
��

H−1(G,∆G⊗Z X)
c2 // H0(G,∆G⊗Z X ⊗Z A)

where c1 and c2 are obtained by cupping with ξ. Given p ∈ S r {p0} and
τ ∈ Gp, we have δ1([τ ]⊗ (p(L)− p0(L))) = (τ − 1)⊗ (p(L)− p0(L)). By
[18, Appendix to Chapter XI, Lemma 2], the image of this under c2 is
represented in H0(G,∆G⊗Z X ⊗Z A) by

−
∑
σ∈G

σ((τ − 1)⊗ (p(L)− p0(L)))⊗ g(σ)

= −
∑
σ∈G

(στ − 1)⊗ (σp(L)− p0(L))⊗ g(σ)

+
∑
σ∈G

(σ − 1)⊗ (σp(L)− p0(L))⊗ g(σ)

= −
∑
σ∈G

(σ − 1)⊗ (στ−1p(L)− p0(L))⊗ g(στ−1)

+
∑
σ∈G

(σ − 1)⊗ (σp(L)− p0(L))⊗ g(σ)

= −
∑
σ∈G

(σ − 1)⊗ (σp(L)− p0(L))⊗ (g(στ−1)− g(σ))

= −
∑
σ∈G

(σ − 1)⊗ (σp(L)− p0(L))⊗ σg(τ−1).

The image under δ−1
2 of the class of this is

−(p(L)− p0(L))⊗ g(τ−1) = (p(L)− p0(L))⊗ τ−1g(τ)
= (p(L)− p0(L))⊗ g(τ).

Proposition 6.3. Under the above assumptions, the connecting homo-
morphism H−2(G,X) → H−1(G,ClS(L)) sends [τ ]⊗ (p(L)− p0(L)), with
p ∈ S r {p0} and τ ∈ Gp, to cp(τ). (See Definition 5.3 for cp(τ).)

Proof. We apply Lemma 6.2 in the case A = HomZ(X,ClS(L)) and take
g as in Lemma 5.2, and combine this with Lemma 3.3. Given p ∈ Sr{p0} and
τ ∈ Gp, the image of [τ ]⊗ (p(L)− p0(L)) in H−1(G,ClS(L)) is represented
by g(τ)(p(L)− p0(L)) = s(r(p)τ,1). By Lemma 5.4, s(r(p)τ,1) = cp(τ).

We can now describe H1(G,O×L,S) as a quotient of H−1(G,ClS(L)).
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Definition 6.4. Let CS(L/K) denote the subgroup of H−1(G,ClS(L))
generated by

{cp(τ) | p ∈ S r {p0}, τ ∈ Gp r {1}}.
We remark that the bar in CS(L/K) is intended to reflect that we are

working in cohomology. A similar object CS(L/K) defined for the class-group
in its entirety will appear in Corollary 8.8.

Proposition 6.5. There is a canonical isomorphism

H−1(G,ClS(L))/CS(L/K) ' H1(G,O×L,S).

Proof. In light of Proposition 6.3, and the existence of the canonical iso-
morphism H−1(G,∇) ' H1(G,O×L,S) arising from the Tate sequence (1.1),
it suffices to show that H−1(G,X) = 0. To demonstrate the vanishing of
this cohomology group, consider the exact sequence

H−2(G, Y )→ H−2(G,Z)→ H−1(G,X)→ 0.

ViewingH−2(G, Y ) as
⊕

p∈S G
ab
p andH−2(G,Z) asGab, we see that the map

H−2(G, Y )→ H−2(G,Z) is surjective, showing that indeed H−1(G,X) = 0.
We have used in particular that Gp0 = G.

7. The map H−1(G,ClS(L)) → H1(G,O×L,S). We now wish to make
the canonical isomorphism appearing in Proposition 6.5 explicit. The Tate
sequence (1.1) is obtained by combining the short exact sequence

(7.1) 0→ O×L,S → A→ Ker(s)→ 0

arising from (4.4) with the short exact sequence

(7.2) 0→ Ker(t)→ BS′ → ∇→ 0

arising from the middle vertical map in (4.3), observing that Ker(s) =
Ker(t). Therefore the map H i(G,ClS(L))→ H i+2(G,O×L,S) factors as

H i(G,ClS(L))→ H i(G,∇)→ H i+1(G,Ker(t))

→ H i+1(G,Ker(s)) δ2→ H i+2(G,O×L,S),

where the second map is the connecting homomorphism arising from (7.2),
and the last map, δ2, is the connecting homomorphism arising from (7.1).
However, the composition of the first three maps is just the connecting ho-
momorphism δ1 : H i(G,ClS(L)) → H i+1(G,Ker(s)) arising from the exact
sequence

0→ Ker(s)→ RS′ → ClS(L)→ 0.

In particular, the map H−1(G,ClS(L))→ H1(G,O×L,S) is the composition

H−1(G,ClS(L)) δ1→ H0(G,Ker(s)) δ2→ H1(G,O×L,S).
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7.1. The first connecting homomorphism, δ1. By our choice of the
set S′, ClS(L) can be generated by the classes of the ideals of L above those
in S′ r S. Further, since for c ∈ ClS(L) and σ ∈ G we have σc = c in
H−1(G,ClS(L)), an element of this cohomology group can be represented
by an ideal class of the form

(7.3) c =
∑

q∈S′rS
aqq(L)OL,S

with the aq in Z, writing ClS(L) additively. By assumption, the fractional
ideal

∏
q∈S′rS(q(L)OL,S)aqN of OL,S is principal and therefore is generated

over OL,S by a for some a ∈ L×.
By Lemma 5.5, a lift of c to RS′ is the element (aq)q of

⊕
q∈S′rS Z[G]. Ap-

plying N , we see that δ1(c) is represented by the element (aqN)q of Ker(s),
that is, aqN in the q-component for q ∈ S′ r S and 0 elsewhere.

7.2. The second connecting homomorphism, δ2. We describe the
map VS′ → V. Having done this, it will be easy to see that the natu-
ral choice of a lift of (aqN)q to VS′ under VS′ → WS′ does indeed lie
in A = Ker(VS′ → V)—see Lemma 7.1 below. The corresponding 1-cocycle
G→ O×L,S will then drop right out, as in Theorem 7.2 below.

So, recall from (4.1) that VS′ = (
⊕

p∈S′ Z[G] ⊗Z[Gp] Vp) ⊕ (
⊕

P6∈S′ UP),
where Vp is described for p ∈ S in [15, Section 1]. By [20, pp. 195–196], there
is λp ∈ HomZ(∆Gp, CL) such that we can choose the map Vp → V to send
(b, x) to (ςp(b)λp(x), x) for b ∈ L×p and x ∈ ∆Gp, where ςp : L×p → CL is the
canonical inclusion.

As for the description of Vq for q ∈ S′rS, we see from [15, Prop. 2] that
under our assumptions, Vq = Uq⊕Z as Z-modules, noting that Gq is trivial
since q splits completely in L/K. (We are also using our notation convention
that for a finite place q of K, Uq denotes Uq(L).) Thus the q-component of VS′
is (Z[G]⊗Z Uq)⊕Z[G]. The map (Z[G]⊗Z Uq)⊕Z[G]→ V sends (α⊗ u, β)
to (ςq(u)αςq(πq)β, 0) where πq is a fixed uniformizer of Lq.

Finally, all unit groups UP appearing in VS′ are mapped to 0 in V.
By definition of a (see the sentence following (7.3)), for all σ ∈ G we have

aσ(πq)−aq equal to a unit ũq,σ in Lσq(L), which in turn can be expressed as
σ(uq,σ) for a unique unit uq,σ in Lq. Further, a is a unit in LP for every P
not above S′.

Let v be the element of VS′ which has
∑

σ∈G σ ⊗ (σ−1(a), 0) in the p-
component for p ∈ S, (

∑
σ∈G σ⊗uq,σ, aqN) in the q-component for q ∈ S′rS,

and a ∈ UP ⊆ LP in the P-component for every prime P of L not above S′.

Lemma 7.1. With notation as above, the element v of VS′ is a lift of
(aqN)q to A = Ker(VS′ → V).
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Proof. We first show that v ∈ Ker(VS′ → V). For p ∈ S, the image
of
∑

σ∈G σ ⊗ (σ−1(a), 0) is∑
σ∈G

σ(ςp(σ−1(a)), 0) =
( ∏
σ∈G

ςp(σ−1(a))σ, 0
)
,

and the element of CL appearing in the left-hand entry is represented by
the idele having a in all the components above p and 1 everywhere else.

Now consider q ∈ S′ r S. The image of (
∑

σ∈G σ ⊗ uq,σ, aqN) in V is∑
σ∈G(ςq(uq,σπ

aq
q )σ, 0). Using a= σ(uq,σπ

aq
q ), the element

∏
σ∈G ςq(uq,σπ

aq
q )σ

of CL is represented by the idele having a in all the components above q and
1 everywhere else. Remembering the contribution of a ∈ UP for each P not
above S′, which gets mapped to (x, 0) where x is the idele class represented
by the idele with a in the P-component and 1 everywhere else, we find that
v is mapped to (a, 0) = (1, 0) ∈ V, and so lies in A.

That v is a lift of (aqN)q is clear.

Recall the ideal class c defined in (7.3) and the element a of L× appearing
just after.

Theorem 7.2. The image of c under H−1(G,ClS(L)) → H1(G,O×L,S)
is represented by the 1-cocycle τ 7→ τ(a)/a.

Proof. Take τ ∈ G. By the construction of the relevant connecting ho-
momorphism associated to 0 → O×L,S → A → Ker(s) → 0, we deduce that
τv − v must be a principal idele with S-unit entries, so it suffices to de-
termine what that S-unit is in just one component. By considering P not
above S′, it is clear that it must be τ(a)/a as claimed, but we can verify
this by calculating the idele in all components.

First consider q ∈ S′ r S. Then

(τ − 1)
(∑
σ∈G

σ ⊗ uq,σ, aqN
)

=
(∑
σ∈G

(τ − 1)σ ⊗ uq,σ, 0
)
,

and the element of Z[G]⊗Z Uq in the left-hand entry is∑
σ∈G

(τσ)⊗ uq,σ −
∑
σ∈G

σ ⊗ uq,σ =
∑
σ∈G

σ ⊗ (uq,τ−1σu
−1
q,σ)

=
∑
σ∈G

σ ⊗ σ−1(σ(uq,τ−1σ)σ(uq,σ)−1).

Under the identification of Z[G] ⊗Z Uq with
⊕

Q|q UQ, this corresponds to
the element of

⊕
Q|q UQ having σ(uq,τ−1σ)σ(uq,σ)−1 in the σq(L)-component.

However, by definition σ(uq,τ−1σ)σ(uq,σ)−1 = τ(a)/a.
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Now consider p ∈ S. Then

(τ − 1)
∑
σ∈G

σ ⊗ (σ−1(a), 0) =
∑
σ∈G

(τσ − σ)⊗ (σ−1(a), 0)

=
∑
σ∈G

σ ⊗ (σ−1(τ(a)/a), 0),

which is the image under
⊕

P|p L
×
P → VS′ of the element having τ(a)/a in

every component. This completes the verification.

Incidentally, as an extra check, we can verify independently that for each
τ ∈ G, τ(a)/a ∈ O×L,S . Namely, since

aOL,S =
∏

q∈S′rS
(q(L)OL,S)aqN

and τN = N , we see that τ(a)OL,S = aOL,S , i.e. τ(a)/a ∈ O×L,S .

8. Corollaries. We give a sequence of corollaries of Theorem 7.2 which
lead to Corollary 8.8.

Recall once again the ideal class c defined in (7.3) and the element a
of L× defined just after.

Corollary 8.1. With the above notation,

c ∈ Ker(H−1(G,ClS(L))→ H1(G,O×L,S)) if and only if a ∈ O×L,S ·K
×.

Proof. By Theorem 7.2, the cohomology class c lies in the specified kernel
if and only if the 1-cocycle

G→ O×L,S , σ 7→ σ(a)/a,

is a 1-coboundary. But σ 7→ σ(a)/a is a 1-coboundary if and only if there
is u ∈ O×L,S such that σ(a)/a = σ(u)/u for all σ ∈ G, which is the same as
saying that a/u is fixed by G, i.e. a/u ∈ K×.

Let F be the kernel of the composition⊕
q∈S′rS

Z→ ClS(L) N→ ClS(L),

where the first map is given by sending an element (aq)q to the class of the
ideal

∏
q∈S′rS(q(L)OL,S)aq . (There is no relationship with the F used in the

proof of Lemma 3.1.) Thus F surjects onto H−1(G,ClS(L)). Note that we
also have a map F → ClS(K) given by restricting⊕

q∈S′rS
Z→ ClS(K), (aq)q 7→

∏
q∈S

(qOK,S)aq ,

to F .



Connecting homomorphisms 399

Corollary 8.2. The maps

F → H−1(G,ClS(L))→ H1(G,O×L,S) and F → ClS(K)

have the same kernel.

Proof. Take (aq)q ∈ F in the kernel of the first map, that is to say,∏
q∈S′rS

(q(L)OL,S)aqN = aOL,S

for some a ∈ O×L,S ·K× by Corollary 8.1. Of course, we may assume a ∈ K×.
Since q splits completely in L/K for q ∈ S′ r S,

νq(a) = νq(L)(a) = aq.

Since a ∈ O×K,S′ , we have

aOK,S =
∏

q∈S′rS
(qOK,S)aq ,

and so the class of
∏

q∈S′rS(qOK,S)aq is zero in ClS(K). Thus (aq)q is in the
kernel of the second map.

Conversely, take (aq)q ∈ F such that
∏

q∈S′rS(qOK,S)aq is principal as
an ideal of OK,S , i.e. ∏

q∈S′rS
(qOK,S)aq = bOK,S

for some b ∈ K×. Choose a ∈ L× such that
∏

q∈S′rS(q(L)OL,S)aqN = aOL,S ,
as in the construction of the map H−1(G,ClS(L))→ H1(G,O×L,S). Then

aOL,S =
∏

q∈S′rS
(q(L)OL,S)aqN =

( ∏
q∈S′rS

qaq

)
OL,S = bOL,S ,

so a ∈ O×L,S ·K×. By Corollary 8.1, this says that (aq)q is in the kernel of
the first map.

Corollary 8.3. There is an embedding H1(G,O×L,S)→ ClS(K).

Proof. By Corollary 8.2, we have

H1(G,O×L,S) '→ F/Ker(F → ClS(K))→ ClS(K),

the second map being injective.

We observe that the above corollary gives an alternative justification
that H1(G,O×L,S) embeds into ClS(K) to that found in [14, Cor. 2].

Definition 8.4. Let Nm : ClS(L) → ClS(K) be the homomorphism
on class-groups induced by the norm of ideals. Denote the resulting map
H−1(G,ClS(L))→ ClS(K) by Nm.



400 P. R. Buckingham

Corollary 8.5. There is an exact sequence

0→ CS(L/K)→ H−1(G,ClS(L)) Nm−−→ ClS(K).

(Recall the definition of CS(L/K) in 6.4.)

Proof. By Proposition 6.5, CS(L/K) is the kernel of H−1(G,ClS(L))→
H1(G,O×L,S), which is the kernel of

(8.1) H−1(G,ClS(L))→ H1(G,O×L,S)→ ClS(K)

by Corollary 8.3. It remains to show that the map in (8.1) is Nm. An element
x of H−1(G,ClS(L)) is represented by an ideal class containing an ideal of
the form ∏

q∈S′rS
(q(L)OL,S)aq

with (aq)q ∈ F . If y is the image of x in H1(G,O×L,S), then the image of y
in ClS(K) is obtained by first lifting y to F via H−1(G,ClS(L)), and then
applying the map F → ClS(K). However, such a lift of y is (aq)q, whose
image in ClS(K) is the ideal class containing∏

q∈S′rS
(qOK,S)aq .

This ideal class is clearly Nm(x).

Corollary 8.5 establishes that CS(L/K) = Ker(Nm). We remark in pass-
ing, although we will not use this fact, that this kernel is in fact the “divisor
knot” as defined by Jehne in [11, Ch. I, Section 1]—see the isomorphism
before Theorem 1 of [11] and the definition in [11, (1.5)]. (Jehne’s divisor
knot contains the earlier divisor knot of Scholz [17].)

Now, consider the following definition:

Definition 8.6. Let D(ClS(L)) be the subgroup of ClS(L) generated
by

{(σ − 1)c | c ∈ ClS(L), σ ∈ G}.
Observe that D(ClS(L)) is closed under the action of G and is therefore

a Z[G]-submodule of ClS(L).
Noting that

(8.2) D(ClS(L)) ⊆ Ker(Nm) ⊆ Ker(N : ClS(L)→ ClS(L)),

we obtain an exact sequence

0→ D(ClS(L))→ Ker(Nm)→ Ker(Nm)→ 0.

Thus we arrive at an exact sequence

(8.3) 0→ D(ClS(L))→ Ker(Nm)→ CS(L/K)→ 0.



Connecting homomorphisms 401

Definition 8.7. Let CS(L/K) be the subgroup of ClS(L) generated by

{cp(τ) | p ∈ S r {p0}, τ ∈ Gp r {1}}.
The following gives a description of the kernel of the norm map ClS(L)

→ ClS(K).

Corollary 8.8. There is an exact sequence

0→ D(ClS(L)) + CS(L/K)→ ClS(L) Nm→ ClS(K)→ 0.

(But see the Remark, after the proof, concerning existing literature.)

Proof. We see from (8.2) and Corollary 8.5 that D(ClS(L)) and CS(L/K)
are in the kernel of Nm. Conversely, take c ∈ Ker(Nm), so that c ∈ Ker(Nm),
and write c ∈ H−1(G,ClS(L)) as

c =
∑

p∈Sr{p0}

∑
τ∈Gpr{1}

ap,τ cp(τ)

with ap,τ ∈ Z. Then c −
∑

p∈Sr{p0}
∑

τ∈Gpr{1} ap,τ cp(τ) is in the kernel of
Ker(Nm)→ CS(L/K) and therefore is in D(ClS(L)) by (8.3), thus showing
that c ∈ D(ClS(L)) + CS(L/K).

As for the surjectivity of ClS(L) → ClS(K), this follows from the fact
that p0 remains non-split in L/K.

Remark. The author is aware that a description of the kernel of the
norm map as found in Corollary 8.8 should follow from, for example, work
of Jaulent [10], Jehne [11], Fröhlich [6] and Furuta [7] on knots, central
classes and genus fields. We include our derivation of this description as an
illustration of a different approach, via Ritter and Weiss’s version of the
Tate sequence, a derivation that, after our having obtained Theorem 7.2, is
reasonably short.
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