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The number of powers of 2 in a representation of
large even integers by sums of such powers and of

two primes (II)

by

Hongze Li (Jinan)

1. Main results. The Goldbach conjecture is that every integer not less
than 6 is a sum of two odd primes. The conjecture still remains open. Let
E(x) denote the number of positive even integers not exceeding x which
cannot be written as a sum of two prime numbers. In 1975 Montgomery and
Vaughan [15] proved that

E(x)� x1−θ

for some small computable constant θ > 0. For the number θ, see [1]–[3]. In
[5] the author proved that E(x)� x0.921, recently in [6] the author improved
the result to E(x)� x0.914.

In 1951 and 1953, Linnik [8, 9] established the following “almost Gold-
bach” result.

Every large positive even integer N is a sum of two primes p1, p2 and a
bounded number of powers of 2, i.e.

(1.1) N = p1 + p2 + 2ν1 + . . .+ 2νk .

Let r′′k(N) denote the number of N in the form (1.1). In [10] Liu, Liu
and Wang proved that for any k ≥ 54000, there exists Nk > 0 depending on
k only such that if N ≥ Nk is an even integer then

(1.2) r′′k(N)� N(logN)k−2.

Recently in [7] the author improved the constant to k ≥ 25000. In this paper
we prove the following result.

Theorem 1. For any integer k ≥ 1906, there exists Nk > 0 depending
on k only such that if N ≥ Nk is an even integer then

r′′k(N)� N(logN)k−2.
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370 H. Z. Li

Let r′k(n) denote the number of representations of an odd integer n in
the form

(1.3) n = p+ 2ν1 + . . .+ 2νk .

The second purpose of this paper is to establish the following result.

Theorem 2. For any ε > 0, there exists a constant k0 depending on ε
only such that if k ≥ k0, N ≥ Nk then

∑

2-n≤N
(r′k(n)− 2(log2N)k(logN)−1)2 ≤ ε2N(log2N)2k(logN)−2.

In particular , for ε = 0.9986, k0 = 953 is permissible.

In what follows, L(s, χ) denotes the Dirichlet L-function. ε denotes a
positive constant which is arbitrarily small but not necessarily the same at
each occurrence. A will be sufficiently large, A < P .

2. Some lemmas. Let N be a large integer,

(2.1) θ :=
1
13
, P :=Nθ, T :=P 2.01, Q :=P−1N(logN)−3, D=P 1+ε.

Let A < q ≤ P , and let χq be a non-principal character mod q. Write
α = 1− λ/logD. Assume that

(2.2) α ≤ σ ≤ 1, |t| ≤ D/q.

Lemma 1. Suppose P is sufficiently large. Then no function L(s, χ) with
χ primitive modulo q ≤ P , except for a possible exceptional one only , has a
zero in the region

σ ≥ 1− 0.239
logP

, q(|t|+ 1) ≤ P 1+ε.

If the exceptional function exists, denoted by L(s, χ̃), then χ̃ must be a real
primitive character modulo q̃, q̃ ≤ P , and L(s, χ̃) has a real simple zero β̃
which satisfies

1− 0.239
logP

≤ β̃ ≤ 1− c

q̃ 10−8 .

This is Lemma 2.3 of [5].
For q1, q2 ≤ P , we now consider the zeros of L(s, χq1) and L(s, χq2) for

non-principal characters χq1 and χq2 . If %1 = β1 + iγ1 = 1− λ1/logP + iγ1

is a zero of L(s, χq1) satisfying q1(|γ1| + 1) ≤ P 1+ε, and %2 = β2 + iγ2 =
1− λ2/logP + iγ2 is a zero of L(s, χq2) satisfying q2(|γ2|+ 1) ≤ P 1+ε, then
we have the lower bounds for λ2 given in Table 1.
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Table 1. The lower bound for λ2

λ1 λ2

0.24 0.444

0.26 0.418

0.28 0.393

0.30 0.37

0.32 0.349

0.334 0.334

If [q1, q2] ≤ P ε(q1, q2), then we have the following lower bounds for λ2:

Table 2. The lower bound for λ2

λ1 λ2 λ1 λ2

0.22 1.189 0.38 0.745

0.24 1.116 0.40 0.706

0.26 1.050 0.42 0.669

0.28 0.989 0.44 0.634

0.30 0.933 0.46 0.601

0.32 0.881 0.48 0.570

0.34 0.832 0.50 0.541

0.36 0.787 0.517 0.517

The entry 0.40, 0.706 indicates that λ2 ≥ 0.706 whenever λ1 ≤ 0.40 (see [5]).
Let Sjq = {χq : L(s, χq) has only j zeros in the region (2.2)}. Suppose

A < q0 ≤ P , define

N∗1 (α,P ) = N∗1 (λ, P ) =
∑

A<q≤P
[q,q0]≤Dε(q,q0)

∑

j≥1

∑∗

χ∈Sjq
j,(2.3)

N∗(α,P ) = N∗(λ, P ) =
∑

A<q≤P

∑

j≥1

∑∗

χ∈Sjq
j(2.4)

where
∑∗ indicates that the sum is over primitive characters.

Lemma 2. Suppose A < q0 ≤ P , 0 < λ ≤ ε logD. Then

N∗1 (α,P ) = N∗1 (λ, P ) ≤





4.356C1(λ)e4.064λ, 0.517 < λ ≤ 0.575,
8.46C2(λ)e4.12λ, 0.575 < λ ≤ 0.618,
14.3C3(λ)e4.5λ, 0.618 < λ ≤ 1,
104.1C4(λ)e3.42λ, 1 < λ ≤ 5,
268.6e2.16λ, 5 < λ ≤ ε logD.
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N∗(α,P ) = N∗(λ, P ) ≤





3.632C5(λ)e5.2λ, 0.334 < λ ≤ 0.517,
4.338C6(λ)e4.82λ, 0.517 < λ ≤ 0.575,
10.42C7(λ)e4.5λ, 0.575 < λ ≤ 0.618,
14.91C8(λ)e5.2λ, 0.618 < λ ≤ 1,
104.8C9(λ)e4.16λ, 1 < λ ≤ 5,
279.7e2.9λ, 5 < λ ≤ ε logD,

where

C1(λ) = λ−1
(

1− e−4.064λ e
2.808λ − e1.76λ

1.048λ

)
,

C2(λ) = λ−1
(

1− e−4.12λ e
2.855λ − e1.78λ

1.075λ

)
,

C3(λ) = λ−1
(

1− e−4.5λ e
3.198λ − e2.013λ

1.185λ

)
,

C4(λ) = λ−1
(

1− e−3.42λ e
2.358λ − e1.64λ

0.718λ

)
,

C5(λ) = λ−1
(

1− e−5.2λ e
3.866λ − e2.668λ

1.198λ

)
,

C6(λ) = λ−1
(

1− e−4.82λ e
3.565λ − e2.51λ

1.055λ

)
,

C7(λ) = λ−1
(

1− e−4.5λ e
3.32λ − e2.36λ

0.96λ

)
,

C8(λ) = λ−1
(

1− e−5.2λ e
3.928λ − e2.7312λ

1.1968λ

)
,

C9(λ) = λ−1
(

1− e−4.16λ e
3.104λ − e2.38λ

0.724λ

)
.

This is Lemma 6 of [6].

3. The major arcs. By Dirichlet’s lemma on rational approximations,
each α ∈ [Q−1, 1 +Q−1] may be written in the form

(3.1) α = a/q + λ, |λ| ≤ (qQ)−1,

for some positive integers a, q with 1 ≤ a ≤ q, (a, q) = 1 and q ≤ Q. We
denote by I(a, q) the set of α satisfying (3.1), and put

E1 =
⋃

q≤P

q⋃

a=1
(a,q)=1

I(a, q), E2 = [Q−1, 1 +Q−1]− E1.

When q ≤ P we call I(a, q) a major arc. By (2.1), all major arcs are mutually
disjoint. Let e(α) = exp(i2πα) and S(α) =

∑
N1−ε<p≤N e(pα).



Representation by sums of powers 373

Let σ(n) denote the singular series in the Goldbach problem, i.e.

σ(n) :=
∏

p|n
(1 + (p− 1)−1)

∏

p-n
(1− (p− 1)−2)� 1

for even n. Let
J(n) :=

∑

1<n1,n2≤N
n1−n2=n

(logn1 logn2)−1.

Theorem 3. Let n with |n| ≤ N2 be a non-zero integer , and let P,Q
satisfy (2.1). Then for even n we have

�

E1

|S(α)|2e(nα) dα = σ(n)J(n) +R,

where

|R| ≤ σ(n)N(logN)−2{0.11943387 +O(q̃φ((n, q̃))/φ2(q̃))},
the O term occurring only when there exists β̃ in Lemma 1.

Let

r0(n) =
�

E1

|S(α)|2e(nα) dα, S(λ, χ) =
∑

N1−ε<p≤N
χ(p)e(pλ),

T (λ) =
∑

N1−ε<m≤N
e(mλ)/logm, T̃ (λ) = −

∑

N1−ε<m≤N
mβ̃−1e(mλ)/logm,

and

(3.2)





S(λ, χ0
q) = T (λ) +W (λ, χ0

q),

S(λ, χ0
qχ̃) = T̃ (λ) +W (λ, χ0

qχ̃) if q̃ | q,
S(λ, χq) = W (λ, χq) otherwise,

G(m,χ) =
q∑

h=1

χ(h)e
(
mh

q

)
, τ(χ) = G(1, χ), Cq(m) =

∑

h≤q
(h,q)=1

e

(
mh

q

)
.

As in (4.7) of [11], we have

(3.3) r0(n) =
9∑

j=1

rj(n) +O(P 2(logN)3).

For the definitions of rj(n), see [11].

Lemma 3.
r1(n) = σ(n)J(n) +O(N(logN)−3),

r2(n), r3(n)� q̃

φ2(q̃)
· N

(logN)2σ(n), r4(n)� q̃φ((n, q̃))
φ2(q̃)

· N

(logN)2σ(n),

r5(n), r6(n)� N

(logN)6σ(n).
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P r o o f. Apply Lemmas 14 and 16 of [11] (note that W � 1).

Lemma 4. Let χi be primitive characters (mod ri), i = 1, 2, r = [r1, r2].
Then for m 6= 0,

∑

q≤P
r|q

φ(q)−2|G(m,χ1χ2χ0)τ(χ1χ0)τ(χ2χ0)| ≤ 2.140782σ(m),

∑

q≤P
r|q

φ(q)−2|G(m,χ1χ2χ0)τ(χ1χ0)τ(χ2χ0)| � (r1, r2)r−1σ(m) logP.

P r o o f. This lemma is similar to Lemma 5.5 of [15], but our proof is
similar to that of Lemma 5.2 of [14]. Define

Z(q, χ1, χ2) :=
q∑

h=1
(h,q)=1

e

(
hm

q

) 2∏

j=1

G(h, χjχ0)

= |G(m,χ1χ2χ0)τ(χ1χ0)τ(χ2χ0)|,

A(q) := φ(q)−2
q∑

h=1
(h,q)=1

e

(
hm

q

) 2∏

j=1

G(h, χ0).

By Lemma 4.1 of [13], we know A(q) is multiplicative. For any prime p, let

s(p) := 1 + A(p).

Since A(p) = 1/(p− 1) if p |m and A(p) = −1/(p− 1)2 if p -m, similarly to
Lemma 4.6 of [13] and Lemma 5.2 of [14], the first inequality holds. By the
proof of Lemma 5.5 of [15], the second inequality holds.

Let

(3.4) W (χd) =
( 1/(dQ)�

−1/(dQ)

|W (λ, χd)|2 dλ
)1/2

,

(3.5) W (P ) =
∑

d≤P

∑∗

χd

W (χd),

where ∗ indicates that the sum is over for primitive characters χd; and

(3.6) W (P, q̃) =
∑

d≤P
[d,q̃]≤Dε(d,q̃)

∑∗

χd

W (χd),

(3.7) W ′(P ) = max
∑

d≤P
[d1,d]≤Dε(d1,d)

∑∗

χd

W (χd).

Here the max is over A < d1 ≤ P .
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Similarly to Section III of [2] we have

W (χd) ≤ (1 + 2 · 10−5)(N1/2/logN)
∑′

β≥1/4
|γχd |≤P

1+εd−1

N (1−ε)(β−1)(3.8)

+O
(
N1/2−ε ∑′

β≥1/4
|γχd |≤P

1.01d−1

Nβ−1
)

+O
(
P 1/2−0.01θ

∑′

β≥1/4
|γχd |≤P

2.01

Nβ−1
)

+O(N1/2−1.01θ+εd−1),

where
∑′ indicates that the sum does not contain the exceptional zero β̃.

By the same methods as used in [1] we have

(3.9)

∑

d≤P
[d1,d]≤Dε(d1,d)

∑∗

χd

∑′

β≥1/4
|γχd |≤P

2.01

Nβ−1 � N0.7ε,

∑

d≤P

∑∗

χd

∑′

β≥1/4
|γχd |≤P

2.01

Nβ−1 � N0.7ε.

Let

(3.10)

I1 =
∑

d≤P
[d1,d]≤Dε(d1,d)

∑∗

χd

∑′

β≥1/4
|γχd |≤P

1+εd−1

N (1−ε)(β−1),

I2 =
∑

d≤P

∑∗

χd

∑′

β≥1/4
|γχd |≤P

1+εd−1

N (1−ε)(β−1).

Suppose %χd = βχd + iγχd , |γχd | ≤ P 1+εd−1, is a zero of L(s, χd). Let
L = (1 + ε) logP .

1) If 1 − 0.24/L ≤ βχd ≤ 1− 0.239/L, then by Lemma 1 and Tables 1
and 2 we have

I1 ≤ 2e−0.239/(θ+ε) +
1

θ + ε

∞�

1.116

e−(1−ε)t/(θ+ε)N∗1 (t, P ) dt ≤ 0.091628,

I2 ≤ 2e−0.239/(θ+ε) +
1

θ + ε

∞�

0.444

e−(1−ε)t/(θ+ε)N∗(t, P ) dt ≤ 0.482901.

2) 1− 0.26/L ≤ βχd ≤ 1− 0.24/L ⇒ I1 ≤ 0.092516, I2 ≤ 0.537213.
3) 1− 0.28/L ≤ βχd ≤ 1− 0.26/L ⇒ I1 ≤ 0.075429, I2 ≤ 0.5834782.
4) 1− 0.30/L ≤ βχd ≤ 1− 0.28/L ⇒ I1 ≤ 0.0624122, I2 ≤ 0.6431567.
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5) 1− 0.32/L ≤ βχd ≤ 1− 0.30/L ⇒ I1 ≤ 0.0543097, I2 ≤ 0.714270.
6) 1− 0.34/L ≤ βχd ≤ 1− 0.32/L ⇒ I1 ≤ 0.0509092, I2 ≤ 0.774367.
7) 1− 0.36/L ≤ βχd ≤ 1− 0.34/L ⇒ I1 ≤ 0.0520594, I2 ≤ 0.7143177.
8) 1− 0.38/L ≤ βχd ≤ 1− 0.36/L ⇒ I1 ≤ 0.0581037, I2 ≤ 0.628356.
9) 1− 0.40/L ≤ βχd ≤ 1− 0.38/L ⇒ I1 ≤ 0.0694366, I2 ≤ 0.5560776.

10) 1− 0.42/L ≤ βχd ≤ 1− 0.40/L ⇒ I1 ≤ 0.0871545, I2 ≤ 0.4952959.
11) 1− 0.44/L ≤ βχd ≤ 1− 0.42/L ⇒ I1 ≤ 0.1123271, I2 ≤ 0.4441753.
12) 1− 0.46/L ≤ βχd ≤ 1− 0.44/L ⇒ I1 ≤ 0.1354119, I2 ≤ 0.40117443.
13) 1− 0.48/L ≤ βχd ≤ 1− 0.46/L ⇒ I1 ≤ 0.152843, I2 ≤ 0.364999.
14) 1− 0.50/L ≤ βχd ≤ 1− 0.48/L ⇒ I1 ≤ 0.164587, I2 ≤ 0.334561.
15) 1− 0.517/L ≤ βχd ≤ 1− 0.50/L ⇒ I1 ≤ 0.1774831, I2 ≤ 0.3089471.
16) 1− 0.517/L ≥ βχd ⇒ I1 ≤ 0.1774831, I2 ≤ 0.3089471.

Hence in all cases we have

(3.11) I1I2 ≤ 0.0557876.

Now we suppose that the exceptional primitive real character χ̃ (mod q̃)
exists, and the unique exceptional real zero β̃ of L(s, χ̃) satisfies the condition
δ̃(θ + ε) log x ≤ 0.239 where δ̃ = 1− β̃. In this case, as above we have

(3.12) I1 ≤ 0.00215731, I2 ≤ 0.39343082.

Hence we have

(3.13) I1I2 ≤ 0.00084876.

By the definitions of r7(n), r8(n), r9(n), just as for D16(n),D13(n) in [1]–[3],
by Cauchy’s inequality we have

|r7(n)| ≤
∑

r≤P

∑∗

χ (mod r)

∑

q≤P
[q̃,r]|q

1
φ2(q)

|Z(q, χ̃, χ)|
{ 1/(qQ)�

−1/(qQ)

|T̃ (z)|2 dz
}1/2

W (χ).

Since
1/(qQ)�

−1/(qQ)

|T̃ (z)|2 dz ≤
1�

−1

|T̃ (z)|2 dz ≤ N log−2N,

by Lemma 4, (3.8) and (3.12) we have

|r7(n)| ≤ 2.140782(1 + ε)σ(n)N log−2N(1 + 2 · 10−5)W (P, q̃)

≤ 0.0046185σ(n)N log−2N.

Similarly
|r8(n)| ≤ 0.0046185σ(n)N log−2N.
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For r9(n), by the definition and Cauchy’s inequality

|r9(n)|≤
∑

r1≤P

∑∗

χ (mod r1)

∑

r2≤P

∑∗

χ (mod r2)

∑

q≤P
[r1,r2]|q

φ(q)−2|Z(q, χ̃, χ)|W (χ1)W (χ2).

By Lemma 4, (3.8) and (3.11)

|r9(n)| ≤ 2.140782(1 + ε)σ(n)N log−2N(1 + 2 · 10−5)W (P )W ′(P )

≤ 0.11943387σ(n)N log−2N.

When β̃ does not exist, then there is no r7(n), r8(n). By Lemma 4, (3.8)
and (3.13),

|r9(n)| ≤ 2.140782(1 + ε)σ(n)N log−2N(1 + 2 · 10−5)W (P )W ′(P )

≤ 0.0018171σ(n)N log−2N.

By Lemma 3 and (3.3), Theorem 3 follows.

4. Proof of Theorems 1 and 2. In this section we let L := log2N ,
and let rk,k(n) denote the number of representations of n in the form

n = 2ν1 + . . .+ 2νk − 2µ1 − . . .− 2µk

with 1 ≤ νi, µi ≤ L.

Lemma 5. For k ≥ 2 and ε > 0, there exists a positive constant N(k, ε)
such that when N ≥ N(k, ε) we have

∣∣∣
∑

m6=0

rk,k(m)σ(m)− 2L2k
∣∣∣ ≤ 2L2k{H(k) + ε},

where

H(k) := min
9≤E≤L

{
1.7811

(
1− 1

E csc2(π/8)

)2k

logE + 2.3270 · 1 + logE
E

}
.

This is Lemma 7 of [10].
Let

G(α) =
∑

ν≤L
e(2να).

Lemma 6. We have
1�

0

|S(α)G(α)|2 dα ≤ 2

log2 2
CN

where C < 8.23382.
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P r o o f. The proof is the same as that of Lemma 4 of [12]. Let

s(N) =
1�

0

|S(α)G(α)|2 dα.

Since for fixed l ≥ 1,

|{mj ≤ L : |m2 −m1| = l}| ≤ 2(L− l),
instead of (3.7) of [12] we have

s(N) < 2C0C2
N

log2N

∑

1≤l≤L
(L− l)g(2l − 1) +

(
1

log 2
+ ε

)
N.

By the proof of Lemma 4 of [12] we have
∑

1≤l≤y
g(2l − 1) ≤

(
1.1160 +

1.4818(1 + log 10)
10

)
y < 1.605378y.

Consequently, by Lemma 2.6 of [16],
∑

1≤l≤L
(L− l)g(2l − 1) ≤ 0.802689L2.

Hence

s(N) ≤
(

2

log2 2
0.6602 · 7.8342 · 1.8998 · 0.802689 +

1
log 2

+ ε

)
N

<
2

log2 2
8.23382N.

The proof of Lemma 6 is complete.

Define

Θ := Θ(η) :=
1

log 2
η csc2(π/8) log

1
η csc2(π/8)

+
1

log 2
(1− η csc2(π/8)) log

1
1− η csc2(π/8)

.

Lemma 7. Let η = 1/725. Then for k ≥ 2 and ε > 0, there exists a
positive constant N(k, ε) such that when N ≥ N(k, ε) we have
∑

m≤N
(r′k(m))2 ≤ 2NL2k

log2N
{1.11943387(1 +H(k)) + 8.23382(1− η)2k−2 + ε}.

P r o o f. As in Lemma 10 of [10] (note that Θ(η) < 1/13), by Lemmas 5–7
and Theorem 3 the lemma follows.

Proof of Theorems 1 and 2. For k = 953, choose E = 52. We have
H(953) < 0.254146. Note that
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0.11943387 + 1.11943387 · 0.254146 + 8.23382
(

1− 1
725

)1904

< 0.9986.

Theorem 1 and Theorem 2 can now be proved in the same way as Theorem 1
and Theorem 2 in Section 7 of [11].
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