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1. Introduction. Let E be an elliptic curve over Q of conductor N ,
root number ω, and defined by the Weierstrass equation y2 = f(x). For any
square-free d relatively prime to N , the root number of the twisted curve
Ed : dy2 = f(x) is given by ωd = ωχd(−N), where χd denotes the quadratic
character associated with the field Q(

√
d). Then depending on N and ω one

may appropriately choose a congruence class modulo 4N such that for each
d in the congruence class the root number ωd is either always 1, or always
−1. In the light of the deep results of Kolyvagin, Gross and Zagier [3], it is
natural to study the central values {L(1, Ed)} for the family of twists with
fixed root number 1, as in this case the nonvanishing of L(1, Ed) implies that
there are at most finitely many Q-rational points on the elliptic curve Ed.
On the other hand, when the root number is −1, then the central values
vanish and one studies the sequence of derivatives {L′(1, Ed)} with the hope
of proving that some or many of them are nonvanishing. Of course, then it
follows that the corresponding elliptic curve has Mordell–Weil rank one, and
consequently infinitely many rational points. Such nonvanishing results are
well known when the only restriction on d is a congruence condition. This
was first established by Murty and Murty [11], and almost simultaneously,
but independently and via a totally different method, by Bump, Friedberg
and Hoffstein [1]. Later Iwaniec [7] gave a quantitative version of this result.

Goldfeld has proposed a strong conjecture regarding the distribution
of rd = ords=1L(s, Ed) in the family of all quadratic twists {Ed} (with d
square-free and (d,N) = 1). Let n(X) denote the number of curves in the
above family with d < X. Then the conjecture predicts that∑

d≤X
rd=i

1 ∼ 1
2
n(X)
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for i = 0, 1. This is an important unsolved problem and any partial re-
sult towards this conjecture will be highly welcome. One consequence of
the conjecture is that a positive proportion of the central values {L(1, Ed)}
(respectively central derivatives {L′(1, Ed)}) do not vanish. The first ex-
ample illustrating this phenomenon for L(1, Ed) was given by James [9].
In his example the elliptic curve E is the −1 twist of the modular curve
X0(14). Vatsal [16] has established that the elliptic curve E = X0(19) has
a positive proportion of nonvanishing central derivatives L′(1, Ed) 6= 0. For
general elliptic curves Ono [12] has established that the number of d < X
with L(1, Ed) 6= 0 is at least X/(logX)α for some α < 1. In the case of
central derivatives the best known result is due to Perelli and Pomyka la
[14] who show that there are at least X1−ε such twists for any ε > 0. One
should note that Ono in [12] employs the theorem of Waldspurger relating
the central value L(1, Ed) with the dth Fourier coefficient of a half-integral
weight modular form, and this is why he gets a stronger result in the case
of central values. The method used in [14], on the other hand, is totally
analytic-number-theoretic and is based on the large sieve inequalities.

Our interest in the problem of nonvanishing of special values stems from
two different arithmetic applications. First we are motivated by the following
question: “Given an elliptic curve E are there infinitely many primes p such
that the quadratic twists Ep have rank zero?” In the same spirit one may
ask for prime twists of rank one. Ono and Skinner [13] settled the above
question affirmatively by transferring the problem to that about Fourier
coefficients of a half-integral weight modular form using the theorem of
Waldspurger. In this way they bypassed all the relevant problems that one
faces while dealing with such sieve-theoretic questions. However, since there
is no satisfactory analogue of Waldspurger’s result in the case of derivatives,
it is still important to study the above question using sieve theory, that is to
say, to study the level of distribution of the special values of L-functions. Our
second motivation comes from a possible Diophantine application. Consider
the family of elliptic curves {Et}t∈Q where

Et : (t2 + 1)y2 = f(x),

and f is a cubic polynomial. To show that the above algebraic family has
infinitely many fibers of rank 1, it is enough to show that there are infinitely
many square-free integers n such that all the prime factors of n are of the
form 4k+1, and the elliptic curve En : ny2 = f(x) has rank 1. Such problems
fall naturally in the realm of sieve theory.

In this paper we study the distribution of the finite sequence {sd}, where

sd = µ(d)2ψA(d)(1− ωd)L′(1, Ed)F (d/Y ).

Here F is a nonnegative-valued compactly supported smooth function, A is
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a square-free odd integer coprime to N , and

ψA(d) =
∏
p|A

1
2

{
1+
(
d

p

)}
=
{

1 if
(
d
p

)
= 1 for all p |A,

0 otherwise.

So ψA is the indicator function for the set of integers which are quadratic
residues modulo each prime divisor of A. This is an innocent sieve and it
naturally appears in many contexts, e.g. while considering numbers repre-
sented by the form u2 + Av2, so we incorporate it in the definition of the
sequence. Then for any square-free ξ coprime to 2NA we show that∑

d≡0 (mod ξ)

sd = g(ξ)(c1 log Y + c2)Y + h(ξ)c3Y + rξ,

where c1, c2 and c3 are constants which depend only on the elliptic curve,
the smooth cut-off function F and the number A. Moreover, c1 is nonzero,
and g(ξ) is a nice multiplicative function, h(ξ) is almost multiplicative and
the error term rξ satisfies ∑

ξ<Y θ

|rξ| � Y 3/4+θ/2+ε.

The nonnegativity of the terms in the sequence {sd} follows from the result
of Gross and Zagier, and so the sequence is nicely adapted to sieve methods.
One may object that the density function is not completely multiplicative,
but we will see that the almost multiplicativity of h(ξ) suffices for our pur-
pose. In this context the above result then says that the level of distribution
of the sequence of central derivatives is almost

√
Y (or “one-half”).

Similarly, one may study the sequence of central values {s̃d}, where

s̃d = µ(d)2ψA(d)(1 + ωd)L(1, Ed)F (d/Y ).

In this case the asymptotic behaviour is given by∑
d≡0 (mod ξ)

s̃d = g̃(ξ)c4Y + r̃ξ,

where g̃(ξ) is a nice multiplicative function, c4 is a nonzero constant and the
error term r̃ξ satisfies ∑

ξ<Y θ

|r̃ξ| � Y 3/4+θ/2+ε.

So this sequence is more natural for sieve techniques. However, we choose
to work with the sequence of central derivatives because of two reasons:
(1) to investigate any new subtlety that the term h(ξ) may present, and
(2) the derivatives are more interesting from the point of view of Diophantine
geometry.
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2. Statement of results. We start with the approximate functional
equation which gives a representation of the L-values at the central point
in terms of certain rapidly converging series. In the case of the derivative,
when the root number is −1 we have

L′(1, Eχd) = 2A(d
√
N,χd),

where

A(X,χ) =
∞∑
n=1

anχ(n)
n

V

(
2πn
X

)
.

Here an’s are the Fourier coefficients of the modular form associated to E
(by [17]), and V is the incomplete gamma function defined by

V (X) =
∞�

X

e−t
dt

t
=

1
2πi

�

( 3
4
)

Γ (s)
s

X−s ds.

It is also advisable for the sake of notational simplicity to put certain as-
sumptions on the conductor N and the root number ω of the elliptic curve E.
We assume that N ≡ 7 (mod 8) and that ω = 1. Let A be a square-free odd
integer coprime to N . Then we run d over the set of square-free odd inte-
gers coprime to 2NA, and such that

(
d
N

)
= 1. Hence the root number of the

twisted curve Ed is −1. Let F be a compactly supported nonnegative-valued
smooth function. Then we define a finite sequence of nonnegative quanti-
ties by

sd = µ(d)2ψA(d)
(

1 +
(
d

N

))
L′(1, Ed)F (d/Y )

when (d, 2NA) = 1, and 0 otherwise. Now we state our main result.

Theorem 1. Suppose ξ is a square-free odd integer coprime to NA.
Then we have ∑

d≡0 (mod ξ)

sd = g(ξ)(c1 log Y + c2)Y + h(ξ)c3Y + rξ,

where c1, c2 and c3 are constants which depend only on the elliptic curve,
the smooth cut-off function F and the number A. Moreover , c1 is nonzero,
and the error term rξ satisfies∑

ξ<Y θ

|rξ| �ε Y
3/4+θ/2+ε.

The multiplicative function g(ξ) =
∏
p|ξ g(p) is defined by

g(p) =
1
p

(
1 +

1
p

+
ap2

p2
+
ap4

p4
+ · · ·

)−1

.
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The function h(ξ) is almost multiplicative and is given by

g(ξ)
∑
p|ξ

(
1 +

1
p

+
ap2

p2
+
ap4

p4
+ · · ·

)−1(2ap2
p2

+
4ap4
p4

+ · · ·
)

log p.

In [6] Hoffstein and Luo have stated a similar result for the sequence of
central values. Their proof is based on the theory of metaplectic forms and
is much more abstruse compared to our direct analytic-number-theoretic
approach. Their argument, in principle, should work for derivatives too,
but that would require a careful study of the related metaplectic Eisen-
stein series. Unfortunately, the full details of their proof never appeared.
The following two corollaries are immediate from the above theorem and
the standard results on combinatorial sieves ([2], [4], [8]). We just make the
following comment. The term h(ξ), though not multiplicative, is of the form
h(ξ) = g(ξ)

∑
p|ξ w(p), where g(ξ) is multiplicative and w(p) = O

( log p
p

)
.

This follows from the standard bound for the Fourier coefficients. Such
almost-multiplicative functions can be dealt with by using sieves. Now for
any set P of prime numbers, set

P (z) =
∏
p<z
p∈P

p.

Corollary 2. Let P be a set of primes obtained by deleting a finite
number of primes. Suppose that P does not contain any of the prime factors
of 2NA. Then ∑

(d,P (z))=1

sd � Y

if z = Y θ with θ < 1/4.

From the above corollary we get results of the following form: there exist
infinitely many d with at most four prime factors, such that the Mordell–Weil
rank of the twisted elliptic curve Ed is one. It should be possible to reduce
the number of prime divisors to three via weighted sieves. Of course, cutting
short the number to one will demand overcoming formidable difficulties,
given that the level of distribution that we achieve is only at most one-half.

Corollary 3. Let P be the set of primes p such that χA(p) = −1. Then∑
(d,P (z))=1

sd � Y
√

log Y

if z = Y θ with θ < 1/2.

The condition ψA(d) = 1 implies that d has an even number of prime
factors from the set P. Hence to make d free of primes from P we need to take
the sieving range z =

√
Y , which is just beyond the range allowed by the level
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of distribution proved in the theorem. So it will be very interesting if one can
improve the level of distribution by even “an epsilon”. Let us also remark
that using the above corollary we get rank one twists by discriminants having
either none or exactly two prime factors p1, p2 with χA(p1) = χA(p2) = −1.
These two primes are very near to each other and one hopes that they
contribute a small portion compared to the contribution of terms having no
such primes. However, we have not been able to prove this. Now we move to
the next important consequence which improves on the quantitative result
given by Iwaniec in [7].

Corollary 4. Let E be an elliptic curve with root number 1. Then for
some constants a 6= 0 and b we have∑

(d,2N)=1

µ(d)2(1− ωd)L′(1, Ed)F (d/Y ) = aY log Y + bY +O(Y 3/4+ε).

Finally, a few words about the proof of the theorem. The proof closely
follows the treatment given by Soundararajan in [15]. The large sieve in-
equality proved by Heath-Brown in [5] is one of the main ingredients in [15].
Perelli and Pomyka la [14] have adapted Heath-Brown’s work in the ellip-
tic curve scenario. In particular, using large sieve they prove the following
bounds: ∑[

d≤D
|L′(1, Eχd)|2 �ε D

1+ε

and

(1)
∑[

d≤D
|L(σ + it, Eχd)|2 �ε (D + (Dτ)3−2σ)(Dτ)ε

(where τ = |t|+ 1) uniformly for 1 ≤ σ ≤ 3/2 and t ∈ R. Here
∑[ indicates

that the sum is over square-free integers. These two bounds will be crucial
in our proof.

It is desirable to improve these bounds so that the factor Dε is replaced
by a power of logD. Such an improvement will increase the level of distri-
bution albeit by an “epsilon”, but that may turn out to be enough to get
the Diophantine application that we described in the introduction.

3. A mean value estimate—I. We start by repeating the various
assumptions that we have made. E is an elliptic curve with conductor N
which is congruent to 7 modulo 8. Also, we are assuming that the root
number of the elliptic curve is 1. We twist E by 2d, where d is an odd
positive integer coprime to NA and A is a fixed odd integer coprime to N .
Then the root number of E2d is −1 and we have the expression

L′(1, Eχ8d) = 2A(8d
√
N,χ8d).
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Since the quadratic field Q(
√

2d) has discriminant 8d we are writing χ8d for
the associated quadratic character. Now we fix a square-free odd positive
integer ξ co-prime to NA, and a divisor α of A. Our goal in this section is
to estimate the following:

S(α) :=
∑

(d,2NAξ)=1

µ(d)2
(
d

α

)
A(8dξ

√
N,χ8dξ)F

(
dξ

Y

)
,

where F is a nonnegative-valued smooth function supported on the interval
(1, 2). The importance of these parameters will become clear later.

As µ(d)2 =
∑

l2|d µ(l), by expanding A and interchanging the order of
summation, we get

S(α) =
∑
n

an
n

∑
l≤X

(l,2NAξn)=1

µ(l)
(

2ξ
n

) ∑
(d,2NAξ)=1

(
d

αn

)
Fn

(
dξl2

Y

)
+R(α),

where

Fn(t) = F (t)V
(

2πn
8tY
√
N

)
,

R(α) =
∑

(d,2NAξ)=1

(∑
l2|d
l>X

µ(l)
)( d

α

)
A(8dξ

√
N,χ8dξ)F

(
dξ

Y

)
.

The parameter X will be chosen later. It is easy to see that R(α) is much
smaller than the expected leading term and so we leave it as it is for the
time being, and continue our analysis with the first term. Treating the co-
primality condition in the inner sum using the Möbius function we write

S(α) =
∑
δ|NAξ

µ(δ)
(
δ

α

)
S(α, δ) +R(α),

where

S(α, δ) =
∑
n

an
n

∑
l≤X

(l,2NAξn)=1

µ(l)
(

2ξδ
n

)∑
d odd

(
d

αn

)
Fn

(
l2ξδd

Y

)
.

We will often write δ = δ1δ2, where δ1 |NA and δ2 | ξ. Also, it is clear that
we are just required to consider δ coprime to α. Now, we apply the Poisson
summation formula to S(α, δ), and obtain

S(α, δ) =
Y

ξδα

∑
n

an
n2

∑
l≤X

(l,2NAξn)=1

µ(l)
2l2

(
2ξδ
n

)(
2
αn

)

×
∑
k

(−1)kGk(αn)F̃n

(
kY

2l2ξδαn

)
,
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which we write as P (α, δ) + R(α, δ), where P (α, δ) is the principal term
arising from the k = 0 term, and R(α, δ) includes all the nonzero k-terms.
Again, R(α, δ) will contribute only to the error term, and will be evaluated
in a later section. Here Gk(n) is a Gauss-type sum given by

Gk(n) = ε−1
n

∑
amodn

(
a

n

)
e

(
ak

n

)
,

where

ε−1
n =

1− i
2

+
(
−1
n

)
1 + i

2
and the Fourier transform is defined in the following way:

(2) F̃ (y) =
∞�

−∞
(cos(2πxy) + sin(2πxy))F (x) dx.

4. The main term. Note that G0(αn) = φ(αn) if αn is a square and
G0(αn) = 0 otherwise. So it follows that

P (α, δ) =
Y

ξδα

∑
nα=�

anφ(nα)
n2

∑
l≤X

(l,2NAξn)=1

µ(l)
2l2

(
2ξδ
n

)(
2
αn

)
F̃n(0).

(k = � means that k is a square of an integer.)
Then completing the l-sum, and using the well known bound for an, we

deduce that

P (α, δ) =
Y

2ξδα

∑
nα=�

anφ(nα)
n2

(
2ξδ
n

)(
2
αn

) ∏
(p,2NAξn)=1

(
1− 1

p2

)
F̃n(0)

+Oε

(
Y 1+ε

Xξδ

)
.

Now, αn = � iff n = αm2 (as α is square-free), and in that case(
2ξδ
n

)(
2
αn

)
=


(

2ξδ
α

)
if (2ξδ,m) = 1,

0 otherwise.
Also,

φ(α2m2)
∏
p|m

(p,NA)=1

(
1− 1

p2

)−1

= α2m2
∏
p|αm
p|NA

(
1− 1

p

) ∏
p|m

(p,NA)=1

(
1 +

1
p

)−1

.

We observe that

F̃n(0) =
1

2πi

�

( 3
4
)

Γ (s)
s

(
2πn

8Y
√
N

)−s
F̆ (s) ds,
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where F̆ (s) =
	
< F (t)ts dt. Now substituting these in the above expression

for P (α, δ), and then interchanging the order of summation and integration,
we get

P (α, δ) = Y
c(α, δ)

2πi

�

( 3
4
)

Γ (s)
s

(
8Y
√
N

2π

)s
F̆ (s)L(s+ 2) ds+Oε

(
Y 1+ε

Xξδ

)
,

where

(3) c(α, δ) =
(

2ξδ
α

)
1

2ξδα

∏
(p,2NAξ)=1

(
1− 1

p2

)
and the L-series is given by

(4) L(s) =
∑

(m,2ξδ1)=1

aαm2α2m2

(αm2)s
∏
p|αm
p|NA

(
1− 1

p

) ∏
p|m

(p,NA)=1

(
1 +

1
p

)−1

.

Recall that δ1 is the gcd of δ and NA. Then using the multiplicativity of
the Fourier coefficients we obtain the following Euler product expression:

L(s) =
∏
p|α

(
1− 1

p

)
×
{ ∑
ν|α∞

aαν2α2ν2

(αν2)s

}
×

∏
p|NA

(p,δ1α)=1

lp(s)×
∏

(p,2NAξ)=1

Lp(s)−1,

where

lp(s) =
{

1+
(

1− 1
p

)(
ap2

p2(s−1)
+

ap4

p4(s−1)
+ · · ·

)}
,

Lp(s)−1 =
{

1+
(

1 +
1
p

)−1( ap2

p2(s−1)
+

ap4

p4(s−1)
+ · · ·

)}
.

The first three terms in the product are absolutely convergent in the domain
Re(s) > 3/2. Also, we note that they are free of the parameter ξ. Only the
fourth term in the formula above depends on ξ. Now∏

(p,2NAξ)=1

Lp(s)−1 =
(∏
p|ξ

Lp(s)
)
L(s)

∏
(p,2NA)=1

(Lp(s)Lp(s))−1,

where
Lp(s) = 1 +

ap2

p2(s−1)
+

ap4

p4(s−1)
+ · · · ,

and L(s) =
∏

(p,2NA)=1 Lp(s), which is holomorphic up to Re(s) > 7/4. The
product

∏
(Lp(s)Lp(s))−1 converges absolutely in the region Re(s) > 3/2.

Hence L(s) has analytic continuation up to Re(s)>7/4 and can be written as

L(s) = η(s)
∏
p|ξ

Lp(s),

where η(s) depends only on α and δ1, but not on ξ.
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Using the analytic properties of L(s), we can evaluate P (α, δ) by moving
the line of integration to −1/4 + ε and collecting the residue at the double
pole s = 0. The residue gives the main term M(α, δ) and the integral at
−1/4 + ε gives the error I(α, δ). So we get

P (α, δ) = M(α, δ) + I(α, δ) +Oε

(
Y 1+ε

Xξδ

)
.

Estimation of the error term I(α, δ) is postponed to the next section. To
evaluate the main term we start with the Taylor expansion for the gamma
function, and get

L(2 + s)
(

8Y t
√
N

2π

)sΓ (s)
s

=
L(2)
s2

+
1
s

{
L(2) log

(
8Y t
√
N

2π

)
+ L′(2)− γL(2)

}
+ · · · ,

where γ is the Euler constant. Hence

(5) M(α, δ) = Y c(α, δ){L(2)F̃ (0) log Y +AL(2) +BL′(2)},

where A and B are constants which depend only on the elliptic curve E and
the smooth function F . The constants can be written down explicitly but
since that will be of no use to us, we leave them as undetermined. However,
it is important to have the formulas for L(2) and L′(2) ready at hand:

L(2) = η(2)
∏
p|ξ

Lp(2),(6)

L′(2) = η′(2)
∏
p|ξ

Lp(2) + L(2)
∑
p|ξ

L′p(2)
Lp(2)

.(7)

Also, we note that

η(2) = CN,A
∏
p|α

Ap
∏
p|δ1

Bp,(8)

where

Ap =
(

1− 1
p

)( ∞∑
j=0

apj+1

p2j

){
1+
(

1− 1
p

)(
ap2

p2
+
ap4

p4
+ · · ·

)}−1

,

Bp =
{

1+
(

1− 1
p

)(
ap2

p2
+
ap4

p4
+ · · ·

)}−1

,

and CN,A is a nonzero constant which depends only on N and A, and is
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given by

CN,A =
∏
p|NA

{
1+
(

1− 1
p

)(
ap2

p2
+
ap4

p4
+ · · ·

)}

×
∏

(p,2NA)=1

{
1+
(

1 +
1
p

)−1(ap2
p2

+
ap4

p4
+ · · ·

)}
.

5. The error terms—I. Now we take up the task of estimating the
error terms. In this section we estimate I(α, δ) and R(α). The estimation of
R(α, δ) is more involved and we prefer to do this in a separate section.

5.1. The term I(α, δ). Recall that

I(α, δ) =
(

2ξδ
α

)
Y

2ξδα

∏
(p,2NAξ)=1

(
1− 1

p2

)

× 1
2πi

�

(−1/4+ε)

Γ (s)
s

(
8Y
√
N

2π

)s
F̆ (s)L(s+ 2) ds.

Writing s = −1/4 + ε + it, and using Phragmén–Lindelöf to the sym2 L-
function of E, we get

L(2 + s)� 1 + |t|,
∏
p|ξ

Lp(2 + s)� ξε,

hence L(2 + s)� (1 + |t|)ξε. Using this bound we get

I(α, δ)� Y

ξδ
Y −1/4+εξε � Y 3/4+ε

ξδ
.

5.2. The term R(α). Extracting square divisors of l−2dξ, we get

R(α) =
∑

(b,2NAξ)=1

(∑
l|b
l>X

µ(l)
) ∑[

(d,2NAξ)=1

(
d

α

)
A(8b2dξ

√
N,χ8b2dξ)F

(
db2ξ

Y

)
.

Now,

A(z, χ8b2dξ) =
1

2πi

�

( 3
4
)

Γ (s)
s

zsL(1 + s, Eχ8dξ)
∏
p|b

Lp(1 + s, Eχ8dξ) ds,

where Lp(s, Eχ8dξ) = (1− χ8dξ(p)app−s + p1−2s). Then we move the line of
integration to σ = ε; summing over all square-free odd dξ and applying the
Cauchy–Schwarz inequality and the inequality (1) we get∑[

(ξ,2)=1

∑[

(d,2NAξ)=1

|A(8b2dξ
√
N,χ8b2dξ)|F

(
db2ξ

Y

)
�ε

Y 1+ε

b2
.
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Hence we get the following bound for the average of R(α):∑
ξ<Y θ

|R(α)| �ε

∑
b>0

(∑
l|b
l>X

1
)Y 1+ε

b2
�ε

Y 1+ε

X
.

6. The error terms—II. Now we estimate the error term coming from
the nonzero frequencies:

R(α, δ) =
∑
n

an
n

∑
l≤X

(l,2NAξn)=1

µ(l)
(

2ξδ
n

)
Y

2l2ξδαn

(
2
αn

)

×
∑
k 6=0

(−1)kGk(αn)F̃n

(
kY

2l2ξδαn

)
.

To analyze this we use the Mellin transform identity

∞∑
n=1

bng(n) =
1

2πi

�

(c)

∞∑
n=1

bn
nw

(∞�
0

g(t)tw−1 dt
)
dw,

where bn � nε and g is smooth with g(0) = 0 and rapidly decaying at
infinity, and c > 1. This gives

R(α, δ) =
(

2
α

) ∑
l≤X

(l,2NAξ)=1

Y µ(l)
2l2ξδα

∑
k 6=0

(−1)k

2πi

�

(c)

L(k)(2 + w)f
(

kY

2l2ξδα
,w

)
dw,

where

L(k)(w) =
∞∑
n=1

(n,2l)=1

an
nw

(
ξδ

n

)
Gk(αn), f(η, w) =

∞�

0

F̃t

(
η

t

)
tw−1 dt.

6.1. The function L(k)(w). To analyze this L-series we need to use the
following properties of the Gauss sum (details can be found in [15]).

Properties of Gk(n)

(i) If n is square-free then Gk(n) =
(
k
n

)√
n.

(ii) (Multiplicativity) Suppose m and n are coprime odd integers. Then
Gk(mn) = Gk(m)Gk(n).

(iii) Suppose pα is the largest power of p dividing k. (If k = 0 then set
α =∞.) Then, for β ≥ 1,
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Gk(pβ) =



0 if β ≤ α is odd,
φ(pβ) if β ≤ α is even,
−pα if β = α+ 1 is even,(
kp−α

p

)
pα
√
p if β = α+ 1 is odd,

0 if β ≥ α+ 2.

Since (α, l) = 1, from the multiplicativity of the Gauss sum it follows
that

L(k)(w) = Q(w)
∏

(p,2lαkN)=1

{
1 +

ap

pw−1/2

(
ξδk

p

)}
,

where

Q(w) =
( ∑
n|α∞

an
nw

(
ξδ

n

)
Gk(αn)

) ∏
p|kN

(p,2lα)=1

( ∞∑
j=0

apj

pjw

(
ξδ

pj

)
Gk(pj)

)
.

Let χξ,δ,k be the primitive character associated with p 7→
( ξδk
p

)
. Then∏

(p,2lαkN)=1

{
1 +

ap

pw−1/2

(
ξδk

p

)}
= L

(
w − 1

2
, E, χξ,δ,k

)
P (w)Ω(w),

where P (w) is a finite Euler product and

Ω(w) =
∏

(p,2lαkN)=1

{
1− χ(p)ap

pw−1/2
+

1
p2w−2

}{
1 +

χ(p)ap
pw−1/2

}
.

From the above we conclude that for w = −1/2 + ε+ it we have the bound

L(k)(w + 2)� |L(1 + ε+ it, E, χξ,δ,k)| |ξlk|ε.
6.2. The function f(η, w). We will not go into details, as most of the

calculation is similar to that given in [15]. Interchanging the order of inte-
gration we get

f(η, w) = |η|wF̆ (w)
∞�

0

V

(
2π|η|

8zY
√
N

)
(cos 2πz + sgn(η) sin 2πz)

dz

z1+w
.

Using the contour integral representation of the incomplete gamma function
and then interchanging the integrals, we deduce that the above integral is
given by

1
2πi

�

(ec)
(

8Y
√
N

2π|η|

)s(
cos

π

2
(s− w) + sgn(η) sin

π

2
(s− w)

)
Γ (s− w)
(2π)s−w

Γ (s)
ds

s
,

where c̃ > max(0,Re(w)). From this we get the analytic continuation of
f(η, w) up to Re(w) > −1. Also, it follows that in the region 1 ≥ Re(w) > −1
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we have the following bound:

|f(η, w)| � (1 + |w|)−Re(w)−1/2 exp
(
−

√
|η|

10
√
Y (1 + |w|)

)
|η|Re(w)|F̆ (w)|.

Moving the line of integration to c̃ = ε we get the second bound

|f(η, w)| �ε (1 + |w|)ε|η|Re(w)|F̆ (w)|
(

8Y
√
N

2π|η|

)ε
.

To give an upper bound for R(α, δ), we split the k-sum into two parts. For
larger k we use the first bound for f(η, w) and the trivial bound for the
L-function. For smaller k, our task is more delicate, and we obtain an upper
bound on average using the second bound for f(η, w).

First, we move the line of integration in the expression for R(α, δ) to
c = −1/2 + ε and get

|R(α, δ)| � Y

ξδα

∑
l≤X

(l,2NAξα)=1

1
l2

�

(c)

∑
k 6=0

|L(k)(2 + w)|
∣∣∣∣f( kY

2l2ξδα
,w

)∣∣∣∣ |dw|.
Taking η = kY/2l2ξδα and using the first bound for f and summing over
k’s with |k| > K(w) := 1000l2ξδα(1 + |w|)(log Y )4, we get

|R1(α, δ)| � Y

ξδ

∑
l≤X

1
l2

�

(c)

∑
|k|>K(w)

|L(k)(2 + w)|
∣∣∣∣f( kY

2l2ξδα
,w

)∣∣∣∣ |dw|
� exp(− log Y ).

For the remaining terms we seek a bound which is true on average over all
square-free ξ < Y θ. We write δ = δ1δ2 with δ1 |NA and δ2 | ξ, and then
define δ3 by ξ = δ2δ3. Using the second bound for f , we get∑
ξ<Y θ

∑
δ2|ξ

|R2(α, δ)|

�
∑
δ2,δ3

δ2δ3<Y θ

Y 1/2+ε

δ2
√
δ3

∑
l≤X

1
l

�

(c)

K(w)∑
k=1

|L(k)(2 + w)|(1 + |w|)|F̆ (w)| |dw|

� Y 1/2+ε
∑
l≤X
δ2<Y θ

1
lδ2

�

(c)

( ∑
δ3<Y θ/δ2

K(w)∑
k=1

|L(k)(2 + w)|
√
δ3k

)
(1 + |w|)|F̆ (w)| |dw|.

Then observing that δ3k < 1000l2(1+|w|)(log Y )4Y 2θ, extracting square-free
discriminants from the sum and applying the Cauchy–Schwarz inequality
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and (1), we get ∑
ξ<Y θ

∑
δ2|ξ

|R2(α, δ)| � Y 1/2+θ+εX1+ε.

This concludes the proof of our first lemma:

Lemma 5. Let E be an elliptic curve with odd conductor , N say. Let A
be a fixed odd integer coprime to N , and let ξ be a fixed odd integer coprime
to NA. For a divisor α |A, set

S(α) =
∑

(d,2NAξ)=1

µ(d)2
(
d

α

)
A(8dξ

√
N,χ8dξ)F

(
dξ

Y

)
.

Then

S(α) =
∑
δ1|NA

µ(δ1)
(
δ1
α

)
M(α, δ1) + Eξ,

where the main term M(α, δ1) is given by

M(α, δ1) = Y c(α, δ1)
φ(ξ)
ξ
{L(2)F̃ (0) log Y +AL(2) +BL′(2)}

with F̃ (0), c(α, δ1), L(s), A and B as given in (2)–(5), and the error term
Eξ is bounded on average by∑

ξ<Y θ

|Eξ| � Y 3/4+θ/2+ε.

7. A mean value estimate—II. In this section we consider a slightly
different sum. Let α, ξ, A and N be as before. Write N = N1N

2
2 , where N1

is square-free. Then define

T (α) =
∑

(d,2NAξ)=1

µ(d)2
(
d

α

)(
dξ

N1

)
A(8dξ

√
N,χ8dξ)F

(
dξ

Y

)
.

This sum can be analyzed in exactly the same way. Only the L-series is
slightly different and is given by the Euler product{ ∑
ν|(αN1)∞

aαN1ν2α2N2
1 ν

2

(αN1ν2)s

} ∏
p|αN1

(
1− 1

p

) ∏
p|NA

(p,δ1αN1)=1

lp(s)
∏

(p,2NAξ)=1

Lp(s)−1.

We call this function L̃(s). This L-series has the same analytic properties as
L(s), in particular we can write

(9) L̃(s) = η̃(s)
∏
p|ξ

Lp(s),

where η̃(s) depends on α and δ1, but not on ξ.
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Lemma 6. We have

T (α) =
(
ξ

N1

) ∑
δ1|NA

µ(δ1)
(

δ1
αN1

)
M̃(α, δ1) + Ẽξ

where Ẽξ is bounded on average by
∑

ξ≤Y θ |Ẽξ| �ε Y
3/4+θ/2+ε, and

M̃(α, δ1) = Y c(αN1, δ1)
φ(ξ)
ξ
{L̃(2)F̃ (0) log Y +AL̃(2) +BL̃′(2)}

where A and B are the same constants as in the previous lemma.

8. The theorem. Now we consider the sequence {sd}, where

sd = µ(d)2ψA(d)
(

1+
(
d

N

))
L′(1, E, χ8d)F

(
d

Y

)
.

If the root number of E8d is 1 then sd = 0, otherwise by Gross–Zagier [3]
we deduce that sd is nonnegative. Let

Sξ :=
∑

(d,2NA)=1

cdξ =
∑

(d,2NAξ)=1

µ(d)2ψA(dξ)
(

1+
(
dξ

N

))
L′(1, E, χ8dξ)F

(
dξ

Y

)
.

Our aim is to find the asymptotic behaviour of Sξ. Using the approximate
functional equation for L′(1, E, χ8dξ) and expanding ψA(dξ) we obtain

Sξ =
2

2ν(A)

∑
α|A

(
2ξ
α

)
(S(α) + T (α))

where S(α) and T (α) are as in the previous sections. Hence from Lemmas
5 and 6 we get

Sξ = A(ξ)Y log Y +B(ξ)Y + rξ,

where the error term rξ is bounded on average by∑
ξ<Y θ

|rξ| �ε Y
3/4+θ/2+ε.

8.1. Evaluation of A(ξ). From Lemmas 5 and 6, we get A(ξ)=A1(ξ)F̃ (0)
where

A1(ξ) =
2

2ν(A)

φ(ξ)
ξ

{∑
α|A

∑
δ1|NA

(
2ξδ1
α

)
µ(δ1)c(α, δ1)L(2)

+
∑
α|A

∑
δ1|NA

(
2ξδ1
αN1

)
µ(δ1)c(αN1, δ1)L̃(2)

}
.
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The double sums in the expression for A(ξ) can be evaluated without much
trouble using (6), (8) and (9). For example a little work gives∑

α|A

∑
δ1|NA

(δ1,α)=1

µ(δ1)
δ1α

∏
p|α

Ap
∏
p|δ1

Bp =
∏
p|NA

C−1
p

∏
p|A

(
1 +

CpAp
p

)

where Cp = (1−Bp/p)−1. Similarly, we can show that∑
α|A

∑
δ1|NA

(δ1,αN1)=1

µ(δ1)
δ1αN1

∏
p|αN1

Ap
∏
p|δ1

Bp=
1
N1

∏
p|N1

Ap
∏
p|N2A

(p,N1)=1

C−1
p

∏
p|A

(
1+

CpAp
p

)
.

Writing D∗ for the sum of the above two terms and setting

C∗ =
CN,A

2ν(A)

∏
(p,2NA)=1

(
1− 1

p2

)
,

we get

A1(ξ) = C∗D∗
∏
p|ξ

g(p)

where

g(p) =
1
p

(
1 +

1
p

+
ap2

p2
+
ap4

p4
+ · · ·

)−1

.

8.2. Evaluation of B(ξ). From Lemmas 5 and 6 we observe that B(ξ) =
AB1(ξ) + BB2(ξ), where B1(ξ) = A1(ξ). So it remains to evaluate B2(ξ),
which is given by

2
2ν(A)

φ(ξ)
ξ

{∑
α|A

∑
δ1|NA

(
2ξδ1
α

)
µ(δ1)c(α, δ1)L′(2)

+
∑
α|A

∑
δ1|NA

(
2ξδ1
αN1

)
µ(δ1)c(αN1, δ1)L̃′(2)

}
.

Again, the contribution of the part coming from η′(2) and η̃′(2) (see (7),
(9)) can be computed as in the previous subsection. The remaining part is
given by

2
2ν(A)

φ(ξ)
ξ

{∑
α|A

∑
δ1|NA

(
2ξδ1
α

)
µ(δ1)c(α, δ1)L(2)

+
∑
α|A

∑
δ1|NA

(
2ξδ1
αN1

)
µ(δ1)c(αN1, δ1)L̃(2)

}∑
p|ξ

L′p(2)
Lp(2)

,
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which is equal to

A1(ξ)
∑
p|ξ

L′p(2)
Lp(2)

.

Finally, we observe that

L′p(2)
Lp(2)

=
(

1 +
1
p

+
ap2

p2
+
ap4

p4
+ · · ·

)−1(2ap2
p2

+
4ap4
p4

+ · · ·
)

(log p).
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