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1. Introduction. Let k£ be a field of rational functions over a finite
field F, with ¢ elements. Fix a generator T' of k, and let R = F,[T] be
the polynomial subring of k. Let M be a monic polynomial in R, and Ays
be the M-torsion of the Carlitz module. The field kj; obtained by adding
the points of Ay to k is called the Mth cyclotomic function field. For the
definition of the Carlitz module and basic facts on cyclotomic function fields,
see Section 2 below. Let k;\r/[ be a “maximal real subfield” of kj; which is
the decomposition field of the infinite prime of k in ks /k.

Define hkL to be the order of the divisor class group of degree 0 for k:;[
Bae and Kang obtained a determinant formula for hk& in [1]. For the field

k‘;&, the congruence zeta function ((s, k:JT/[) is expressed by
Pt (q7)
k
1 C(s, k) = —
( ) ( M) (1 _ q—s)(l _ ql—s)
where P+ (X) is a polynomial with integral coefficients, and P, + (1) = h,.+
M M M

(cf. [5, p. 130]).
The purpose of this paper is to give a determinant formula for P, + (X)
M

(see Section 3). Since ka,(l) = hkL , our formula is a generalization of the
determinant formula for hkﬂ' As an application, we calculate some low coef-
ficients of P’CL (X) by using the first and second derivatives of a determinant
(see Section 4).

2. Basic facts. In this section, we recall some basic properties of cy-
clotomic function fields and their congruence zeta functions. For details, see
(2, 3, 4].
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2.1. Cyclotomic function fields. Let End(k®®) be the Fy-algebra of endo-
morphisms of the additive group of the algebraic closure k2¢ of k. The Frobe-
nius automorphism ¢ (x — x?) and the T-multiplication ur (z +— T -x) are
elements of End(k%¢). We define

(2) aM = M(p + pr)(2)
for x € k¢ and M € R. Then k2 becomes an R-module with the above

action.
For a monic polynomial M € R, let Ap; be the set of all z satisfying

#M = 0, which is a cyclic R-submodule of k2. We have the following iso-
morphism of R-modules:
(3) R/M — Apr (A mod M — A\™Y)

where A is one of the generators of Aj;.

Let (R/M)* be the group of units of R/M. Let &(M) be the order
of (R/M)*. By using the previous isomorphism, we see that ®(M) is the
number of generators of Ajy;.

Let kps be the field obtained by adding the elements of A to k, which
is called the Mth cyclotomic function field. Then kj; is an abelian extension
of k. Fix a generator A of Ay;. We get the following isomorphism:

(4) (R/]W)>< - Gal(k:M/k) (A mod M — UAmodM)

where Gal(kps/k) is the Galois group of kps/k, and 0 4 moed pr is the isomor-
phism given by 04 mod 17 (A) = M. The extension degree of kys/k is ®(M).
We see that F is contained in (R/M)*, and let ki be the subfield of ky,
corresponding to F ;. We call k]'\t[ the mazimal real subfield of kps. The ex-
tension degree of ki, /k is #(M)/(g — 1). If M is a monic polynomial of
degree 1, then k]T/I =k.

For a monic polynomial M € R, let Xj; be the group of all primitive
Dirichlet characters of (R/M)*. We call x the real character if x(a) =1 for
any a € Fy. Let XAJC[ be the set of real characters contained in Xj;. Let D
be the group of all primitive Dirichlet characters. Put

M

where M runs through all monic polynomials in R. By the same argument as
in Chapter 3 of [4], we have a one-to-one correspondence between finite sub-
groups of D and finite subextension fields of k /k, and Xy, X]\J} corresponds
to kas, k‘;\r/[ respectively.

THEOREM 2.1 (cf. [4, Theorem 3.7]). Let X be a finite subgroup of D,
and L the associated field. For an irreducible monic polynomial P € R, put

Vi={xeX[x(P)#0}, Z:={xeX|x(P)=1}
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Then

X/Y ~ the inertia group of P for L/k,

Y/Z ~ the cyclic group of order fp,

X/Z ~ the decomposition group of P for L/k,
where fp is the residue class degree of P in L/k.

2.2. The congruence zeta function for k:j\”/[ For a monic polynomial

M e R, let (’)k;& be the integral closure of R in the field k;\% We define
(s, Okﬂ) by

©) .0 =T](1- o)

where P runs through all primes of ijg{’ and NP denotes the number of

elements of the residue field of P. By the same argument as in the case of
number fields, we have the following proposition.

PROPOSITION 2.1 (cf. [4, Theorem 4.3]).
(7) (s, Ok+ H L(s, x)
XEX
where the L-function is defined by

L(s, x) = H(l - i}g)l

P

with P running through all monic irreducible polynomials of R.
The congruence zeta function of k}& is defined by

C(s,kp) = H<1 - NIPS)_I

P

where P runs through all primes of k;\r/[ Let P, be the infinite prime of k
determined by the unique pole of T. Let €s, foo, goo be the ramification
index in k‘j\r/‘, /k, the residue class degree, and the number of primes lying
above P, respectively. Then we obtain

Cls, k) = G5, O )(1 — g0,
Since P splits completely in k7, 1/ k, we get
(8) C(s, kar) = C(5,041)(1 — ¢~ 2D/ (-1,
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3. The determinant formula for P,+ (X). The goal of this section
M
is to give a determinant formula for sztz (X).

For a monic polynomial M € R of degree d (d > 2), we define Ry :=
(R/M)*/Fy. For a € (R/M)*, let 74 be the element of R satisfying

ro =a mod M, degr, <d,
where deg A denotes the degree of the polynomial A. We define
9) Deg(a) = degr,.

We can easily see that Deg is a function over R ;.
Let N =®(M)/(qg—1)— 1. We put

Ry ={1,a1,...,an},

and
d; = Deg(a;) (i=1,...,N),
dij = Deg(aia; ') (i,j=1,...,N).
We define
(10) Tyt (X) = IT I - x(@x=9),
xe€X;, QIM
x#1

where ) runs through all irreducible monic polynomials dividing M. We
put

Xdij - Xdi
(1) D= ()
Far 1-X ij=1,..,N

PROPOSITION 3.1.

(1-— X/a degQ)gQ

(12) Tt (X) = 11 —~dwa
QIM

where @Q s an irreducible monic polynomial dividing M and fg, gg are
the residue class degree in k}&/k and the number of primes lying over @,
respectively.

Proof. Let () be an irreducible monic polynomial dividing M, and put

Yy ={xe X3 [ x(Q) #0}, Z§:={xe X5 [x(Q) =1}
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From Theorem 2.1,

[T - x@x%*=?) = J] (1 - v(@)x"=)

XEX xeYJr

= I II ¢-xe@x=9)

XEY] /24 vezd
=( I -x@xt=e)™
xng/Zg
Since Yg / Zér is a cyclic group of order fg, we have
[T (- x(@x%sQ) =1 xlad=e,
XEYS /24
Hence we obtain
H (1 —x(Q)Xx%8Q) = (1 — x/odeQ)90
xXEX},
From the above equality, the desired result follows. m

From Proposition 3.1, J Kt (X) is a polynomial with integral coefficients.
Now we can prove the main result of the present paper.

THEOREM 3.1. Let M € R be a monic polynomial of degree not less
than 2. Then

(13) det DkL(X) = Pk’z\? (X)JkL (X).
Proof. For any x € XJ\JZI, let f, be the conductor of x. Define x by
X=Xx© Ty

where 7, : (R/M)* — (R/fy)”™ is the natural homomorphism. Then we can
easily see that

L(s,%) = L(s,x) - [] (1= x(Q)g~*=9).
QM
Hence we have
[T 260 =TT E60) Tt (a7 = C(s, 0, (1 = 0" =) (a7).

XEX T, XEX 7,
x#1 x#1

By the same argument as in Lemma 3 in [2], if x # 1,

d—1
V=2 > A=Y F(a)g P

k=0 deg A=k aER M
A monic
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Since y is real, x is a character of R ;. Notice that x runs through all char-
acters of Rjs when x runs through all characters of XJ\J;[. By the Frobenius
determinant formula (cf. [4, Lemma 5.26]),

IT Le0= 1] D x(a)q P=®* =det (g% —¢%); oy, .
XEX XEX§; ¥€RM
x#1 x#1

Since P, splits completely in k;\r/l /k, we have
q 5ij — q ¢ _ —s —s
det( 1—qs )ij = P, (47) Ty, (a77):

Putting X = ¢~%, we obtain the desired result. =

By applying L’Hopital’s rule, we calculate
Xdij . Xdi

=X |xo
We can now use our theorem to rederive the class number formula of Bae
and Kang.

(14) =d; — dij.

COROLLARY 3.1 (Bae—Kang [1]). In the notations of Proposition 3.1, we
have

(15) det (d; — dij)ij=1,..N = WkLhkL

where

(16) Wk}& = {

Proof. We can calculate
(17) det D+ (X)|x=1 = det (di — dij)ij=1,..N,

HQ|M fo if go =1 for every prime Q dividing M,
0 otherwise.

_ + o . . _ .
and WK& = J;3;(1) by Proposition 3.1. Since ijtl(l) = hk?&’ we obtain the
desired result. m

REMARK. The corollary applies, in particular, when M = Q% is a prime
power. Since @ is totally ramified in k}&/k, we have go = 1 and fg = 1. It
follows, in this case, that h’fﬂ = det (d; — d;j).

COROLLARY 3.2. Let M € R be a monic polynomial of degree 2. Then
Pk& (X)=1.
Proof. We have

1 ifi# .
It follows that D’% (X) = In. By Theorem 3.1, PkL (X)=1.m

0 ifi=i
=1, dij:{ 1=y,
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I would like to thank the referee for suggesting the following alternative
proof of Corollary 3.2. Using the Riemann—Hurwitz formula, we find that k:j\r/[
has genus zero in the case of deg M = 2. Thus, we also obtain PKL (X)=1.

We give some examples of Pk?\} (X).

EXAMPLE 3.1. Let ¢ =2 and M = T® € F,[T]. We put
Ru={l,a1=T+1, a3 =T 41, a5 =T* + T + 1}
As M is a power of an irreducible polynomial, PRL (X) = det Dkzﬂ (X).
Hence
1 -X =X
(X)=det Dyt (X)=| X 1+X 0=14+2X +2X>
0 X 14X

P,
EXAMPLE 3.2. Let ¢ =2 and M = T?(T + 1)? € F,[T]. We put
Ru={lL,og=T?>4+T+1, 00 =T*+T+1, a3 =T>+T? + 1}.
Then

14+ X —-X? —-X?
det D+ (X) = 0 1+X+ X2 X2
0 X? 14+ X+ X?
= (1+ X +2X%)(1+ X)?,
and
Tt (X) = (1+ X)2.
Thus, we get
Pt (X) = 14+ X +2X2

4. Calculating the coefficients of det D% (X). In this section, we
will give a formula for the coefficients of low degree for det Dkfw (X).
Let M € R be a monic polynomial of degree d. Since det DRE (0) =1,
we can write
(18) det Dy+ (X) = 14+ a1 X +aX? 4,
where a; (i =1,2,...) are integers. For 0 <i < d, put
si=#{a e Ry |dega =i}, t; =#{a € Ry |dega < i},

where #A is the number of elements of the set A. We have the following
result.
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PRrROPOSITION 4.1. Ifdeg M > 3, then

(19) alzf(_]\?—tl,
2
(20) GQZ;{iE]\?—%LQ—F(i(_]wl)—tl) +t%}.

To prove this proposition, we first state the following lemma, which can
be shown by simple calculations.

LEMMA 4.1. Let F(X) = (fi;(X))i; be a matriz-valued function of one
variable. If F(X) is twice differentiable and invertible for X = X, then

dde;f;(X)‘XXo — det F(Xo) - Tr (F(Xo) ! ;lf; (Xo)>
& det F(X &F
e ‘X:XO = det F(Xo) - {TY(F (X0 iz (X°)>

1d
dX

eme(poa o))

where Tr(A) is the trace of the matriz A.

—Tr<F(X0) (Xo)F(Xo)" 1dF<Xo>)

dX

Proof of Proposition 4.1. The matrix D’ﬁz (0) is the unit matrix Iy, and

deXI (0) = (cij)iit.. N
X i3 )i,5=1,....,N s

Dy (0)7" = I,
where
0 ifi=j, d;=1,
1 ifi=j, d; #1,
(21) Cij = 1 ifdi; =1, d; > 1,
-1 ifd;; > 1, dj =1,

0 otherwise.

From Lemma 4.1, we obtain

ap = Tr((cij)iy) = — — 1,

25 = T{ii’?f (0)) - Tr<<d5)’?’ (0)>2> + ﬁ(ds)’?’ (0))2.

and
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By straightforward calculations, we get

(i) (220 -1). (i)'~ (220-0)
From (21),

Tr(<d5)1?1 (0))2) _y icijcﬁ

=1 j=1
= G+ > 1+ > 1= > 11— ) L
=1 di=1<dij dz‘j=1<di di=1<dij dj=1<dji
dj=1<dj; dj;=1<d; dj;=1<d; d;j=1<d;

Since deg M > 3, we can easily see that
N
2 D(M)

— 2
Ci_q—l_tl’ E 1= 57— s1,
=1 d¢=1<d¢j
d]':1<d]'i
E 1=0, § = E 1=s%
dij=1<di di:1<dij dj=1<dji
d]'i:1<d]' dji:1<dj d”:1<dz

It follows that

dD, + 2
Tr( [ —2 (o) _ M) _ £,
dX q—1
Hence (20) follows. =

We give some examples for Proposition 4.1.

EXAMPLE 4.1. Let M € R be an irreducible monic polynomial of de-
gree 3. Then

DM
t1=q+1, tQ:q(_l):q2+q+1.
By Proposition 4.1,
3
2 q(¢’ +1)
EXAMPLE 4.2. We put M =T" (n > 3). Then
(M _
t1:Qa t2:q27 MZQN1
q—1
Hence
PkL(X) = det Dkx{(X)

" Mgt —2¢+1)

X2 4...
9 +

=1+ (" X+
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