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The (ABC) Conjecture and the radical index of integers

by

Paulo Ribenboim (Kingston, ON)

1. Introduction. In my papers [4], [5] I have derived many consequences
of the (ABC) Conjecture concerning powerful numbers and almost powerful
numbers. In the present paper I introduce the concept of power index of a
non-zero integer and I extend and sharpen the earlier results. This time
the statements are about integers with power index satisfying appropriate
conditions.

(1.1) The radical of a non-zero integer n is, by definition,

rad(n) =
∏

p|n
p

(product of the distinct primes p which divide n). In particular rad(1) =
rad(−1) = 1 and rad(−n) = rad(n) for every n 6= 0.

(1.2) Let k ≥ 2. A non-zero integer n is said to be k-powerful when
the following property is satisfied: if p is a prime which divides n then pk

divides n.
If 2 ≤ k < h every h-powerful number is also k-powerful. The integers

1,−1 are k-powerful for every k ≥ 2. A 2-powerful number is simply called
a powerful number.

Let k ≥ 2. Every non-zero integer nmay be written in a unique way in the
form n = wk(n)n′, where wk(n) is a k-powerful number, gcd(wk(n), n′) = 1
and if a prime p divides n′ then pk does not divide n′. The integer wk(n)
is called the k-powerful part of n. If k = 2 we simply write w(n) and call it
the powerful part of n.

The next concept was introduced in [5].

(1.3) Let k ≥ 2. A non-zero integer n is said to be almost k-powerful if
[rad(n)]k ≤ |n|.
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If 2 ≤ k < h every almost h-powerful number is also almost k-powerful.
Every k-powerful is almost k-powerful, but the converse is not true. For
example, if p < q are prime numbers then pk−1qk+1 is almost k-powerful
but not k-powerful.

Now we introduce the radical index of an integer.

(1.4) Let n be an integer, n 6= 0, 1,−1. The radical index ν(n) of n is,
by definition, given by the relation

[rad(n)]ν(n) = |n|.
By convention the radical index of 1,−1 is ν(1) = ν(−1) =∞. So ν(n) ≥ 1
for every non-zero integer n.

If |n| > 1 then n is square-free if and only if ν(n) = 1. Also, n is almost
k-powerful (where k ≥ 2) if and only if ν(n) ≥ k.

We gather below some easy statements about the radical index.

(1.5) (1) Let k ≥ 1 be an integer. Then ν(nk) = kν(n) for all n with
|n| > 1.

(2) For |n| > 1, ν(n) is either an integer or an irrational number.
(3) If p is a prime and p -n then

ν(np) = ν(n)− (ν(n)− 1)
1

1 + log r/log p
,

where r = rad(n). So if ν(n) 6= 1 then ν(np) < ν(n).
(4) If s | r = rad(n) then ν(ns) = ν(n) + log s/log r and for k ≥ 1:

ν(nrk) = ν(n) + k.

P r o o f. It suffices to prove the statements for positive integers m, n.
(1) This is trivial.
(2) If ν(n) = k/h (with positive integers k, h), we show that h divides

k. We have [rad(n)]k/h = n so [rad(n)]k = nh. Let p be a prime dividing n,
and let e ≥ 1 be such that pe |n, but pe+1 -n. Then pk = peh, so h divides k.

(3) We assume that p - r. Then

ν(np) =
log(np)
log(rp)

=
ν(n) + log p/log r

1 + log p/log r

= ν(n)− [ν(n)− 1](log p/log r)
1 + log p/log r

.

So if ν(n) > 1 then ν(np) < ν(n).
(4) Let s | r = rad(n). Then

ν(ns) =
log(ns)

log r
= ν(n) +

log s
log r

.

It follows that ν(nr) = ν(n) + 1 and by induction on k ≥ 1, ν(nrk) =
ν(n) + k.
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The next result is a consequence of the following well-known conjecture:

(1.6) Conjecture of algebraic independence of logarithms. If
p1, . . . , pk are distinct primes then the set {log p1, . . . , log pk} is algebraically
independent over Q.

This conjecture is a special case of a more embracing conjecture formu-
lated by Schanuel (see [1]).

(1.7) If ν(n) = ν(m) is not an integer then |n| = |m|.
P r o o f. Without loss of generality we assume m,n > 1. Let ν(n) =

ν(m) = α, where α is not an integer. We show that r = rad(n) is equal to
s = rad(m). Assume that p is a prime such that p | r but p - s. Let n = pen′

with e ≥ 1, p -n′. Then

e log p+ log n′

log p+ log(r/p)
=

logm
log s

.

Hence
log p(e log s− logm) = log(r/p) logm− logn′ log s.

But ν(m) = logm/log s = α is not an integer, so e log s− logm 6= 0. Hence
log p belongs to the field generated by log p1, . . . , log pk, where p1, . . . , pk are
the prime factors of mn′, so each pi 6= p. This contradicts Conjecture (1.6).
So r | s and by symmetry r = s. Hence logm = logn and m = n.

The set {ν(n) | n > 1} is a countable subset of the set of real numbers
α ≥ 1. It contains all integers k ≥ 1. Moreover

(1.8) (1) If 1 ≤ α < β there exists n such that α < ν(n) < β.
(2) For every α ≥ 1 there exists a sequence of positive integers (ni)i≥1

with ν(n1) > ν(n2) > . . . and limi→∞ ν(ni) = α.
(3) For every α > 1 there exists a sequence of positive integers (ni)i≥1

such that ν(n1) < ν(n2) < . . . and limi→∞ ν(ni) = α.

P r o o f. (1) Let p 6= 2 be a prime such that
(

1 +
log p
log 2

)
(β − α) > 1.

So there exists an integer h such that

(α− 1)
(

1 +
log p
log 2

)
< h < (β − 1)

(
1 +

log p
log 2

)
.

So

α < 1 +
h

1 + log p/log 2
= 1 +

h log 2
log(2p)

=
log(2h+1p)

log(2p)
= ν(2h+1p) < β

(the last inequality checked in a similar way).
(2) and (3). These are trivial consequences of (1).
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We introduce the following notation. For all α > 1 let Nα = {n | ν(n) ≥
α}. If k is an integer and k ≥ 2 then Nk is the set of all almost k-powerful
integers.

For the convenience of the reader, we state the (ABC) Conjecture as it
will be used in this paper.

(1.9) The (ABC) Conjecture. For every ε > 0, there exists K > 0,
depending on ε, such that if A, B, C are non-zero coprime integers such
that A+B + C = 0 then

max{|A|, |B|, |C|} < K[rad(ABC)]1+ε.

In the conjecture there is no suggestion of an explicit expression for K
as a function of ε.

2. The equations Ax+By+Cz = 0 and Ax+By = C. Let 0 < δ ≤ 1,
let R, S, T be positive coprime square-free integers. Let

H = {(x, y, z) | x, y, z are non-zero coprime integers, 1/ν(x) + 1/ν(y) +
1/ν(z) < 1 − δ, there exist non-zero integers A, B, C such that
rad(A) |R, rad(B) |S, rad(C) |T and Ax+By + Cz = 0}.

(2.1) Theorem. If the (ABC) Conjecture is true then H is a finite set.

P r o o f. Let
H1 = {(x, y, z) ∈ H | |x| ≥ |y|, |z|},
H2 = {(x, y, z) ∈ H | |y| ≥ |x|, |z|},
H3 = {(x, y, z) ∈ H | |z| ≥ |x|, |y|}.

So
H = H1 ∪H2 ∪H3.

We show that H1 is a finite set. Let (x, y, z) ∈ H1, so there exist A,B,C 6= 0
with rad(A) |R, rad(B) |S, rad(C) |T and Ax+By+Cz = 0. We note that
Ax, By, Cz are non-zero coprime integers.

Let 0 < ε < δ/(1− δ). By the (ABC) Conjecture there exists K > 0,
depending on ε, such that

|x| ≤ |Ax| < Kr1+ε

where
r = rad(Ax ·By · Cz) ≤ RST · rad(x) · rad(y) · rad(z)

= RST · |x|1/ν(x)|y|1/ν(y)|z|1/ν(z)

≤ RST · |x|1/ν(x)+1/ν(y)+1/ν(z) ≤ RST |x|1−δ.
Thus |x| < K ′|x|(1−δ)(1+ε) where K ′ = K(RST )1+ε.

We note that (1−δ)(1+ε) < 1. Therefore |x| remains bounded and since
|y|, |z| ≤ |x| then H1 is a finite set. Similarly, H2, H3 are finite sets.
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We indicate two types of corollaries. First we spell out the case where the
coefficients A, B, C are given. In the second corollary we discuss solutions
in powerful numbers x, y, z.

(2.2) Corollary. Let A, B, C be non-zero coprime integers, let 0 < δ <
1. The set H = {(x, y, z) | x, y, z are non-zero coprime integers, 1/ν(x) +
1/ν(y) + 1/ν(z) ≤ 1− δ and Ax+By + Cz = 0} is finite.

The next corollary was proved in Ribenboim [4]:

(2.3) Corollary. Let R, S, T be positive coprime square-free integers.
Let J = {(x, y, z) | x, y, z are non-zero coprime integers, there exist integers
l,m, n ≥ 2 such that x is l-powerful , y is m-powerful , z is n-powerful ,
1/l + 1/m + 1/n < 1 and there exist non-zero integers A, B, C such that
rad(A) |R, rad(B) |S, rad(C) |T and Ax+By+Cz = 0}. Then J is a finite
set.

P r o o f. It is easy to see that there exists µ < 1 such that if 1/l+ 1/m+
1/n < 1 then 1/l + 1/m + 1/n ≤ µ (see Ribenboim [4] for details). Let
δ = 1 − µ. Next, with the above notations, [rad(x)]l ≤ |x|, so l ≤ ν(x),
similarly, m ≤ ν(y) and n ≤ ν(z). Thus J ⊆ H, hence J is a finite set.

We may give an equivalent formulation of the above corollary in terms
of the following set J∗.

Let J∗ be the set of all (x, y, z, l,m, n) where x, y, z, l,m, n are as indi-
cated in the definition of J . The mapping (x, y, z, l,m, n) ∈ J∗ 7→ (x, y, z) ∈
J is surjective. Now, we observe that for each non-zero integer t there are
at most finitely many k ≥ 2 such that t is k-powerful. Therefore J is a finite
set if and only if J∗ is a finite set.

We prove now a similar result for the equation Ax+By = C.
Let R, S, T be positive square-free coprime integers, let 0 < δ < 1

and let d ≥ 1. Consider the set H ′ = {(x, y) | x, y are non-zero integers,
gcd(x, y) | d, 1/ν(x) + 1/ν(y) < 1 − δ and there exist non-zero integers A,
B, C such that rad(A) |R, rad(B) |S, rad(C) |T and Ax+By = C}.

(2.4) Theorem. If the (ABC) Conjecture is true then H ′ is a finite set.

P r o o f. Let H ′1 = {(x, y) ∈ H ′ | |x| ≥ |y|}, and H ′2 = {(x, y) ∈ H ′ |
|y| ≥ |x|}, so H ′ = H ′1∪H ′2. We show that H ′1 is a finite set. Let (x, y) ∈ H ′1
and let Ax + By = C with A, B, C as indicated. Let e = gcd(x, y) so e | d
and Ax

e , B y
e , C

e are non-zero coprime integers.
Let 0 < ε < δ/(1− δ); by the (ABC) Conjecture there exists K > 0,

depending on ε, such that

|x|
d
≤ |Ax|

e
< Kr1+ε
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where

r = rad
(
Ax

e
· By
e
· C
e

)
≤ RST rad(x) · rad(y)

= RST |x|1/ν(x) · |y|1/ν(y) ≤ RST |x|1/ν(x)+1/ν(y) ≤ RST |x|1−δ.

Let K ′ = Kd(RST )1+ε so |x| < K ′|x|(1−δ)(1+ε).
But (1− δ)(1 + ε) < 1, so |x| remains bounded; since |y| ≤ |x| then H ′1

is a finite set. Similarly, H ′2 is a finite set.

We give now an immediate corollary.

(2.5) Corollary. Let 0 < δ < 1, let A, B, C be non-zero coprime
integers. Then the set J = {(x, y) | x, y 6= 0, 1/ν(x) + 1/ν(y) ≤ 1 − δ and
Ax+By = C} is finite.

P r o o f. For each divisor d of C, the set Jd = {(x, y) ∈ J | gcd(x, y) = d}
is finite. So J is also finite.

(2.6) Corollary. Let α, β > 1 be such that 1/α + 1/β < 1, let T be
a square-free positive integer and let d ≥ 1. Then the sets I± = {x ∈ Nα |
there exists C 6= 0 such that rad(C) |T, gcd(x,C) | d and x ± C ∈ Nβ} are
finite.

P r o o f. We consider the sets H ′± = {(x, y) | x ∈ Nα, y ∈ Nβ , rad(C) |T ,
gcd(x,C) | d and x ± C = y}. We have ν(x) ≥ α, ν(y) ≥ β; taking A = 1,
B = −1, since gcd(x, y) | d by the theorem the sets H ′± are finite. Therefore,
I± are finite sets.

We proved the following very special case in [4]:

(2.7) Corollary. Let T be a square-free positive integer , let d ≥ 1.
Then there exist only finitely many 3-powerful (resp. powerful) integers x
such that there exists C 6= 0, x with rad(C) |T , gcd(x,C) | d and such that
x±C is a powerful (resp. a 3-powerful) integer. In particular there are only
finitely many 3-powerful (resp. powerful) integers x such that x ± 1 is a
powerful (resp. a 3-powerful) integer.

No proof of this last assertion is known, without appealing to the (ABC)
Conjecture.

Here is another consequence of (2.6):

(2.8) Corollary. Let T be a positive square-free integer , let d ≥ 1 and
let α, β > 1 such that 1/(2α) + 1/β < 1. Then the set L′ = {x ∈ Nα | there
exists C 6= 0, rad(C) |T , gcd(x,C) | d and both x + C and x − C ∈ Nβ} is
finite.
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P r o o f. Let x ∈ L′. Then ν(x2) ≥ 2α, also rad(C2) = rad(C) |T and
x2 − C2 ∈ Nβ : indeed,

rad(x2−C2) ≤ rad(x−C)·rad(x+C) ≤ (x−C)1/β(x+C)1/β = (x2−C2)1/β .

Since 1/(2α)+1/β < 1 this shows that x2 ∈ I− as defined in (2.6). Therefore
L′ is a finite set.

The following special case was proved in [4]:

(2.9) Corollary. Let T be a positive square-free integer , let d ≥ 1. Then
there exist only finitely many triples (x − c, x, x + c) of powerful numbers,
where 0 < c < x, gcd(x, c) | d, rad(c) |T .

More special statements are the following:

(2.10) Weaker Erdős’ Conjecture. There are at most finitely many
triples of consecutive powerful numbers.

(2.11) Erdős’ Conjecture. Three consecutive integers cannot all be
powerful.

The weaker Erdős’ Conjecture has not been proved without appealing
to the (ABC) Conjecture, while Erdős’ Conjecture has not been proved to
be a consequence of the (ABC) Conjecture.

Furthermore, we note the following corollary.
Let 0 < δ < 1, let S = {s1, s2, . . .}, where each si is a real number, si > 1

and 1/si + 1/si+1 ≤ 1− δ.
(2.12) Corollary. Let 1 < n1 < n2 < . . . be a sequence of integers such

that ν(ni) ≥ si for all i ≥ 1. Then

lim
i→∞

(ni+1 − ni) =∞.

P r o o f. By (2.5), for every k ≥ 1 the set I = {(x, y) | x, y > 0, 1/ν(x) +
1/ν(y) ≤ 1− δ and x− y ≤ k} is finite.

In particular, the subset {(ni+1, ni) | ni+1−ni ≤ k} is finite. This proves
that limi→∞(ni+1 − ni) =∞.

A special case is the following:

(2.13) Corollary. Let S = {s1, s2, . . .} where each si is an integer ,
si ≥ 2 but two consecutive integers si, si+1 (for any i ≥ 1) are not both
equal to 2. Let 1 < n1 < n2 < . . . be a sequence of integers such that ni is
si-powerful. Then limi→∞(ni+1 − ni) =∞.

The following conjecture was formulated by Pillai (see Ribenboim [3]):

(2.14) Pillai’s Conjecture. Let 1 < n1 < n2 < . . . be the sequence of
all integers which are proper powers. Then limi→∞(ni+1 − ni) =∞.
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Pillai’s Conjecture is included in the last corollary, after remarking that
there are only finitely many squares with bounded difference.

Let R, S, T be positive square-free coprime integers, let M ≥ 1, let
H = {y > 0 | there exist x > 0, non-zero integers A, B, C, such that
gcd(x, y) = 1, ν(x) ≥ 2, x/y2 ≤ M , rad(A) |R, rad(B) |S, rad(C) |T and
Ax+By2 = C}.

We note that if |B/A|, |C/A| ≤M/2 then x/y2 ≤M . Indeed
∣∣∣∣
x

y2 +
B

A

∣∣∣∣ =
∣∣∣∣
C

A

∣∣∣∣ ·
1
y2 ≤

∣∣∣∣
C

A

∣∣∣∣,

so ∣∣∣∣
y

x2

∣∣∣∣ ≤
∣∣∣∣
B

A

∣∣∣∣+
∣∣∣∣
C

A

∣∣∣∣ ≤M.

(2.15) Theorem. Let R, S, T , M and H be as indicated above. We
assume that the (ABC) Conjecture is true.

(1) For every ε > 0 and α > 1 there exists K > 0 (depending on R, S, T ,
M , ε, α) such that if y ∈ H, y > K and y1 | y, with y1 ∈ Nα, then y1 < yε.

(2) The set of integers y ∈ H having a factor y1 ∈ Nα such that y1 > yε,
is finite.

P r o o f. (1) Let

δ =
(1− 1/α)ε

4 + (1 + 1/α)ε
;

we observe that 0 < δ < (α− 1)/(α+ 1).
Let y ∈ H, so there exist x, A, B, C, as indicated in the definition of

H. We note that Ax, By, C are coprime. By the (ABC) Conjecture there
exists K1 > 0 such that |B|y2 < K1r

1+δ where

r = rad(Ax ·By2 · C) ≤ rad(ABC) · rad(x) · rad(y2)

≤ RSTx1/ν(x) rad(y).

By hypothesis, x = x
y2 · y2 ≤My2. Therefore

y2 ≤ |B|y2 < K2[y2/ν(x) rad(y)]1+δ

where K2 = [RSTM ]1+δ .
Let y = y1y2 with y1 ∈ Nα, so ν(y1) ≥ α. We have rad(y) ≤ rad(y1) · y2

≤ y1/α
1 · y2. Hence

y2
1y

2
2 < K2[y1/ν(x)+1/α

1 y
1/ν(x)+1
2 ]1+δ ≤ K2[y1+1/α

1 y2
2 ]1+δ.

Let e = 2 − (1 + 1/α)(1 + δ) so e > 0 since δ < (α− 1)/(α+ 1). Thus
ye1 < K2y

2δ
2 . Let K3 = K

1/e
2 , so y1 < K3y

2δ/e.
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A simple calculation shows that 2δ/e < ε. Let f = 1/(ε− 2δ/e) and
K = Kf

3 so K depends on R, S, T , M , ε, α. If y > K then y1/f > K3. So
y1 < yε.

(2) This follows at once from (1).

The following corollary was proved by Ribenboim and Walsh [6]:

(2.16) Corollary. Let A, B, C be non-zero coprime integers. For ev-
ery ε > 0 there exist only finitely many integers y > 0 with the following
properties:

(1) There exists x > 0 with gcd(x, y) = 1 such that Ax2 +By2 = C.
(2) The powerful part w(y) of y satisfies w(y) > yε.

In particular there are only finitely many powerful integers y satisfy-
ing (1).

P r o o f. We apply the theorem, replacing x by x2, so ν(x2) ≥ 2; we have
x2/y2 bounded and y1 = w(y) ∈ N2. If y satisfies (1) and it is powerful
then w(y) = y > yε, so y belongs to the finite set of integers, which also
satisfy (2).

3. Values of polynomials. To begin we mention the following conjec-
ture of Langevin [2]:

(3.1) Langevin’s Conjecture (L). Let f ∈ Z[X] with degree d ≥ 2
and no multiple root. For every ε > 0 there exist n0, K > 0 (depending on
ε, f) such that if x > n0 then f(x) 6= 0 and rad(f(x)) ≥ Kxd−1−ε.

Langevin proved:

(3.2) Theorem. If the (ABC) Conjecture is true then the Conjecture
(L) is true.

Let f be a primitive polynomial of Z[X] with degree d ≥ 2. Let g ∈ Z[X]
be the product of all primitive irreducible polynomials p ∈ Z[X] such that
p | f but p2 - f . Let deg(g) = e. We assume that e ≥ 2; let α > d/(e− 1) > 1.
Let R be a positive square-free integer and let

T = {x > 0 | there exist a > 0 such that rad(a) |R,

and z ∈ Nα such that f(x) = az}.
(3.3) Theorem. If the Conjecture (L) is true then T is a finite set.

P r o o f. Let 0 < ε < (αe− d− α)/(α+ 1). There exists n0 > 0 such that
if x > n0 then |f(x)| < xd+ε. By the Conjecture (L) there exist n1 > n0

and K > 0 such that if x > n1 then f(x) 6= 0 and rad(g(x)) > Kxe−1−ε.
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Let x ∈ T , x > n1. Since g(x) divides f(x) then

rad(g(x)) ≤ rad(f(x)) = rad(az) ≤ R rad(z)

= Rz1/ν(z) ≤ R1−1/ν(z)(az)1/ν(z) = R(f(x))1/ν(z)

≤ Rx(d+ε)/ν(z) ≤ Rx(d+ε)/α.

So
xe−1−ε−(d+ε)/α < R/K.

But
αe− α− αε− d− ε = αe− (d+ α)− (α+ 1)ε > 0.

This shows that x remains bounded so T is a finite set.

The following special case was proved by Walsh [9]:

(3.4) Let f ∈ Z[X] be a polynomial without multiple roots. If deg(f) ≥ 3
then the set {x > 0 | f(x) is powerful} is finite. If deg(f) = 2 then the set
{x > 0 | f(x) is 3-powerful} is finite.

P r o o f. We apply the theorem with R = 1 and d = e. If d ≥ 3 then
α = 2 satisfies the required condition; if d = 2 then α = 3 satisfies the
condition.

We shall require the following facts about the location of zeros of poly-
nomials.

If f ∈ Z[X], the height of f , denoted by H(f), is the maximum of the
absolute values of its coefficients. The length of f , denoted by L(f), is the
number of its non-zero monomials.

(3.5) If f(x) = 0 then |x| < H(f) + 1.

P r o o f. We may assume that |x| > 1. Let f(X) = a0X
m+. . .+am−1X+

am, with m ≥ 1, a0 6= 0. If f(x) = 0 then

|xm| ≤ |a0x
m| = |a1x

m−1 + . . .+ am−1x+ am|
≤ H(f)[|x|m−1 + . . .+ |x|m−L(f)]

= H(f)|x|m−L(f) · |x|
L(f) − 1
|x| − 1

,

hence

|x|L(f) ≤ H(f)
|x|L(f) − 1
|x| − 1

.

Hence

|x| − 1 ≤ H(f)
|x|L(f) − 1
|x|L(f)

< H(f).
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Now we consider certain families of polynomials. Let A ≥ 1 and α > 1.
Let FA,α be the set of all f(X) = aXm + g(X) ∈ Z[X], with H(f) ≤ A,
a ≥ 1, deg(g) = k ≥ 1 and m− 1 ≥ α(k + 2).

(3.6) Theorem. Assuming that the (ABC) Conjecture is true, given
A, α as above and given γ > α/(α− 1) the set V = {f(x) | f ∈ FA,α,
|x| ≥ A+ 1 and f(x) ∈ Nγ} is finite.

P r o o f. Let f(x) ∈ Nγ . Since |x| ≥ A+ 1, H(f) ≥ H(g), then f(x) 6= 0
and g(x) 6= 0. Let

d = gcd(f(x), axm, g(x)).

Let 0 < ε < (αγ − α− γ)/(α+ γ). By the (ABC) Conjecture there exists
K > 0 such that

|f(x)|
d1+ε ≤

|f(x)|
d

< Kr1+ε

where

r = rad
(
f(x)
d
· ax

m

d
· g(x)
d

)

≤ rad(f(x)) ·A|x| · |g(x)|
d
≤ |f(x)|1/γA|x| · |g(x)|.

We have

|g(x)| ≤ A(|x|k + . . .+ |x|+ 1) = A
|x|k+1 − 1
|x| − 1

< |x|k+1.

Next
|f(x)| = |axm + g(x)| ≥ a|x|m − |g(x)|

> (A+ 1)|x|m−1 − |x|k+1 ≥ A|x|m−1 ≥ |x|m−1,

sincem−1 ≥ k+1. Hence |x| ≤ |f(x)|1/(m−1) and |g(x)| ≤ |f(x)|(k+1)/(m−1).
Therefore

|f(x)| < K ′|f(x)|β

where
K ′ = K ·A1+ε

and

β =
(

1
γ

+
1

m− 1
+
k + 1
m− 1

)
(1 + ε)

=
(

1
γ

+
k + 2
m− 1

)
(1 + ε) ≤

(
1
γ

+
1
α

)
(1 + ε) < 1.

The upper bound for β is independent of x, f . Thus |f(x)| remains bounded,
showing that the set V is finite.

We illustrate with some corollaries.
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(3.7) Corollary. The set {xm ± xk ± 1 ∈ N3/2 | x ≥ 1, k ≥ 1, 4m ≥
13k + 30} is finite.

P r o o f. Let A = 1, α = 13/4. Then m − 1 ≥ α(k + 2), so f(X) =
Xm±Xk±1 ∈ FA,α. Since γ = 3/2 > α/(α− 1), the set {xm±xk±1 ∈ N3/2 |
x ≥ 1, k ≥ 1, 4m ≥ 13k + 30} is finite.

In particular {xm ± x ± 1 ∈ N3/2 | x ≥ 1, m ≥ 11} is finite. Also
{xm ± x2 ± 1 ∈ N3/2 | x ≥ 1, m ≥ 14} is finite.

The following special case is already in [4]:

(3.8) (1) The set {xm ± x± 1 powerful | x ≥ 1, 4m ≥ 9k + 22} is finite.
(2) The set {xm ± xk ± 1 3-powerful | x ≥ 1, 8m ≥ 13k + 34} is finite.

P r o o f. (1) We take α = 9/4, so γ = 2 > α/(α− 1). We have m− 1 ≥
(9/4)(k+2); by the theorem, there are only finitely many powerful numbers
xm ± xk ± 1, with 4m ≥ 9k + 22.

(2) We take α = 13/8 so γ = 3 > α/(α− 1). Then m−1 ≥ (13/8)(k+2).
By the theorem there exist only finitely many 3-powerful numbers xm±xk±1
with 8m ≥ 13k + 34.

In particular, {xm±x±1 powerful | m ≥ 8} is finite, and {xm±x±1 which
are 3-powerful | m ≥ 6} is finite. The set {xm ± x2 ± 1 powerful | m ≥ 10}
is finite. The set {xm ± x2 ± 1 which are 3-powerful | m ≥ 8} is finite.

4. Consequences for binary recurrences. In this section we give
some consequences of the (ABC) Conjecture for binary recurrences.

Let P , Q be non-zero integers with P > 0 and assume that D = P 2 −
4Q 6= 0. Let Un = Un(P,Q) and Vn = Vn(P,Q) be defined as follows:

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 for n ≥ 2,

and
V0 = 2, V1 = P, Vn = PVn−1 −QVn−2 for n ≥ 2.

The roots of f(X)=X2−PX+Q are α=(P +
√
D)/2, β=(P −

√
D)/2,

so α+ β = P , αβ = Q, α− β =
√
D.

We note the following well-known facts:

(4.1) Un = (αn − βn)/(α− β), Vn = αn + βn and V 2
n −DU2

n = 4Qn for
each n ≥ 0.

In the special case when P = Q + 1 (so Q 6= ±1, since P,Q,D 6= 0) we
have D = (Q− 1)2, α = Q, β = 1, Un = (Qn − 1)/(Q− 1), Vn = Qn + 1.

We shall henceforth assume that gcd(P,Q) = 1 and D > 0. Then α, β
are real numbers, α > β, α > 0 (since P > 0). Moreover β > 0 if and only
if Q > 0.
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(4.2) Lemma. (1) If Q > 0 then

D < V 2
n /U

2
n ≤ P 2.

(2) If Q < 0 then
P 2 ≤ V 2

n /U
2
n ≤ D2/P 2.

P r o o f. (1) Let Q > 0 so 0 < β < α and

Vn
Un

= (α− β)
αn + βn

αn − βn = (α− β)
(α/β)n + 1
(α/β)n − 1

.

Let F (t) = (ξt + 1)/(ξt − 1) where t > 0, ξ = α/β > 1. Then F ′(t) < 0
so

Vn
Un
≤ (α− β)

α/β + 1
α/β − 1

= α+ β = P

and
Vn
Un

> (α− β) · lim
k→0

1 + (β/α)k

1− (β/α)k
= α− β =

√
D.

Thus
D < V 2

n /U
2
n ≤ P 2.

(2) Let Q < 0 so β < 0; from 0 < P = α + β it follows that |β| < α.
Then

Vn
Un

= (α+ |β|) (α/|β|)n + (−1)n

(α/|β|)n − (−1)n
.

If n is even, we obtain as before (with ξ = α/|β| > 1)

Vn
Un
≤ (α+ |β|)α/|β|+ 1

α/|β| − 1
=
D

P

and
Vn
Un

> (α+ |β|) · lim
k→∞

1 + (|β|/α)k

1− (|β|/α)k
= α− β =

√
D,

so
D < V 2

n /U
2
n ≤ D2/P 2.

If n is odd, we obtain as before

Vn
Un
≥ (α+ |β|)α/|β| − 1

α/|β|+ 1
= α− |β| = P,

while
Vn
Un

< (α+ |β|) · lim
k→∞

1− (|β|/α)k

1 + (|β|/α)k
= α− β =

√
D,

so
P 2 ≤ V 2

n /U
2
n < D2/P 2.

Hence for all n ≥ 1,
P 2 ≤ V 2

n /U
2
n < D2/P 2.



402 P. Ribenboim

(4.3) Theorem. Let P , Q be as before, let ε > 0 and α > 1. Assuming
that the (ABC) Conjecture is true, we have:

(1) The set G = {Un | n ≥ 1 and there exists u ∈ Nα such that u | Un
and u > Uεn} is finite.

(2) The set H = {Vn | n ≥ 1 and there exists v ∈ Nα such that v | Vn
and v > V εn } is finite.

P r o o f. To begin we recall that dn = gcd(Un, Vn) = 1 or 2 (for n ≥ 1).
Let Di = {n ≥ 1 | dn = i} for i = 1, 2.

(1) We consider two cases:
First Case: n ∈ D1. If P is even, let Zn = Vn/2, ∆ = D/4, E = 1. If

P is odd, let Zn = Vn, ∆ = D, E = 4. Then in both cases

Z2
n −∆U2

n = EQn.

We shall apply Theorem (2.15) with R = 1, S = rad(∆), T = rad(EQ).
In both cases R, S, T are positive coprime square-free integers.

Let G(1) = {Un ∈ G | dn = 1}. If Un ∈ G(1) then by Lemma (4.2),

V 2
n

U2
n

≤
{
P 2 if Q > 0,
D2/P 2 if Q < 0,

so there exists M1 ≥ 1 such that Z2
n/U

2
n ≤ M1. Then G(1) is contained in

the set Y1 = {y > 0 | there exists x > 0 with gcd(x, y) = 1, x2/y2 ≤M1 and
there exist non-zero integers A, B, C with rad(A) |R, rad(B) |S, rad(C) |T
and Ax2 + By2 = C}. Indeed, for each y = Un we take x = Zn, A = 1,
B = ∆, C = EQn. By (2.15), Y1 is a finite set, so G(1) is also a finite set.

Second Case: n ∈ D2. Let V ′n = Vn/2, U ′n = Un/2, so V ′2n −DU ′2n = Qn.
Let R = 1, S = rad(D), T = rad(Q) so R, S, T are positive coprime

square-free integers. Let G(2) = {Un ∈ G | dn = 2}. If Un ∈ G(2) then by
Lemma (4.2),

V ′2n
U ′2n

=
V 2
n

U2
n

≤
{
P 2 if Q > 0,
D2/P 2 if Q < 0,

so there exists M2 ≥ 1 such that V ′2n /U
′2
n ≤ M2. Therefore the set {Un/2 |

Un ∈ G(2)} is contained in Y2 ={y > 0 | there exists x > 0 with gcd(x, y)=1,
x2/y2 ≤M2 and there exist non-zero integers A, B, C such that rad(A) |R,
rad(B) |S, rad(C) |T and Ax2 + By2 = C}. Indeed, for y = Un/2 we take
x = Vn/2, A = 1, B = D, C = Qn. By Theorem (2.15) the set Y2 is finite,
so G(2) is also finite.

(2) The proof is similar. We require that by Lemma (4.2),

U2
n

V 2
n

≤
{

1/D if Q > 0,
1/P 2 if Q < 0,

so in both cases U2
n/V

2
n ≤ 1.
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(4.4) Corollary. Let P , Q be as above.

(1) For each α > 1 there are only finitely many terms Un ∈ Nα and
Vn ∈ Nα.

(2) There are only finitely many terms Un, Vn which are powerful.

The above statement (2) is already in the paper [6] by Ribenboim and
Walsh.

The next result concerns families of binary recurrences.

(4.5) Theorem. Let R be a positive square-free integer , let α > 1. If the
(ABC) Conjecture is true, the set Sα = {(x,m) | x ≥ 2, m ≥ 3 + 1/(α− 1),
(xm − 1)/(x− 1) = az, where rad(a) |R, z ∈ Nα} is finite.

P r o o f. Let 0 < ε < (α− 1)2/(2α2 − 1). If (x,m) ∈ Sα we write

xm =
xm − 1
x− 1

(x− 1) + 1.

By the (ABC) Conjecture, there exists K > 0 such that xm < Kr1+ε where

r = rad
(
xm

xm − 1
x− 1

(x− 1)
)

= rad(xm · az · (x− 1)) ≤ x2Rz1/α.

Hence
xm−2(1+ε) < KR1+εz(1+ε)/α ≤ KR1+ε(az)(1+ε)/α.

From 2xm−1 > (xm − 1)/(x− 1) ≤ az it follows that

(az)(m−2(1+ε))/(m−1)

2
<

(
az

2

)(m−2(1+ε))/(m+1)

< KR1+ε(az)(1+ε)/α.

So

(az)(m−2(1+ε))/(m−1) < K ′(az)(1+ε)/α where K ′ = 2KR1+ε.

We show that [m− 2(1 + ε)]α > (m− 1)(1 + ε). It suffices to show that

(3α− 2)(α− 1− ε) > (2α− 1)(α− 1)(1 + ε)

or equivalently
(3α− 2)α > (2α2 − 1)(1 + ε).

But this is true, since

3α2 − 2α
2α2 − 1

− 1 >
(α− 1)2

2α2 − 1
> ε.

This shows that az = (xm − 1)/(x− 1) remains bounded, showing that
the set Sα is finite.

In particular, S2 = {(x,m) | x ≥ 2, m ≥ 4, (xm − 1)/(x− 1) = az, with
rad(a) | R, z ∈ N2} is a finite set.

As a corollary, we have:
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(4.6) Corollary. Let R, α be as above.

(1) For each x ≥ 2 the set {m ≥ 2 | (xm − 1)/(x− 1) = az with
rad(a) |R and z ∈ Nα} is finite.

(2) For each m ≥ 4 the set {x ≥ 2 | (xm − 1)/(x− 1) = az with
rad(a) |R and z ∈ Nα} is finite.

The following very special case is found in Shorey’s paper [8]:

(4.7) Corollary. The set S = {(x,m) | x ≥ 2, m ≥ 3, (xm − 1)/(x− 1)
is a power} is finite.

P r o o f. By the preceding result, the set {(x,m) ∈ S | m ≥ 4} is finite.
We show that the set of integers x such that (x3 − 1)/(x− 1) = x2 +x+1 =
ak, where a ≥ 2, k ≥ 2, is also finite.

Since the roots of X2 +X+1 = 0 are simple, by the theorem of Schinzel
and Tijdeman [7], there are only finitely many integers x2 + x + 1 of the
form ak with a ≥ 2 and k ≥ 3. Finally, if x2 + x+ 1 = a2 with a ≥ 2, then
x = (−1±

√
1− 4(1− a2))/2. Since x is an integer we then have 4a2 − 3 =

b2. So a = 1, x = −1, which has been excluded. This concludes the proof.
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