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An extension of the Lucas theorem

by

Jacques Boulanger and Jean-Luc Chabert (Amiens)

1. Introduction. Recall Lucas’ theorem [10, pp. 417–420] or [5] and [7]:

Proposition 1.1. Let p be a prime number and let

n = n0 + n1p+ n2p
2 + . . .+ nkp

k with 0 ≤ ni < p,

x = x0 + x1p+ x2p
2 + . . .+ xkp

k with 0 ≤ xj < p.

Then (
x

n

)
≡
(
x0

n0

)(
x1

n1

)
. . .

(
xk
nk

)
(modp).

This formula has been generalized by several authors (see, for instance,
[8] or [9]), but all these extensions concern ordinary integers. The aim of
this paper is to extend the Lucas formula by replacing Z, or more precisely
Z(p), by a discrete valuation domain V with finite residue field. Note that
the prime number p appears twice: once as a generator of the maximal ideal
pZ, and secondly as the cardinality of the residue field Z/pZ. Thus, we will
replace it either by a generator t of the maximal ideal m of V , or by the
cardinality q of the residue field V/m. The integer q will then occur in the
q-adic representation of the integers n, while the generator t will occur in
the t-adic expansion of the elements x of V .

Now we have to replace the binomial coefficients by suitable expressions.
To do this, we notice that the binomial coefficient

(
x
n

)
is the value at x of

the polynomial (
X

n

)
=
X(X − 1) . . . (X − n+ 1)

n!
.

It is well known that these binomial polynomials form a basis of the Z-
module

Int(Z) = {f ∈ Q[X] | f(Z) ⊆ Z}

2000 Mathematics Subject Classification: 13F20, 11B65.

[303]



304 J. Boulanger and J.-L.Chabert

of integer-valued polynomials on Z. We are then led to consider the ring
Int(V ) of integer-valued polynomials on V , that is,

Int(V ) = {f ∈ K[X] | f(V ) ⊆ V },
where K denotes the quotient field of V . We know how to construct a basis
Cn(X) of the V -module Int(V ) [1, Chap. II, §2]: we first construct a sequence
{un}n∈N of elements of V such that, for every s, any choice of qs consecutive
terms provides a complete set of residues of V mod ms. Then, the following
polynomials of Lagrangian type:

Cn(X) =
n−1∏

k=0

X − uk
un − uk

form a basis of the V -module Int(V ). We are going to show that, for a proper
choice of the sequence {un}, if

n =
k∑

i=0

niq
i and x =

∑

j≥0

xjt
j ,

then

Cn(x) ≡
k∏

i=0

Cni(xi) (mod m).

This generalized formula will be established in the following section. Then, in
the third section, analogously to Chapman and Smith’s paper about Int(Z)
[4], we will use the extended formula to describe some maximal ideals of the
ring Int(V ).

2. Extension of the Lucas theorem

Hypotheses and notations. Let V be a discrete valuation domain with
finite residue field. Denote by K the quotient field of V , by v the correspond-
ing valuation of K, by m the maximal ideal of V , and by q the cardinality
of the residue field V/m. We denote by K̂, V̂ , and m̂ the completions of
K, V , and m with respect to the m-adic topology and we still denote by v
the extension of v to K̂.

The construction. We choose a generator t of m and a set U = {u0 =
0, u1, . . . , uq−1} of representatives of V modulo m. It is well known that each
element x of V̂ has a unique t-adic expansion (see, for instance, [2, Chap.
II, §7])

x =
∞∑

j=0

xjt
j with xj ∈ U for each j ∈ N.
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We now construct a sequence {un}n∈N of elements of V which will re-
place the sequence of nonnegative integers. Taking q as the basis of the
numeration, that is, writing every positive integer n in the form

n = n0 + n1q + n2q
2 + . . .+ nkq

k with 0 ≤ ni < q for each i ∈ {0, . . . , k},
we extend the sequence {uj}0≤j<q in the following way:

un = un0 + un1t+ un2t
2 + . . .+ unkt

k.

We then replace the binomial polynomials(
X

n

)
=
X(X − 1)(X − 2) . . . (X − n+ 1)

n!

by the polynomials

Cn(X) =
n−1∏

k=0

X − uk
un − uk

with C0 = 1,

and we recall:

Proposition 2.1 ([1, Theorem II.2.7]). The polynomials Cn(X) form a
basis of the V -module Int(V ).

Theorem 2.2 (generalized Lucas formula). If

n = n0 + n1q + . . .+ nkq
k

is the q-adic expansion of a positive integer n, and if

x = x0 + x1t+ . . .+ xjt
j + . . .

is the t-adic expansion of an element x of V̂ , then

Cn(x) ≡ Cn0(x0)Cn1(x1) . . . Cnk(xk) (mod m̂).

We first note that the above theorem is equivalent to the following propo-
sition:

Proposition 2.3. Let n0 ∈ {0, 1, . . . , q − 1} and x0 ∈ {u0 = 0, u1, . . .

. . . , uq−1}. Then, for every m ∈ N and every y ∈ V̂ ,
Cn0+qm(x0 + ty) ≡ Cn0(x0)Cm(y) (mod m̂).

Proof of the equivalence. Theorem 2.2 obviously implies Proposition 2.3.
Let us prove the converse implication. Let n = n0 +n1q+ . . .+nkqk ∈ N and
x = x0 + x1t+ . . .+ xjt

j + . . . ∈ V̂ . Write n = n0 + qm1 and x = x0 + ty1.
It follows from Proposition 2.3 that

Cn(x) ≡ Cn0(x0)Cm1(y1) (mod m̂).

Now writing m1 = n1 + qm2 and y1 = x1 + ty2, analogously we have

Cm1(y1) ≡ Cn1(x1)Cm2(y2) (mod m̂).
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And so on, until we come to

Cmk−1(yk−1) ≡ Cnk−1(xk−1)Cnk(yk) (mod m̂).

To conclude we just have to notice that

nk = nk + q · 0 and yk = xk + tyk+1;

thus we have

Cnk(yk) ≡ Cnk(xk) · C0(yk+1) = Cnk(xk) (mod m̂).

Proof of Proposition 2.3. First note that our choice of the sequence
{un}n∈N implies that, for each h, k ∈ N with 0 ≤ k < q, one has uhq+k =
uk+tuh. By hypothesis, n = n0+qm where 0 ≤ n0 < q and x = x0+ty where
x0 = us for some s ∈ {0, . . . , q − 1}. Hence, in particular, un = un0 + tum
and un − uqm+l = un0 − ul for 0 ≤ l < q. Then

Cn(x) =
n−1∏

k=0

x− uk
un − uk

=
qm−1∏

k=0

x− uk
un − uk

·
n0−1∏

l=0

x− uqm+l

un − uqm+l
= A ·B.

The second factor B is equal to
n0−1∏

l=0

x− uqm+l

un0 − ul
,

and hence is congruent modulo m̂ to

Cn0(x0) =
n0−1∏

l=0

x0 − ul
un0 − ul

because:

• the denominators of both fractions are equal and invertible,
• the numerators are congruent modulo m̂ since

x− uqm+l = x0 − ul + t(y − um).

If we prove that

A =
qm−1∏

k=0

x− uk
un − uk

≡ Cm(y) (mod m̂),

then in particular A and B belong to V̂ , and hence, A ·B ≡ Cm(y) ·Cn0(x0)
(mod m̂). Writing

A =
m−1∏

h=0

q−1∏

k=0

x− uqh+k

un − uqh+k
=

m−1∏

h=0

q−1∏

k=0

(us + ty)− (uk + tuh)
(un0 − uk) + t(um − uh)

,
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we consider the k’s equal to s in the numerators and the k’s equal to n0 in
the denominators:

A =
m−1∏

h=0

y − uh
um − uh

·
m−1∏

h=0

∏
1≤k<q, k 6=s[(us − uk) + t(y − uh)]∏

0≤k<q, k 6=n0
[(un0 − uk) + t(um − uh)]

.

Write

A = E ·
m−1∏

h=0

Nh

Dh
.

The first factor E is exactly Cm(y). Consequently, it suffices to prove that the
second factor is congruent to 1 modulo m̂, and hence that all the quotients
Nh/Dh are congruent to 1 modulo m̂. Of course,

Nh =
∏

1≤k<q, k 6=s
[(us − uk) + t(y − uh)] ≡

∏

1≤k<q, k 6=s
(us − uk) (mod m̂),

Dh =
∏

0≤k<q, k 6=n0

[(un0 − uk) + t(um − uh)] ≡
∏

1≤k<q, k 6=n0

(un0 − uk) (mod m̂),

and the last terms are congruent to −1 modulo m. This ends the proof.

Remark 2.4. In the previous proof we have used the fact that u0 = 0.
We know that, whatever the choice of u0 ∈ V , the polynomials Cn(X) form a
basis of the V -module Int(V ). Nevertheless, if the generalized Lucas formula
holds, then necessarily u0 = 0. Let us prove it. Assuming that u0 6= 0, we
may consider the element x = u0/(1− t) whose t-adic expansion is

x =
u0

1− t = u0 + u0t+ u0t
2 + . . .+ u0t

n + . . .

Let h ∈ N \ {0} be such that v(tu0) ≥ h. It follows from the Lucas formula
that

Cqh

(
u0

1− t

)
≡ C0(u0)h · C1(u0) (mod m̂),

since qh = 0 · 1 + 0 · q + . . .+ 1 · qh. Obviously, C0(u0) = 1 and C1(u0) = 0.
Consequently, v(Cqh(x)) > 0. On the other hand, v(x−u0) = v(tu0) ≥ h; it
then follows from Lemma 2.5 below that

v(Cqh(x)) = v(x− u0)− h.
Thus, we have just proved that v(tu0) ≥ h implies v(tu0) > h. This is a
contradiction with the assumption that u0 6= 0.

Lemma 2.5 ([3, Lemme 2]). For every h ∈ N and every x ∈ V̂ ,
v(Cqh(x)) = −h+ sup

0≤k<qh
v(x− uk).

In particular, if v (x− uk0) ≥ h for some k0 such that 0 ≤ k0 < qh, then

v(Cqh(x)) = v(x− uk0)− h.
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It is known [1, II.2.4] that the valuation of the denominator of Cn(X) is

v
( n−1∏

k=0

(un − uk)
)

= wq(n) =
∑

k>0

[
n

qk

]

where [z] denotes the integer part of z. Thus, if we replace the denominator
of Cn(X) by (−t)−wq(n), we obtain another sequence of polynomials

Γn(X) = (−t)−wq(n)
n−1∏

k=0

(X − uk)

which form a basis of the V -module Int(V ) [1, II.2.10].

Proposition 2.6. The generalized Lucas formula holds for the polyno-
mials Γn(X), that is, if n =

∑
0≤i≤k niq

i and x =
∑

j≥0 xjt
j, then

Γn(x) ≡ Γn0(x0)Γn1(x1) . . . Γnk(xk) (mod m̂).

P r o o f. Of course, it suffices to prove that

Γn0+qm(x0 + ty) ≡ Γn0(x0)Γm(y).

The proof of this last assertion is similar to that of Proposition 2.3. We first
notice that wq(n) = m+ wq(m). Then Γn(x) = A ·B where

A = (−t)−wq(n)
qm−1∏

k=0

(x− uk) and B =
n0−1∏

l=0

(x− uqm+l).

Obviously,

B ≡
n0−1∏

l=0

(x0 − ul) = Γn0(x0) (mod m̂).

On the other hand,

A = (−t)−wq(n)
m−1∏

h=0

q−1∏

k=0

(x−uqh+k) = (−t)−wq(n)
m−1∏

h=0

q−1∏

k=0

[(x0−uk)+t(y−uh)].

Let s ∈ {0, . . . , q − 1} be such that x0 = us. Then

A = (−1)m · (−t)−wq(m)
m−1∏

h=0

(y − uh) ·
m−1∏

h=0

∏

0≤k<q, k 6=s
[(x0 − uk) + t(y − uh)].

The second factor is exacly Γm(y), while the third is congruent to (−1)m

modulo m̂.

Remark 2.4 still holds for the Γn(X)’s since Γ0(X) = 1 and Γ1(u0) =
0; if the generalized Lucas formula holds for the polynomials Γn(X), then
necessarily u0 = 0.
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Remark 2.7. There is another classical basis of Int(V ): the basis formed
by the Fermat polynomials Fn(X) (see [6], [1, §II.2], or [11]). Recall that

F0 = 1, F1 = X, Fq =
X −Xq

t
, Fqh+1 = Fq(Fqh),

and

Fn =
k∏

j=0

(Fqj )
nj for n = n0 + n1q + . . .+ nkq

k.

We are going to see that the Lucas formula may hold for the first indices n,
but cannot hold for every n, in particular for n = qq.

Let ζ0 = 0, ζ1, . . . , ζq−1 be the roots of X−Xq = 0 in V̂ and assume that
u0 = 0, u1, . . . , uq−1 ∈ V are such that ui ≡ ζi (mod t2V̂ ). It is then easy to
prove that, for n < q2,

Fn0+n1q

(∑

j

xjt
j
)
≡ xn0

0 xn1
1 (mod tV̂ ).

Before proving that the formula cannot hold for n = qq, we may notice that
there is some choice for F1, . . . , Fq−1: they just have to be polynomials in
V [X] which together with the polynomial 1 form a basis of the V -module
of polynomials in V [X] whose degree is < q. But, for i = 0, 1, . . . , q − 1, we
have Fq(uit) ≡ ui (mod tV ), and hence, if the Lucas formula holds, we have
F1(ui) ≡ ui (mod tV ), that is,

F1(X) ≡ X (mod tV [X])

since deg(F1) < q.
Now, note that, if v(x) > 0, then v(Fq(x)) = v(x)− 1. Then

Fq(t) = 1− tq−1, Fq2(t) ≡ −tq−2 (mod tq−1V );

consequently, v(Fqq(t)) = 0 even if q = 2. But, the Lucas formula implies

Fqq(t) ≡ F1(0) ≡ 0 (mod tV ).

This is a contradiction.
The characterization of the bases of Int(V ) for which the Lucas formula

holds thus deserves to be studied.

3. Application to maximal ideals of Int(V ). Recall the fiber of
Int(V ) over m:

Proposition 3.1 ([3, Théorème 1] or [1, V.2.3]). There is a one-to-one
correspondence between the completion V̂ of V and the set of prime ideals
of Int(V ) lying over m:

x ∈ V̂ 7→ mx = {f ∈ Int(V ) | f(x) ∈ m̂} ∈ max(Int(V )).
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Following Chapman and Smith [4], we are going to consider the polyno-
mials Cn(X) which belong to these maximal ideals mx.

Proposition 3.2. With the previous notation, let n = n0 + n1q + . . .+
nkq

k be a positive integer and x =
∑

j≥0 xjt
j ∈ V̂ . Then Cn belongs to mx

if and only if there is some index j such that xj = uν(x,j) with ν(x, j) < nj.

P r o o f. By definition, Cn belongs to mx if and only if Cn(x) belongs to
m̂. It follows from the Lucas formula that

Cn(x) ≡ Cn0(x0)Cn1(x1) . . . Cnk(xk) (mod m̂),

and hence, that Cn ∈ mx if and only if there is some j ∈ {0, . . . , k} such
that

Cnj (xj) =
nj−1∏

k=0

(xj − uk) ∈ m.

This last assertion means that xj ∈ {u0, . . . , unj−1}, that is, xj = uν(x,j)
with ν(x, j) < nj .

Remark 3.3. The previous proposition could be used to prove that if
x 6= y, then mx 6= my: if x 6= y, there is some j ≥ 0 such that xj 6= yj ,
and hence, such that ν(x, j) 6= ν(y, j). Assume that ν(x, j) < ν(y, j) and let
n = ν(y, j)qj. Then Cn ∈ mx while Cn 6∈ my.

Corollary 3.4. Let

z =
uq−1

1− t = uq−1 + uq−1t+ . . .+ uq−1t
n + . . .

Then mz is the unique maximal ideal of Int(V ) lying over m which does not
contain any polynomial Cn.

On the other hand, the ideal m0 contains all the Cn for n > 0.

Proposition 3.5. Let x =
∑

j≥0 xjt
j ∈ V̂ and, for each n > 0, let

yn =
[logn/log q]∏

i=0

Cni(xi) ∈ V.

Then:

(1) {1, C1(X)−y1, . . . , Cn(X)−yn, . . .} is a basis of the V -module Int(V ).
(2) {t, C1(X)− y1, . . . , Cn(X)− yn, . . .} is a basis of the V -module mx.

P r o o f. (1) {Cn − yn} is a basis of Int(V ) because deg(Cn − yn) =
deg(Cn) = n and, for n ≥ 1, Cn−yn and Cn have the same leading coefficient.

(2) Let f ∈ mx. It follows from (1) that f = a0 +
∑

n≥1 an(Cn− yn) with
an ∈ V . By construction and the Lucas formula, Cn−yn ∈ mx. Consequently,
a0 = f −∑n≥1 an(Cn − yn) belongs to mx ∩ V = m = tV .
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Proposition 3.6. For each n ∈ N, the ideal mun is generated by the
polynomials

1 + (t− 1)Cn and Cm for m > n.

P r o o f. It follows from Proposition 3.2 that Cm belongs to mun for every
m > n. Moreover, 1 + (t − 1)Cn also belongs to mun since Cn(un) = 1.
Conversely, let f be in mun . Then f(un) = tb with b ∈ V . We may find
elements am ∈ V such that the polynomial g =

∑n
m=0 amCm satisfies

g(um) = f(um) for 0 ≤ m < n, and g(un) = b,

because the am’s may be computed recursively:

am = f(um)−
m−1∑

k=0

akCk(um) for 0 ≤ m ≤ n and an = b−
n−1∑

k=0

akCk(un).

Now, consider the polynomial h = f − g[1 + (t− 1)Cn]. One has h(um) = 0
for 0 ≤ m ≤ n. Consequently, h =

∑
m>n bmCm for some bm ∈ V . Thus,

f = g[1 + (t− 1)Cn] +
∑

m>n

bmCm,

that is, the polynomials 1 + (t− 1)Cn and Cm, for m > n, generate mun .

For instance,

t = [t− (t− 1)Cn][1 + (t− 1)Cn] +
2(n+1)∑

m=n+1

bmCm.

We may improve the previous proposition by noticing that, if qh ≤ m <
qh+1, then Cm is a multiple of Cqh in Int(V ).

We may also use the proposition to obtain generators of a maximal ideal
mx whatever x ∈ V̂ : if x is not zero, then v(x) = h and we choose u1 = x/th

(which may belong to V̂ and not V ). For such a choice, x = un with n = qh.

Corollary 3.7. Let x be a nonzero element of V̂ , let v(x) = h, and
assume that u1 = x/th. Then the ideal mx is generated by the polynomials

1 + (t− 1)Cqh and Cm for m > qh.

Of course, we obtain the known results on the binomial coefficients and
the binomial polynomials if we replace V by Z(p) for some prime number p,
t and q by p, un by n, and Cn(X) by

(
X
n

)
= X(X − 1) . . . (X − n+ 1)/n!.

Remark 3.8. Note that there are other nonzero prime ideals of Int(V ),
those lying over the ideal (0) of V , that is, the ideals Pg = gK[X] ∩ Int(V )
where g is a polynomial irreducible in K[X]. Moreover, the ideal Pg is
maximal if and only if g has no root in V̂ [1, Proposition V.2.5]. We may
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first notice that Pg contains some polynomial Cm if and only if g = X − un
for some n < m (and hence, Pg is not maximal).

Let us fix a nonnegative integer n. We easily see that:

(a) {1, C1(X)−C1(un), . . . , Cn(X)−Cn(un), Cn+1(X), . . . , Cm(X), . . .}
is a basis of the V -module Int(V ),

(b) {C1(X)−C1(un), . . . , Cn(X)−Cn(un), Cn+1(X), . . . , Cm(X), . . .} is
a basis of the V -module PX−un .

Moreover, in the same line as Proposition 3.6:

(c) The ideal PX−un is generated by the polynomials 1 − Cn(X) and
Cm(X) for m > n (because, for each f ∈ PX−un , the value of fCn for
X = u0, u1, . . . , un is 0).
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[2] J. W. S. Casse ls and A. Fr öh l ich, Algebraic Number Theory , Academic Press,
London, 1967.
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