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1. Introduction. Recall Lucas’ theorem [10, pp. 417-420] or [5] and [7]:
PROPOSITION 1.1. Let p be a prime number and let

n=ng+nmp+nep® +...+nept  with 0 < n; < p,
z=x0+ 1P+ T2p® + . .. + TYP" with 0 < x; < p.

()= () () o) o

This formula has been generalized by several authors (see, for instance,
[8] or [9]), but all these extensions concern ordinary integers. The aim of
this paper is to extend the Lucas formula by replacing Z, or more precisely
Zp), by a discrete valuation domain V' with finite residue field. Note that
the prime number p appears twice: once as a generator of the maximal ideal
pZ, and secondly as the cardinality of the residue field Z/pZ. Thus, we will
replace it either by a generator t of the maximal ideal m of V, or by the
cardinality ¢ of the residue field V/m. The integer ¢ will then occur in the
g-adic representation of the integers n, while the generator ¢ will occur in
the t-adic expansion of the elements = of V.

Now we have to replace the binomial coefficients by suitable expressions.

To do this, we notice that the binomial coefficient (Z) is the value at = of

Then

the polynomial

();) X(X—1). .n.!(X —nt1)

It is well known that these binomial polynomials form a basis of the Z-
module

Int(Z) = {f € QX] | f(Z) € Z}
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of integer-valued polynomials on Z. We are then led to consider the ring
Int(V') of integer-valued polynomials on V', that is,

Int(V) = {f € K[X] | f(V) CV},

where K denotes the quotient field of V. We know how to construct a basis
Cy(X) of the V-module Int(V') [1, Chap. II, §2]: we first construct a sequence
{tun }nen of elements of V' such that, for every s, any choice of ¢° consecutive
terms provides a complete set of residues of V mod m®. Then, the following
polynomials of Lagrangian type:

n—1

Co(X) = X —uy

Up — U
Lo Un k

form a basis of the V-module Int(V'). We are going to show that, for a proper
choice of the sequence {un} if

n—anq and x—Zajj ,

3>0
then
k
Cp(x) = H Ch,(x;) (modm).
i=0

This generalized formula will be established in the following section. Then, in
the third section, analogously to Chapman and Smith’s paper about Int(Z)
[4], we will use the extended formula to describe some maximal ideals of the
ring Int(V).

2. Extension of the Lucas theorem

Hypotheses and notations. Let V' be a discrete valuation domain with
finite residue field. Denote by K the quotient field of V', by v the correspond-
ing valuation of K, by m the maximal ideal of V', and by ¢ the cardinality
of the residue field V/m. We denote by K, V and m the completions of
K, V, and m with respect to the m-adic topology and we still denote by v
the extension of v to K.

The construction. We choose a generator ¢t of m and a set U = {ug =
0,u1,...,uq—1} of representatives of V modulo m. It is well known that each

element x of V' has a unique t-adic expansion (see, for instance, [2, Chap.
I1, §7])

o0
T = Z:thj with z; € U for each j € N.
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We now construct a sequence {uy,}nen of elements of V' which will re-
place the sequence of nonnegative integers. Taking ¢ as the basis of the
numeration, that is, writing every positive integer n in the form

n=ng—+niqg+ng>+...+nkg® with 0 <n; < ¢ for each i € {0,...,k},
we extend the sequence {u;}o<j<q in the following way:
Up = Upy + Up, T+ un2t2 +...+ unktk.

We then replace the binomial polynomials
(X) XX -1)(X=-2).. (X —n+1)

n n!

by the polynomials

n—1 X —u
Ca(X)= [ =" withCo=1,
o n k

and we recall:

PRrROPOSITION 2.1 ([1, Theorem I1.2.7]). The polynomials Cy(X) form a
basis of the V-module Int(V).

THEOREM 2.2 (generalized Lucas formula). If
n:no—l—n1q+...—|—nqu
is the q-adic expansion of a positive integer n, and if
x:xo—l—mlt—i—...—i—mjtj—i—...
1s the t-adic expansion of an element x of 17, then
Ch(x) = Cpy(20)Cny (21) . .. Cpy (z1) (modm).
We first note that the above theorem is equivalent to the following propo-
sition:
PROPOSITION 2.3. Let ng € {0,1,...,q — 1} gnd xo € {ug = 0,uy,...
... ug—1}. Then, for every m € N and everyy € V,
Chot+gm(xo + ty) = Cpy(20)Crn(y) (modm).

Proof of the equivalence. Theorem 2.2 obviously implies Proposition 2.3.
Let us prove the converse implication. Let n = no+nig+.. +nrg® € Nand
a::a:0+x1t+...+xjtj+... € V. Write n = ng + ¢my and x = zg + ty;.
It follows from Proposition 2.3 that

Cn(x) = Cpy(20)Chny (y1) (modm).
Now writing m; = n1 + ¢me and y; = x1 + ty2, analogously we have
Cimy (Y1) = Cny (21)Cpmy (y2) (modm).
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And so on, until we come to
Crye_ 1 (Yk—1) = Cny_ (25-1)Cny (yx) (modm).
To conclude we just have to notice that
ng=nk+¢q-0 and yp = zp + tyrta;
thus we have
Cry (Y) = Cry(@k) - Co(Yg+1) = Cny (1) (modm). m

Proof of Proposition 2.3. First note that our choice of the sequence
{tn }nen implies that, for each h,k € N with 0 < k < ¢, one has upg4r =
up+tuy. By hypothesis, n = ng+¢gm where 0 < ng < ¢ and x = x¢g+ty where
xo = ug for some s € {0,...,q — 1}. Hence, in particular, u, = un, + tun,
and Up — Ugm41 = Un, — w for 0 <1 < g. Then

n—1 gm—1 no—1
o) =TTt = T1 e T ot~
n = - = . = . B.
n — U n — U Up — U
kO k k I—g qm-+l1

The second factor B is equal to
no—1
IT -
9y
1—0 un() —Uu
and hence is congruent modulo m to

no—1

Crng (20) = H Lo~ w

1=g ‘o T W
because:
e the denominators of both fractions are equal and invertible,
e the numerators are congruent modulo m since
T — Ugmtl = Lo — U + (Y — Um).

If we prove that
gm—1
A=
k=0
then in particular A and B belong to V, and hence, A+ B = Cy,(y) - Cny (0)
(modm). Writing

T = O(y) (mod ),

Up — Uk

1g-1 “1g-1

. qul—[ T — Ughtk _ni—[ql—l (us + ty) — (ug + tup)
Up — Ughik (Ung — ug) + t(um — up)’

h=0 k=0 ahtk g p—g "m0 T Tk m — Hh
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we consider the k’s equal to s in the numerators and the k’s equal to ng in
the denominators:

m—1

A= ﬁl Y — up ) H 1_[1§k<q7 k;és[(us - 'U,k) + t(y - Uh)]
o Um = un e Tloskeq, kong (Ung — uk) + H(um — up)]

Write

The first factor E is exactly C,,(y). Consequently, it suffices to prove that the
second factor is congruent to 1 modulo m, and hence that all the quotients
N}, /Dy, are congruent to 1 modulo m. Of course,

Ny, = H [(us —ug) +t(y —up)] = H (us — ug) (modm),

1<k<q, k#s 1<k<q, k#s
D= JI [tno—w)+tlum—un)l= J]  (tno—wx) (mod),
0<k<q, k#no 1<k<q, k#no

and the last terms are congruent to —1 modulo m. This ends the proof. m

REMARK 2.4. In the previous proof we have used the fact that ug = 0.
We know that, whatever the choice of ug € V, the polynomials Cy,(X) form a
basis of the V-module Int(V'). Nevertheless, if the generalized Lucas formula
holds, then necessarily ug = 0. Let us prove it. Assuming that ug # 0, we
may consider the element x = uy/(1 — t) whose t-adic expansion is

)
1t
Let h € N\ {0} be such that v(tug) > h. It follows from the Lucas formula
that

x = ug + uot + ugt® + ... + upt" + . ..

Cyn <%> = Co(uo)" - C1(up) (mod),

since ¢" =0-1+0-q+...+1-¢" Obviously, Co(up) = 1 and Cy(up) = 0.
Consequently, v(Cyn(z)) > 0. On the other hand, v(x —ug) = v(tuo) > h; it
then follows from Lemma 2.5 below that

v(Cyn(x)) = v(z — ug) — h.

Thus, we have just proved that v(tug) > h implies v(tug) > h. This is a
contradiction with the assumption that ug # 0.

LEMMA 2.5 ([3, Lemme 2]). For every h € N and every x € vV,

v(Cp(x)) = —h+ sup v(zr — ug).
0<k<gh

In particular, if v (x — up,) > h for some ko such that 0 < ko < ¢", then
v(Cpn(z)) = v(T — Uupy) — he
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It is known [1, I1.2.4] that the valuation of the denominator of C,,(X) is

oL =) =t = X 2]

k=0 k>0

where [z] denotes the integer part of z. Thus, if we replace the denominator
of C,,(X) by (—t)~"a(™) we obtain another sequence of polynomials

n—1

1) = (=) T (X = )

k=0
which form a basis of the V-module Int(V') [1, 11.2.10].

PROPOSITION 2.6. The generalized Lucas formula holds for the polyno-
mials [ (X), that is, if n = Zogigk niq* and x = ijo xjt?, then

Iy(x) = Iy (z0) Dny (1) - - - Iy () (modm).
Proof. Of course, it suffices to prove that
Fno—l—qm(mo +ty) = g (20) I (y)-

The proof of this last assertion is similar to that of Proposition 2.3. We first
notice that wy(n) = m + wy(m). Then I',(x) = A - B where

gm—1 no—1
A= (=7 I @—w) and B= J] (@ ugms).
1=0
Obviously,
no—1

B = H xo — uy) = Ipy(z0) (modm).

On the other hand,

m—1q—1 m—1q—1
A= ()7 T [T —ugnsr) t)~ ™ I T o—ur)+t(y—un)]-
h=0 k=0 h=0 k=0
Let s € {0,...,q — 1} be such that zy = us. Then
m—1
A= (=)™ (=)™ T (v — un) H IT o —ue) +t(y — un)].
h=0 h=0 0<k<g, k#s

The second factor is exacly I3,,(y), while the third is congruent to (—1)™
modulo m. =

Remark 2.4 still holds for the I7,(X)’s since IH(X) = 1 and I (ug) =
0; if the generalized Lucas formula holds for the polynomials I',(X), then
necessarily ug = 0.
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REMARK 2.7. There is another classical basis of Int(V): the basis formed
by the Fermat polynomials F;,(X) (see [6], [1, §I1.2], or [11]). Recall that

X — X4
— F = Fq(F h),

F():la FlZX, Fq: n ) q q

and

k
Fo=1[(Fp)  forn=no+ng+...+nkq".
=0

We are going to see that the Lucas formula may hold for the first indices n,
but cannot hold for every n, in particular for n = ¢9.

Let (o = 0,(1,...,(q—1 be the roots of X — X9 =0 in V and assume that
ug = 0,u1,...,uq—1 € V are such that u; = ; (modt2‘7). It is then easy to
prove that, for n < ¢?,

Fn0+mq<2xjtj> = (]! (mod V).
J

Before proving that the formula cannot hold for n = ¢4, we may notice that
there is some choice for Fi,..., Fy_1: they just have to be polynomials in
V[X] which together with the polynomial 1 form a basis of the V-module
of polynomials in V[X] whose degree is < ¢. But, for i =0,1,...,q — 1, we
have Fj(u;jt) = u; (modtV'), and hence, if the Lucas formula holds, we have
Fi(u;) = u; (modtV), that is,

Fi(X) =X (modtV[X])

since deg(F1) < q.
Now, note that, if v(z) > 0, then v(F,(z)) = v(xz) — 1. Then
F,t)=1—-t1"1 Fp(t) = 1972 (mod t7V);
consequently, v(Fga(t)) = 0 even if ¢ = 2. But, the Lucas formula implies
Fu(t) = F1(0) =0 (modtV).
This is a contradiction.

The characterization of the bases of Int(V') for which the Lucas formula
holds thus deserves to be studied.

3. Application to maximal ideals of Int(V). Recall the fiber of
Int(V') over m:

PRrROPOSITION 3.1 ([3, Théoreme 1] or [1, V.2.3]). There is a one-to-one
correspondence between the completion V' of V' and the set of prime ideals
of Int(V) lying over m:

zeViom,={fent(V)]| f(z) €} € max(Int(V)).
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Following Chapman and Smith [4], we are going to consider the polyno-
mials Cp,(X) which belong to these maximal ideals m,.

PROPOSITION 3.2. With the previous notation, let n =ng +nig+ ...+
niq® be a positive integer and xr = Zj>0 xzjt’ € V.. Then Cy belongs to m,
if and only if there is some index j such that xj = Uy (z,5) With v(z,j) < nj.

Proof. By definition, C,, belongs to m, if and only if C),(x) belongs to
m. It follows from the Lucas formula that

Ch(x) = Chy(x0)Cny (21) - . . Oy, (x) (modm),

and hence, that C,, € m, if and only if there is some j € {0,...,k} such
that

n;—1
Cr, () = ] (xj — u) € m.
k=0
This last assertion means that z; € {uo,...,un;—1}, that is, z; = u,(, )

with v(z,j) <nj. =

REMARK 3.3. The previous proposition could be used to prove that if
x # y, then my # my: if © # y, there is some j > 0 such that x; # y;,
and hence, such that v(x, j) # v(y, j). Assume that v(x,j) < v(y, j) and let
n=v(y,5)¢’. Then C, € m;, while C,, & m,,.

COROLLARY 3.4. Let
Ug—1 n
z = ¢ =Ug—1 + Ug—1t+ ... Fug1t" + ...
Then m, is the unique mazimal ideal of Int(V') lying over m which does not
contain any polynomial C,.

On the other hand, the ideal mgy contains all the C,, for n > 0.
PROPOSITION 3.5. Let v =~ zit) € V and, for each n > 0, let

[logn/logq]

=0

Then:

(D) AL, Ci(X)=y1,...,Cn(X)—yn, ...} is a basis of the V-module Int(V').
(2) {t,C1(X) —y1y..., Cn(X) — Yn, ...} is a basis of the V-module m,.

Proof. (1) {C), — yn} is a basis of Int(V) because deg(C,, — y,) =
deg(C,) = nand, forn > 1, C),—y, and C), have the same leading coefficient.

(2) Let f € my. It follows from (1) that f = ag+ ), ~; an(Cp —yn) with
a, € V. By construction and the Lucas formula, C,, —y,, € m,. Consequently,
ao=f—>,51an(Cp —yn) belongs tom, NV =m=1tV. =
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PROPOSITION 3.6. For each n € N, the ideal m,, 1is generated by the
polynomials

1+ (t—1)C, and Cy, for m >n.

Proof. It follows from Proposition 3.2 that C,,, belongs to m,,, for every
m > n. Moreover, 1 4+ (t — 1)C,, also belongs to m,,, since Cp(u,) = 1.
Conversely, let f be in m,,,. Then f(u,) = tb with b € V. We may find
elements a,,, € V such that the polynomial g = >"" _ a;,Cp, satisfies
g(um) = f(uy) for0<m<n, and g(u,)=">,

because the a,,’s may be computed recursively:
n—1
A, = f(um)— Z arCr(up,) for0<m<n and a,= b—Zaka(un).
_ k=0
Now, consider the polynomial h = f — g[1 + (¢ — 1)C,,]. One has h(u,,) =0
for 0 < m < n. Consequently, h =" . by,Cp, for some b, € V. Thus,
f=gl+E—-1)Cnl+ > bmCon,
m>n

that is, the polynomials 1 + (¢t — 1)C,, and C,,, for m > n, generate m,,,. m

For instance,
2(n+1)
t=[t—({t—DCul[l+ (t—1)Cn]+ > buCr
m=n+1
We may improve the previous proposition by noticing that, if ¢" < m <
¢"™, then Cy, is a multiple of Cyn in Int(V).

We may also use the proposition to obtain generators of a maximal ideal
m, whatever z € V: if 2 is not zero, then v(x) = h and we choose u; = m/th
(which may belong to V and not V). For such a choice, x = u,, with n = ¢".

COROLLARY 3.7. Let x be a nonzero element of 17, let v(x) = h, and
assume that uy = x/t". Then the ideal m, is generated by the polynomials

I+t —-1)Cp and Cy, for m > q".

Of course, we obtain the known results on the binomial coefficients and
the binomial polynomials if we replace V' by Z, for some prime number p,
t and ¢ by p, u, by n, and C,(X) by ()Yf) =XX-1)...(X=n+1)/nl

REMARK 3.8. Note that there are other nonzero prime ideals of Int(V),
those lying over the ideal (0) of V, that is, the ideals P, = gK[X] N Int(V)
where ¢ is a polynomial irreducible in K[X]. Moreover, the ideal %, is

maximal if and only if g has no root in v [1, Proposition V.2.5]. We may
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first notice that 9, contains some polynomial C,, if and only if g = X — u,
for some n < m (and hence, B, is not maximal).
Let us fix a nonnegative integer n. We easily see that:

(a) {1,C1(X) — Ci(un), ..., Cp(X) — Cp(upn), Crs1(X), ..., Cn(X), ...}
is a basis of the V-module Int(V),

(b) {C1(X) = Ci(un), ..., Cn(X) — Cp(un), Cry1(X),...,Cn(X),...} is
a basis of the V-module By _,, .

Moreover, in the same line as Proposition 3.6:

(c) The ideal Px_, is generated by the polynomials 1 — Cp(X) and
Cm(X) for m > n (because, for each f € Px_,, , the value of fC, for
X = wug, U1y ..., Uy is 0).
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