A note on Waring's problem in finite fields

by

Arne Winterhof (Wien)

In memory of Karl Mathiak

1. Introduction. Let $g(k, p^n)$ be the smallest s such that every element of \mathbb{F}_{p^n} is a sum of s kth powers in \mathbb{F}_{p^n} .

It is sufficient to restrict ourselves to the case $1 \neq k \mid p^n - 1$, and it is well known (see [1, Theorem G]) that

(1)
$$g(k, p^n)$$
 exists if and only if $\frac{p^n - 1}{p^d - 1} \nmid k$ for all $d \mid n, d \neq n$.

We shall suppose from now on that $g(k, p^n)$ exists.

Several bounds for $g(k, p^n)$ are known. For surveys see [7] and [13]. Recent results can be found in [5]–[9] and [13].

In the case n = 1 it was proved in [4, Theorem 1] that

(2)
$$g(k,p) < 68k^{1/2}(\ln k)^2$$
 for $k < (p-1)/2$.

Whether (2) holds true for n > 1 has not been known yet.

In this note we prove

$$g(k, p^n) < 6.2n(2k)^{1/n} \ln k,$$

which yields an extension of (2) to arbitrary n. Moreover, we show

$$g(k, p^n) > \frac{1}{2}(((n+1)k)^{1/n} - 1)$$

if n+1 is a prime such that p is a primitive root modulo n+1 and $k=(p^n-1)/(n+1)$.

2. Preliminary results. The following result can be found in [2] for n = 1. For arbitrary n but p odd it is a simple deduction from [10, Theorem 1]. For arbitrary n and p = 2 the result was shown in [13, Theorem 3].

²⁰⁰⁰ Mathematics Subject Classification: 11P05, 11T24.

LEMMA 1. For $k < (p^n - 1)/2$ we have

$$g(k, p^n) \le \lfloor k/2 \rfloor + 1.$$

The next lemma was proved in [3, Section 1] for n = 1 and in [13, Theorem 1] for arbitrary n.

LEMMA 2. For $p^n > k^2$ we have

$$g(k, p^n) \le |32 \ln k| + 1.$$

3. Extension of the Dodson-Tietäväinen bound. Let

$$A_s = \{x_1^k + \dots + x_s^k \mid x_1, \dots, x_s \in \mathbb{F}_{p^n}\}, \quad \psi(x) = e^{2\pi i \text{Tr}(x)/p},$$
$$S_s(u) = \sum_{y \in A_s} \psi(uy) \quad \text{and} \quad M_s = \max\{|S_s(u)| \mid u \in \mathbb{F}_{p^n}^*\}.$$

LEMMA 3 (cf. [11, Lemma 1]).

$$M_s < (|A_s|k)^{1/2}.$$

Proof. We have

$$\sum_{u \in \mathbb{F}_{p^n}^*} |S_s(u)|^2 = \sum_{u \in \mathbb{F}_{p^n}} |S_s(u)|^2 - |A_s|^2$$

$$= \sum_{u,z \in A_s} \sum_{u \in \mathbb{F}_{n^n}} \psi(u(y-z)) - |A_s|^2 = (p^n - |A_s|)|A_s|.$$

Since $S_s(uv) = S_s(u)$ for every $0 \neq v \in A_1$ we get

$$\sum_{u \in \mathbb{F}_{n^n}^*} |S_s(u)|^2 \ge \frac{p^n - 1}{k} M_s^2.$$

Hence,

$$M_s^2 \le (p^n - |A_s|)|A_s|k/(p^n - 1) < |A_s|k.$$

LEMMA 4 (cf. [12, Lemma 2]). If $|A_s| \ge 2k$ then

$$g(k, p^n) \le s(1 + \lfloor (2 \ln p^n) / \ln 2 \rfloor).$$

Proof. Let $r = 1 + \lfloor (2 \ln p^n) / \ln 2 \rfloor$, $a \in \mathbb{F}_{p^n}$ and let N = N(a) be the number of solutions of

$$y_1 + \ldots + y_r = a \in \mathbb{F}_{p^n}, \quad y_i \in A_s.$$

Then

$$p^{n}N = \sum_{y_{1},\dots,y_{r} \in A_{s}} \sum_{u \in \mathbb{F}_{p^{n}}} \psi(u(y_{1} + \dots + y_{r} - a))$$
$$= \sum_{u \in \mathbb{F}_{p^{n}}} (S_{s}(u))^{r} \psi(-ua) \ge |A_{s}|^{r} - (p^{n} - 1)M_{s}^{r}.$$

Hence, by Lemma 3, $|A_s|/k \ge 2$ and $r/2 > (\ln p^n)/\ln 2$, we get

$$N > p^{-n}(|A_s|k)^{r/2}((|A_s|/k)^{r/2} - p^n + 1) \ge p^{-n}(|A_s|k)^{r/2}(2^{r/2} - p^n + 1) > 0. \blacksquare$$

Theorem 1. If $g(k, p^n)$ exists then for $1 < k < (p^n - 1)/2$ we have

$$g(k, p^n) < 6.2n(2k)^{1/n} \ln k$$
.

Proof. For $2 \le k \le 11$ we get the result by Lemma 1. For $12 \le k < p^{n/2}$ the theorem follows by Lemma 2 since

$$\frac{32\ln k + 1}{nk^{1/n}\ln k} \le \frac{32\ln 12 + 1}{n12^{1/n}\ln 12} < 6.$$

Hence, we may restrict ourselves to the case $k \ge \max(12, p^{n/2})$. If $g(k, p^n)$ exists, then there exists a basis $\{b_1, \ldots, b_n\} \subset A_1$ of \mathbb{F}_{p^n} over \mathbb{F}_p . Since $k < p^n/2$ the expression

$$m_1b_1 + \ldots + m_nb_n$$
, $0 \le m_i \le |(2k)^{1/n}| < p$,

which is a sum of at most $n|(2k)^{1/n}|$ kth powers, represents at least

$$(\lfloor (2k)^{1/n} \rfloor + 1)^n \ge 2k$$

distinct elements of \mathbb{F}_{p^n} . Hence by Lemma 4,

$$g(k, p^n) \le n \lfloor (2k)^{1/n} \rfloor (1 + (2\ln p^n)/\ln 2)$$

$$\le 2^{1/n} \left(\frac{1}{\ln k} + \frac{4}{\ln 2} \right) n k^{1/n} \ln k < 6.2 n (2k)^{1/n} \ln k. \quad \blacksquare$$

Corollary 1. If $g(k,p^n)$ exists then for $1 < k < (p^n-1)/2$ we have $g(k,p^n) < 68k^{1/2}(\ln k)^2.$

Proof. By (2) and Lemma 2 we may suppose that $n \geq 2$ and $k \geq p^{n/2}$. Then

$$6.2n(2k)^{1/n}\ln k < 34\ln p^n k^{1/n}\ln k \le 68k^{1/2}(\ln k)^2$$

and the assertion is covered by the previous theorem. \blacksquare

4. A lower bound. Now we prove a lower bound, that is, an existence theorem.

THEOREM 2. Let r and p be primes such that p is a primitive root modulo r. Let n = r - 1 and $k = (p^n - 1)/(n + 1)$. Then $g(k, p^n)$ exists and we have

$$g(k, p^n) > \frac{1}{2}(((n+1)k)^{1/n} - 1).$$

Proof. Since $p^d \not\equiv 1 \mod (n+1)$ for $1 \leq d < n$ we have $(p^n-1)/(p^d-1) \nmid k$ and $g(k, p^n)$ exists by (1).

We have $A_1 = \{0, 1, \zeta, \zeta^2, \dots, \zeta^n\}$, where ζ denotes a primitive rth root of unity. Then

$$A_{s} = \{\nu_{0} + \nu_{1}\zeta + \nu_{2}\zeta^{2} + \dots + \nu_{n}\zeta^{n} \mid 0 \leq \nu_{0} + \nu_{1} + \nu_{2} + \dots + \nu_{n} \leq s\}$$

$$= \{(\nu_{0} - \nu_{n}) + (\nu_{1} - \nu_{n})\zeta$$

$$+ \dots + (\nu_{n-1} - \nu_{n})\zeta^{n-1} \mid 0 \leq \nu_{0} + \dots + \nu_{n} \leq s\}$$

$$\subset \{\mu_{0} + \mu_{1}\zeta + \dots + \mu_{n-1}\zeta^{n-1} \mid -s \leq \mu_{0}, \mu_{1}, \dots, \mu_{n-1} \leq s\}.$$

The cardinality of the latter set is at most $(2s+1)^n$, whence

$$A_s \neq \mathbb{F}_{p^n}$$
 if $s \leq \frac{1}{2}(((n+1)k)^{1/n} - 1)$,

which implies the theorem.

References

- M. Bhaskaran, Sums of mth powers in algebraic and abelian number fields, Arch. Math. (Basel) 17 (1966), 497–504; Correction, ibid. 22 (1971), 370–371.
- [2] S. Chowla, H. B. Mann and E. G. Straus, Some applications of the Cauchy-Davenport theorem, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 74–80.
- [3] M. M. Dodson, On Waring's problem in GF[p], Acta Arith. 19 (1971), 147–173.
- [4] M. M. Dodson and A. Tietäväinen, A note on Waring's problem in GF[p], ibid. 30 (1976), 159–167.
- [5] C. Garcia and P. Solé, Diameter lower bounds for Waring graphs and multiloop networks, Discrete Math. 111 (1993), 257–261.
- [6] D. R. Heath-Brown and S. Konyagin, New bounds for Gauss sums derived from kth powers and for Heilbronn's exponential sum, Quart. J. Math. 51 (2000), 221–235.
- [7] S. V. Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Trudy Mat. Inst. Steklov. 198 (1992), 111–124 (in Russian); English transl.: Proc. Steklov Inst. Math. 1994, no. 1, 105–117.
- [8] I. Shparlinskiĭ, On bounds of Gaussian sums, Mat. Zametki 50 (1991), 122–130 (in Russian); English transl.: Math. Notes 50 (1991), 740–746.
- [9] —, On exponential sums with sparse polynomials and rational functions, J. Number Theory 60 (1996), 233–244.
- [10] A. Tietäväinen, On diagonal forms over finite fields, Ann. Univ. Turku Ser. A I 118 (1968), 10 pp.
- [11] —, Proof of a conjecture of S. Chowla, J. Number Theory 7 (1975), 353–356.
- [12] —, Note on Waring's problem (mod p), Ann. Acad. Sci. Fenn. A I 554 (1973), 7 pp.
- [13] A. Winterhof, On Waring's problem in finite fields, Acta Arith. 87 (1998), 171–177.

Institute of Discrete Mathematics Austrian Academy of Sciences Sonnenfelsgasse 19

A-1010 Wien, Austria

E-mail: Arne.Winterhof@oeaw.ac.at

Received on 17.12.1999 and in revised form 25.2.2000 (3731)