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To Eberhard Freitag

1. Introduction. One can hardly doubt that the main stream of fur-
ther progress in number theory goes through the study of representations of
Hecke–Shimura algebras of arithmetical discrete subgroups of Lie groups on
appropriate spaces of automorphic forms (automorphic representations) and
their interaction with each other. An important example of the interaction
arises in the case of integral orthogonal and symplectic groups. Recently ex-
plicit relations were established in [An06] between zeta functions of integral
quadratic forms in two and four variables corresponding to the harmonic
eigenvectors of genera 1 and 2, respectively, and symplectic zeta functions
of theta-functions weighted by the eigenvectors. The general links of auto-
morphic representations of Hecke–Shimura algebras of orthogonal and sym-
plectic groups as well as underlying relations between the Hecke–Shimura
algebras themselves may be provided by transformation formalism, which
expresses images of symplectic harmonic theta-functions under the action
of Hecke operators through the action of automorph class rings of relevant
systems of quadratic forms on harmonic coefficients of the theta-functions.
By the transformation formalism we mean an explicit answer to the natu-
ral question whether the images of various theta-series and theta-functions
of integral quadratic forms under symplectic Hecke operators are again lin-
ear combinations of similar theta-series or theta-functions. Unfortunately,
the foundation of the formalism (for the last version see [An96]), although
quite strong, cannot be considered satisfactory, because it is based in its
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core on a rather elaborate limit passage exploiting factorization of certain
standard polynomials (the Rankin polynomials) over Hecke–Shimura rings
of the symplectic group in parabolic extensions (see, e.g., [An79], [An86],
[An87]). At the same time, all that is really necessary for an elementary
foundation of the formalism is just a simply formulated property of certain
finite trigonometric sums, called the interaction sums or iSums. The main
purpose of this paper is to analyze relations of iSums with the action of
regular Hecke operators on general theta-functions.

The idea to complete a draft of this paper by an elementary section on
the action of elements Tn(p) appeared during a discussion of the problem
with Professor Eberhard Freitag in Heidelberg at the end of 2008. Many
years ago Professor Freitag had discovered a quite different and surprisingly
simple approach to the explicit transformation formulas for positive definite
quadratic forms of level 1 based on the theory of singular modular forms
([Fr81]). It would be desirable to join the advantages of the two approaches
and finally close the problem.

Notation. We fix the letters N, Z, Q, and C, as usual, for the set of
positive rational integers, the ring of rational integers, the field of rational
numbers, and the field of complex numbers, respectively.

If A is a set, Am
n denotes the set of all m×n-matrices with elements in A.

If A is a ring with the identity element, 1n denotes the identity element of
the ring An

n. The transpose of a matrix M is denoted by tM . For two matrices
S and N of appropriate sizes we write

S[N ] = tNSN.

2. Theta-series and theta-functions of nonsingular quadratic
forms. The interaction sums are certain trigonometric sums appearing as
coefficients in formulas for the action of Hecke operators on theta-functions
and theta-series of integral quadratic forms. In this section we shall recall
the basic definitions and properties of theta-series and theta-functions.

Let

(2.1) q(X) = 1
2
tXQX = 1

2Q[X] ( tX = (x1, . . . , xm))

be a real quadratic form in m variables with matrix Q = tQ. The form
is nonsingular if det q = detQ 6= 0. Speaking of quadratic forms, we shall
mainly use the equivalent language of their matrices. If the form (2.1) is posi-
tive definite, then for n = 1, 2, . . . the theta-series θ(Z;Q) of Q of genus n
is defined to be

(2.2) θ(Z;Q) = θn(Z;Q) =
∑
N∈Zmn

e{Q[N ]Z},
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where the variable Z belongs to the (Siegel) upper half-plane of genus n,

(2.3) Hn = {Z = X +
√
−1Y ∈ Cn

n | tZ = Z, Y > 0},
and where we use the abbreviation

e{A} = eπ
√
−1σ(A)

with σ(A) denoting the sum of the diagonal entries of a square matrix A.
The theta-series is obviously convergent absolutely and uniformly on subsets
of Hn of the form

(2.4) Hn
ε = {Z = X +

√
−1Y ∈ Hn | Y ≥ ε1n} with ε > 0,

and therefore it defines a holomorphic function of Z. If, in addition, the form
q is integral, i.e. the matrix Q belongs to the set

(2.5) Em = {Q = (Qij) ∈ Zmm | Qij = Qji, Qii ∈ 2Z (i, j = 1, . . . ,m)}
of even matrices of order m, then the theta-series has Fourier expansion

θn(Z;Q) =
∑

A∈En, A≥0

r(A;Q)e{AZ}

with constant Fourier coefficients expressing the numbers of integral rep-
resentations of the quadratic form with matrix A by the form q, i.e., the
number of solutions of the equation Q[N ] = A in integral m×n-matrices N .

In the general case, when the form q may be indefinite, the series (2.2) is
not necessarily convergent. Following an approach due to C. L. Siegel (see,
e.g., [Si44]), we introduce certain additional variables in the definition of
theta-series, which provides their convergence. For a real symmetric non-
singular matrix Q of order m, we define the majorant space M(Q) of Q
by

(2.6) M(Q) = {H ∈ Rm
m | H = tH, H > 0, HQ−1H = Q}.

The set M(Q) is a homogeneous space of the real orthogonal group of the
form q with matrix Q,

O(q) = O(Q) = OR(Q) = {U ∈ Rm
m | tUQU = Q},

operating on M(Q) by the rule

O(Q) 3 U : H 7→ tUHU (H ∈M(Q)).

Now, for Z = X +
√
−1Y ∈ Hn with n ≥ 1 and H ∈ M(Q), we define the

theta-series of Q of genus n as a function in variables Z and H given by the
series

Θ(Z;H,Q) = Θn(Z;H,Q) =
∑
N∈Zmn

e{Q[N ]X +
√
−1H[N ]Y }.

This series converges absolutely and uniformly on products of the sets (2.4)
and compact subsets of M(Q), and therefore defines a real-analytic function
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on Hn×M(Q). If Q is positive definite, then M(Q) reduces to a single point
H = Q, and the last theta-series coincides with (2.2).

It turns out to be convenient to add also certain “linear” variables to
the definition of theta-series. Let Q be again a real nonsingular symmetric
matrix of order m, and H ∈ M(Q). For V1, V2 ∈ Cm

n , we define the theta-
function of genus n of the pair Q,H with translations V = (V1, V2) as a
function of the variables V ∈ Cm

2n, Z ∈ Hn, and H ∈M(Q) given by

(2.7) Θ(V,Z;H,Q) = Θn(V,Z;H,Q)

=
∑
N∈Zmn

e{Q[N − V2]X +
√
−1H[N − V2]Y + 2 tV1QN − tV1QV2}.

The series converges absolutely and uniformly on products of the set (2.4)
and compact subsets of Cm

2n×M(Q), and so it defines a real-analytic function
on Cm

2n ×Hn ×M(Q).
Finally, in certain arithmetical applications there appear theta-functions

of a more general kind, namely theta-functions with harmonic coefficients
defined by the series

(2.8) ΘP (V,Z;H,Q) = ΘnP (V,Z;H,Q)

=
∑
N∈Zmn

P (N −V2)e{Q[N −V2]X+
√
−1H[N −V2]Y +2 tV1QN − tV1QV2},

where P is a vector-valued polynomial harmonic form relative to the pair
(Q,H) in the sense of [An95, §4] or [An96, §1]. If the P factor is identically
equal to 1, the theta-function (2.8) turns into (2.7).

To simplify notation we shall restrict our considerations to the one-
dimensional case of theta-functions with polynomial-valued harmonic fac-
tors, although the main results remains true for vector-valued harmonic
factors (see [An96]). First we briefly recall the relevant definitions. A poly-
nomial function P : Cm

n → C is said to be a harmonic form of weight d if it
is harmonic in mn variables in the sense that∑

i,j

∂2P (X)
(∂xij)2

= 0,

and satisfies the condition

P (XA) = (detA)dP (X) for all A ∈ GLn(C).

Let q be a nonsingular quadratic form (2.1) with matrix Q, and let H ∈
M(Q). Since H is positive definite and Q−1[H] = Q, there exists a real
invertible matrix S of order m such that

H = tSS and Q = tS

(
1s 0
0 −1l

)
S,
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where (s, l) is the signature of q. We set S =
( S+

S−

)
with S+ ∈ Rs

m and
S− ∈ Rl

m. If P+ is a harmonic form of degree d on Cm
s and P− is a harmonic

form of degree d′ on Cm
l , we say that the polynomial function P = PQ,H on

Cm
n defined by

Cm
n 3 X 7→ P (X) = P+(S+X)P−(S−X)

is a harmonic form of weight (d, d′) relative to the pair Q,H. It follows from
the definition that the harmonic form P of weight (d, d′) satisfies

(2.9) P (XA) = (detA)d+d
′
P (X) for all A ∈ GLn(C).

According to [An95, Theorems 4.1–4.3], we can formulate the following
theorem.

Theorem 2.1. Let Q be an even nonsingular matrix of even order m =
2k with signature (s, l), let q be the level of Q, i.e., the least q ∈ N such that
the matrix qQ−1 is even, and let H ∈ M(Q). Then the theta-function (2.7)
of Q of genus n ≥ 1 satisfies the functional equation

(2.10) Θ(V · tM,M〈Z〉;H,Q) = jQ(M,Z)Θ(V,Z;H,Q)

for each matrix M =
(
A B
C D

)
in the group

(2.11) Γn0 (q) =
{
M =

(
A B

C D

)
∈ Spn(Z)

∣∣∣∣ C ≡ 0 (mod q)
}
,

where M〈Z〉 =
(
A B
C D

)
〈Z〉 = (AZ +B)(CZ +D)−1,

(2.12) jQ(M,Z) = χQ(detD)(det(CZ +D))(s−l)/2|det(CZ +D)|l,
and χQ is the character of the quadratic form with matrix Q.

More generally , under the same assumptions, let P be a polynomial
harmonic form of weight (d, d′) relative to the pair Q,H. Then the theta-
function (2.8) satisfies the functional equation

(2.13) ΘP (V · tM,M〈Z〉;H,Q) = jQ,P (M,Z)ΘP (V,Z;H,Q)

for each M =
(
A B
C D

)
∈ Γn0 (q), where

(2.14) jQ,P (M,Z) = jQ(M,Z) det(CZ +D)d det(CZ +D)d
′

and Z is the complex conjugate matrix of Z.

We recall here that the character of an integral nonsingular quadratic
form in an even number m of variables with matrix Q of level q is the
Dirichlet character modulo q satisfying the conditions

(2.15) χQ(−1) = (−1)m/2,

(2.16) χQ(p) =
(

(−1)m/2 detQ
p

)
(the Legendre symbol)
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if p is an odd prime not dividing q, and

(2.17) χQ(2) = 2−m/2
∑

R∈Zm/2Zm
e
{

1
2
Q[R]

}
if q is odd.

3. Symplectic Hecke operators. Following the general pattern of
the theory of Hecke operators on modular forms (see, e.g., [An87, Ch. 4], or
[An96, §2]), we now recall the basic definitions and simplest properties of
(regular) Hecke–Shimura rings and Hecke operators for the groups Γn0 (q).
Let us denote by

Hn0 (q) = H(Γn0 (q), Σn
0 (q))

the Hecke–Shimura ring of the semigroup

Σn
0 (q) =

{
M =

(
A B

C D

)
∈ Z2n

2n

∣∣∣∣ tMJnM = µ(M)Jn, µ(M) > 0,

gcd(detM, q) = 1, C ≡ 0 (mod q)
} (

Jn =
(

0 1n
−1n 0

))
relative to the group Γn0 (q) (over C). The ring Hn0 (q) consists of all formal
finite linear combinations with complex coefficients of the symbols τ(M),
which are in one-to-one correspondence with double cosets Γn0 (q)MΓn0 (q) ⊂
Σn

0 (q). It is convenient to write each of the symbols τ(M), also called the
double cosets, as the formal sum of the different left cosets it contains (more
precisely, of the corresponding symbols),

(3.1) τ(M) =
∑

M ′∈Γ\ΓMΓ

(ΓM ′) (Γ = Γn0 (q), M ∈ Σn
0 (q)).

Then each element T ∈ Hn0 (q) can also be written as the formal linear
combination of different left cosets,

(3.2) T =
∑
α

cα(Γn0 (q)Mα) (cα ∈ C).

These linear combinations can be characterized by the condition of invari-
ance with respect to right multiplication by elements of Γn0 (q):

Tγ =
∑
α

cα(Γn0 (q)Mαγ) = T for all γ ∈ Γn0 (q).

In this notation, the product in Hn0 (q) can be defined by

TT ′ =
∑
α

cα(Γn0 (q)Mα)
∑
β

c′β(Γn0 (q)M ′β) =
∑
α,β

cαc
′
β(Γn0 (q)MαM

′
β).
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The ring Hn0 (q) is a commutative C-algebra generated over C by a count-
able set of algebraically independent elements. As a set of algebraically in-
dependent generators one can take, for example, double cosets of the form

(3.3)


Tn(p) = τ(diag(1, . . . , 1︸ ︷︷ ︸

n

, p, . . . , p︸ ︷︷ ︸
n

)),

Tni (p2) = τ
(
diag(1, . . . , 1︸ ︷︷ ︸

n−i

, p, . . . , p︸ ︷︷ ︸
i

, p2, . . . , p2︸ ︷︷ ︸
n−i

, p, . . . , p︸ ︷︷ ︸
i

)
)
(1 ≤ i ≤ n),

where p runs over all prime numbers not dividing q (see [An87, Theorem
3.3.23]).

In order to define Hecke operators on theta-functions and theta-series we
introduce certain linear spaces containing theta-functions. For fixed m,n∈N
we denote by F = Fm,n the space of all complex-valued real-analytic func-
tions

F = F (V,Z) : Cm
2n ×Hn → C

and define an action of the semigroupΣn
0 (q) on these spaces by the Petersson

operators

(3.4) Σn
0 (q) 3M : F = F (V,Z) 7→ F |jM = jQ,P (M,Z)−1F (V tM,M〈Z〉),

where j = jQ,P (M,Z) is defined by (2.14). It is well-known that the function
det(CZ + D) does not vanish on Σn

0 (q) × Hn and hence neither does any
of the functions jQ,P (M,Z). If M =

(
A B
C D

)
and M1 =

(
A1 B1
C1 D1

)
belong to

Σn
0 (q) and M ′ =

(
A′ B′

C′ D′

)
= MM1, then an easy direct computation shows

that
(C ·M1〈Z〉+D)(C1Z +D1) = C ′Z +D′ (Z ∈ Hn),

and
χQ(detD′) = χQ(det(CB1 +DD1)) = χQ(detDD1)

= χQ(detD)χQ(detD1),

since C ≡ 0n (mod q). These relations imply that the functions jQ,P (M,Z)
satisfy the relations of automorphic factors, i.e.,

jQ,P (M,M1〈Z〉)jQ,P (M1, Z) = jQ,P (MM1, Z)

for all M,M1 ∈ Σn
0 (q), Z ∈ Hn. This implies that the Petersson operators

map the space Fn,m into itself and satisfy the rule

(3.5) F |jM |jM1 = F |jMM1 (F ∈ Fn,m, M,M1 ∈ Σn
0 (q)).

It allows us to define the standard representation T 7→ |jT of the Hecke–
Shimura ring Hn0 (q) = H(Γn0 (q), Σn

0 (q)) on the subspace

F(Γn0 (q)) = Fn,m(Γn0 (q))(3.6)
= {F ∈ Fn,m | F |jγ = F for all γ ∈ Γn0 (q)}



278 A. Andrianov

of all Γn0 (q)-invariant functions by Hecke operators: the Hecke operator |jT
on the space F(Γn0 (q)) corresponding to an element of the form (3.2) is de-
fined by

(3.7) F |jT =
∑
α

cαF |jMα (F = F (V,Z) ∈ Fn,m(Γn0 (q))),

where |jMα are the Petersson operators (3.4) corresponding to j=jnQ,P (M,Z).
The Hecke operators are independent of the choice of the representatives
Mα ∈ Γn0 (q)Mα, and map Fn,m(Γn0 (q)) into itself. It follows from the defini-
tion of multiplication in the Hecke–Shimura rings and (3.5) that the Hecke
operators satisfy

(3.8) |jT |jT ′ = |jTT ′ for all T, T ′ ∈ Hn0 (q).

Hence, the map T 7→ |jT is a linear representation of the ring Hn0 (q) on the
space Fn,m(Γn0 (q)).

In the particular case of the trivial harmonic factor P = 1 of weight
(d+, d−) = (0, 0), we obtain the Petersson operators and Hecke operators
with the automorphic factor j = jQ(M,Z) of the form (2.12).

In the notation and under the assumptions of Theorem 2.1, the theta-
functions ΘnP (V,Z;H,Q) and Θn(V,Z;H,Q) = Θn1 (V,Z;H,Q), viewed as
functions of V and Z, belong to the space Fn,m(Γn0 (q)). The target of this
paper is to establish when the images of the theta-functions under the Hecke
operators can be written as finite linear combinations with constant coef-
ficients of similar theta-functions. We shall see later that the general case
of an arbitrary harmonic form P can usually be reduced to the particular
case of the trivial form P = 1. First we shall express these images as infinite
sums with explicitly written coefficients.

We begin with two technical remarks. By definition, each matrix M ∈
Σn

0 (q) satisfies the relation tMJnM = µ(M)Jn, where µ(M) is a positive
integer coprime with q. The number µ(M) is called the multiplier of M .
Clearly,

µ(MM ′) = µ(M)µ(M ′) (M,M ′ ∈ Σn
0 (q)), µ(M) = 1 ⇔ M ∈ Γn0 (q).

It follows that the function M 7→ µ(M) takes a constant value on each left
and double coset of M modulo the group Γn0 (q). Hence, one can speak of the
multiplier of the corresponding cosets, µ(Γn0 (q)M) = µ(Γn0 (q)MΓn0 (q)) =
µ(M). We shall say that a nonzero formal finite linear combination T of
left or double cosets modulo Γn0 (q) of matrices in Σn

0 (q) is homogeneous
with multiplier µ(T ) = µ if all cosets entering T with nonzero coefficients
have the same multiplier µ. It is clear that each finite linear combination
of cosets is a sum of homogeneous combinations with different multipliers,
called homogeneous components, and these components are uniquely deter-
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mined. This allows us, in particular, to reduce the study of arbitrary Hecke
operators |T to the case of T homogeneous.

Another reduction is related to a specific choice of representatives in
the left cosets Γn0 (q)M ⊂ Σn

0 (q). According, for example, to [An87, Lemma
3.3.4], each of the left cosets contains a representative of the form

(3.9) M =
(
A B

0 D

)
with A,B,D ∈ Znn, tAD = µ(M)1n, tBD = tDB.

Such representatives are convenient for computing the action of Hecke op-
erators and will be referred to as triangular representatives.

Proposition 3.1. Let Q be an even nonsingular matrix of even order
m = 2k with signature (s, l) and level q, H ∈ M(Q), and let P be a poly-
nomial harmonic form of weight (d, d′) relative to the pair Q,H. Then the
image

(3.10) ΘnP (V,Z;H,Q)|jT =
∑
α

cαΘ
n
P (V,Z;H,Q)|jMα

=
∑
α

cαjQ,P (Mα, Z)−1ΘP (V · tMα,Mα〈Z〉;H,Q)

of the theta-function ΘnP (V,Z;H,Q) ∈ Fn,m(Γn0 (q)), considered as a func-
tion of V = (V1, V2) and Z, under the action of the Hecke operator (3.7)
corresponding to a homogeneous element T ∈ Hn0 (q) of the form (3.2) with
multiplier µ(T ) = µ(Mα) = µ and with triangular representatives Mα,

Mα =
(
Aα Bα

0 Dα

)
(Aα, Bα, Dα ∈ Znn, tAαDα = µ1n, tBαDα = tDαBα),

can be written in the form

(3.11) ΘnP ((V1, V2), X +
√
−1Y ;H,Q)|jT

=
∑

N∈Cn(Q/µ)

I(N,Q, T )P (µ−1(N − µV2))

× e{µ−1Q[N − µV2]X +
√
−1µ−1H[N − µV2]Y

+ 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)},
where

Cn(Q/µ) = {N ∈ Zmn | µ−1Q[N ] ∈ En},(3.12)

I(N,Q, T ) =
∑

α,N · tDα≡0 (modµ)

cαjQ(Dα)−1e{µ−2Q[N ] · tDαBα},(3.13)

jQ(Dα) = χQ(|detDα|)|detDα|m/2.(3.14)
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Proof. We follow the proof of [An96, Proposition 2.1] with a minor cor-
rection at the end. For brevity, we introduce the notation

(3.15) e{V,Z,H,Q;N}
= e{Q[N − V2]X +

√
−1H[N − V2]Y + 2 tV1QN − tV1QV2}

for the exponential factor in the generic term of the series (2.8), where
V = (V1, V2). An easy direct calculation shows that these exponents satisfy
the identity

(3.16) e{V tM,M〈Z〉, H,Q;N}
= e{BD−1Q[N ]}e{µV,Z, µ−1H,µ−1Q;NA}

for each matrix M of the triangular form (3.9).
By (3.4) in notation (3.15), we obtain

(3.17) ΘP (V,Z;H,Q)|jT =
∑
α

cαΘP (V,Z;H,Q)|j
(
Aα Bα

0 Dα

)
=
∑
N∈Zmn

∑
α

cαjQ,P (Mα, Z)−1P (N − V2 · tDα)e{V tMα,Mα〈Z〉, H,Q;N}.

Since, by (2.14), (2.12), and (2.15), we can write

jQ,P (Mα, Z) = χQ(detDα)(detDα)(s−l)/2|detDα|l det(Dα)d det(Dα)d
′

= χ(|detDα|)|detDα|m/2 det(Dα)d+d
′

= jQ(Dα) det(Dα)d+d
′
,

it follows, by (2.9), that

jQ,P (Mα, Z)−1P (N − V2
tDα)

= jQ(Dα)−1 det(Dα)−(d+d′)P (µ−1NAα
tDα − V2

tDα)

= jQ(Dα)−1P (µ−1NAα − V2).

Hence, by using (3.16) with M = Mα, we can rewrite the sum in (3.17) as∑
N∈Zmn

∑
α

cαjQ(Dα)−1e{BαD−1
α Q[N ]}P (µ−1(NAα − µV2))

× e{µV,Z, µ−1H,µ−1Q;NAα}.

Collecting all the terms with a fixed matrix NAα = µN tD−1
α = Ñ ∈ Zmn

and using the obvious relation

e{BαD−1
α Q[N ]} = e{D−1

α Q[µ−1Ñ tDα]Bα} = e{µ−2Q[Ñ ] tDαBα},
we get the relation

ΘP (V,Z;H,Q)|jT =
∑

eN∈Zmn

{ ∑
α, eNA−1

α ∈Zmn

cαjQ(Dα)−1e{µ−2Q[Ñ ] tDαBα}
}

× P (µ−1(Ñ − µV2))e{µV,Z, µ−1H,µ−1Q; Ñ}.
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Hence, since the condition ÑA−1
α ∈ Zmn is clearly equivalent to the condition

Ñ tDα ≡ 0 (mod µ), the sum in parentheses coincides with I(Ñ ,Q, T ), and
by omitting tildes, we obtain the formula

ΘP (V,Z;H,Q)|jT

=
∑
N∈Zmn

I(N,Q, T )P (µ−1(N − µV2))e{µV,Z, µ−1H,µ−1Q;N}

=
∑
N∈Zmn

I(N,Q, T )P (µ−1(N − µV2))e{µ−1Q[N − µV2]X

+
√
−1µ−1H[N − µV2]Y + 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}.

To complete the proof it remains to show that

(3.18) I(N,Q, T ) = 0 if N ∈ Zmn , but N /∈ Cn(Q/µ).

To this end, we use the last relation for the case of P identically equal
to 1, i.e. for the theta-function (2.7). In this case, since Hecke operators
map the corresponding subspace of Γn0 (q)-invariant functions into itself, we
conclude that the right-hand side of the relation is invariant with respect to
every Petersson operator |j

(
1n B
0 1n

)
with j = jQ(M,Z) of the form (2.12) and

B = tB ∈ Znn, which transforms a function F ((V1, V2), Z) to the function
F ((V1 + V2B, V2), Z +B). In particular, by taking V2 = 0, we get∑
N∈Zmn

I(N,Q, T )e{µ−1Q[N ]X +
√
−1µ−1H[N ]Y + 2 t(µV1)µ−1QN}

=
∑
N∈Zmn

I(N,Q, T )e{µ−1Q[N ](X +B) +
√
−1µ−1H[N ]Y + 2 tV1QN}

=
∑
N∈Zmn

I(N,Q, T )e{µ−1Q[N ]B}

× e{µ−1Q[N ]X +
√
−1µ−1H[N ]Y + 2 tV1QN}.

Hence, by the uniqueness of the Fourier expansion of the analytical and
periodic (in V1) function Θ((V1, 0), Z;H,Q)|jT , we obtain the equality of
the corresponding Fourier coefficients,

I(N,Q, T )e{µ−1Q[N ]X +
√
−1µ−1H[N ]Y }

= I(N,Q, T )e{µ−1Q[N ]B}e{µ−1Q[N ]X +
√
−1µ−1H[N ]Y }

for all N ∈ Znn. If µ−1Q[N ] 6∈ En, then, clearly, there is an integral symmetric
matrix B of order n such that σ(µ−1Q[N ]B) 6∈ 2Z and so e{µ−1Q[N ]B}
6= 1. The relations (3.18) and formula (3.11) follow.

We call the trigonometric sums I(N,Q, T ) defined for homogeneous
T ∈ Hn0 (q) by (2.13) and extended by linearity on the whole of Hn0 (q) the
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interaction sums (or, in a modern fashion, just iSums) (of genus n), because
the sums link certain structures related to orthogonal and symplectic groups
(see, e.g., [An96]).

Of the elementary properties of iSums we record here only the following
simple lemma.

Lemma 3.2. The iSums I(N,Q, T ) for N ∈ Cn(Q/µ) and T ∈ Hn0 (q)
are independent of the choice of triangular representatives in expansions
(3.2) of T and satisfy the relations

I(λNγ,Q, T ) = I(N,Q[λ], T ) for all λ ∈ GLm(Z) and γ ∈ GLn(Z).

Proof. The independence of the choice of representatives easily follows
from the definitions. If T is a homogeneous element of the form (3.2) with
triangular representatives Mα satisfying µ(Mα) = µ(T ) = µ, then by (3.13)
we obtain

I(λNγ,Q, T )

=
∑

α, λN t(Dα tγ)≡0 (modµ)

cαjQ(Dα
tγ)−1e{µ−2Q[λ][N ] · t(Dα

tγ)Bα tγ}

= I

(
N,Q[λ], T

(
γ−1 0
0 tγ

))
= I(N,Q[λ], T ),

since T is invariant under right multiplication by elements of Γn0 (q).

4. Siegel operator and Zharkovskaya mapping on theta-func-
tions. The Zharkovskaya mapping and commutation relations for Hecke
operators and Siegel operators were originally introduced in the situation
of holomorphic modular forms of integral weight for congruence subgroups
of the symplectic modular group Γn = Spn(Z) (see, e.g., [An87, §4.2.4]).
Here we shall use as a model the standard definitions of the Siegel oper-
ator Φ and the Zharkovskaya map Ψ acting on theta-functions of integral
quadratic forms. This will allow us to link the action of Hecke operators on
theta-functions of different genera and the corresponding interaction sums.
It should be noted that although the proofs for theta-functions are similar
to those for modular forms, the final formulas can differ due to different
customary normalization of Hecke operators.

Throughout this section, Q is the matrix of an integral nonsingular
quadratic form q(X) in an even number of variables m = 2k, (s, l) is the
signature of q, q the level of Q, and χQ the corresponding Dirichlet character
modulo q.

For a function F : Cm
2n × Hn → C and 0 ≤ r ≤ n, we define the Siegel

operator Φn,r by
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(4.1) (F |Φn,r)(V ′, Z ′)

= lim
λ→+∞

F

(
(V ′1 , 0

m
n−r, V

′
2 , 0

m
n−r),

(
Z ′ 0rn−r

0n−rr

√
−1λ · 1n−r

))
if 1 ≤ r < n and the limit exists, where V ′ = (V ′1 , V

′
2) ∈ Cm

2r and Z ′ ∈ Hr;
by

(4.2) F |Φn,0 = lim
λ→+∞

F (0m2n,
√
−1λ · 1n)

when the limit exists; and by

(4.3) F |Φn,n = F.

If F is a theta-function (2.7) of genus n of a pair (Q,H) with H ∈M(Q),
then the limits (4.1) and (4.2) exist and equal the theta-function of genus r
of the same pair,

(4.4) (Θn|Φn,r)(V ′, Z ′;H,Q) = Θr(V ′, Z ′;H,Q) (V ′ ∈ Cm
2r, Z

′ ∈ Hr)

if 1 ≤ r < n, and Θn|Φn,0 = 1. Actually, the theta-function (2.7) converges
absolutely and uniformly when V and H are in fixed compact sets and Z
belongs to a set Hn

ε of the form (2.4) with a fixed ε > 0, and so the limit
can be taken termwise. For the exponent (3.15) we clearly have

(4.5) lim
λ→+∞

e

{
(V ′1 , 0

m
n−r, V

′
2 , 0

m
n−r),

(
Z ′ 0rn−r

0n−rr

√
−1λ · 1n−r

)
, H,Q; (N1, N2)

}
= lim

λ→+∞
e{
√
−1λ ·H[N2]}e{(V ′1 , V ′2), Z ′, H,Q;N1}

=
{

e{(V ′1 , V ′2), Z ′, H,Q;N1} if N2 = 0mn−r,
0 if N2 6= 0mn−r.

For n > r ≥ 1, the Zharkovskaya homomorphism related to the action
of Hecke operators on theta-functions of genus n of the quadratic form in
m = 2k variables with matrix Q,

(4.6) Ψn,r = Ψn,rQ : Hn0 (q)→ Hr0(q),

can be defined as follows. If T ∈ Hn0 (q) is of the form (3.2) with triangular
representatives Mα of the form (3.9), then after replacing each representative
Mα by

( tU−1
α 0
0 Uα

)
Mα with suitable Uα ∈ GLn(Z) we may assume that the

block Dα of Mα has the form Dα =
(D′α ∗

0 D′′α

)
with D′α ∈ Zrr (see, e.g., [An87,

Lemma 3.2.7]), so that

(4.7) Mα =

((A′α 0
∗ A′′α

) (
B′α ∗∗ ∗

)
0

(D′α ∗
0 D′′α

)) ,
where
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M ′α =
(
A′α B′α

0 D′α

)
∈ Σr

0(q) with µ(M ′α) = µ(Mα).

Then we put

(4.8) Ψn,r(T ) = Ψn,rQ (T ) =
∑
α

cαjQ(D′′α)−1(Γ r0 (q)M ′α),

where jQ has the form (3.14). It can be easily verified that the linear combi-
nation (4.8) belongs to the ring Hr0(q), and that the mapping T 7→ Ψn,r(T )
is a C-linear homomorphism of rings. For r = 0 and r = n we set

(4.9) Ψn,0(T ) = Ψn,0Q (T ) =
∑
α

cαjQ(Dα)−1, Ψn,n(T ) = Ψn,nQ (T ) = T.

It is clear that the Zharkovskaya homomorphism with r ≥ 1 maps homoge-
neous elements of Hn0 (q) to homogeneous elements of the same multipliers.

Proposition 4.1 (Zharkovskaya commutation relation for theta-func-
tions). Let Q be a nonsingular even matrix of an even order m = 2k with
signature (s, l) and level q, H ∈M(Q), and let T ∈ Hn0 (q). Then the follow-
ing commutation relation holds for the action of the Hecke operator |jT with
j = jQ(M,Z) of the form (2.12) on the theta-function (2.7) of genus n:

((Θn|jT )|Φn,r)(V ′, Z ′;H,Q) = ((Θn|Φn,r)|jΨn,r(T ))(V ′, Z ′;H,Q)(4.10)
= (Θr|jΨn,r(T ))(V ′, Z ′;H,Q)

if n > r ≥ 1, where V ′ = (V ′1 , V
′
2) ∈ Cm

2r, and Z ′ ∈ Hr, and

(4.11) (Θn|jT )|Φn,0 = (Θn|Φn,0) · Ψn,0(T ) = Ψn,0(T ).

Proof. It suffices to assume that n > r ≥ 1, since the degenerate case
r = 0 directly follows from conditions (4.2), (4.3), and (4.9). We may assume
that T is homogeneous with µ(T ) = µ and with triangular representatives
Mα of the form (4.7). By (3.10) with P = 1 and (4.1), we obtain

lim
λ→+∞

(Θn|jT )(Ṽ , Zλ;H,Q)

= lim
λ→+∞

∑
N∈Zmn

∑
α

cαjQ(Mα, Zλ)−1e{Ṽ tMα,Mα〈Zλ〉, H,Q;N},

where

Ṽ = (V ′1 , 0
m
n−r, V

′
2 , 0

m
n−r) and Zλ =

(
Z ′ 0mn−r

0n−rm

√
−1λ · 1n−r

)
.

By (3.14) and (3.16), the last expression can be written as

lim
λ→+∞

∑
N∈Zmn

∑
α

cαjQ(Dα)−1e{BαD−1
α Q[N ]}e{µṼ , Zλ, µ−1H,µ−1Q;NAα},

where µ = µ(T ) = µ(Mα). According to (4.5), this limit is equal to
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N∈Zmn

∑
α

cαjQ(Dα)−1e{BαD−1
α Q[N ]}

× lim
λ→+∞

e{µṼ , Zλ, µ−1H,µ−1Q;NAα}

=
∑

N1∈Zmr

∑
α

cαjQ(Dα)−1e{BαD−1
α Q[N1, 0mn−r]}

× e{µ(V ′1 , V
′
2), Z ′, µ−1H,µ−1Q;N1A

′
α}.

By the obvious relations

e{BαD−1
α Q[N1, 0mn−r]} = e{B′α(D′α)−1Q[N1]},

and formulas (3.16) with M = M ′α, we arrive at the sum∑
N1∈Zmr

∑
α

cαjQ(D′αD
′′
α)−1e{(V ′1 , V ′2) tM ′α,M

′
α〈Z ′〉, H,Q;N1}

=
∑
α

cαjQ(D′′α)−1Θr((V ′1 , V
′
2), Z ′;H,Q)|jM ′α

= (Θr|(Ψn,r(T ))((V ′1 , V
′
2), Z ′;H,Q).

The Zharkovskaya homomorphism (4.4) is not always epimorphic (see,
e.g., [An96, Proposition 3.3]).

The following useful lemma is an elementary consequence of definitions.

Lemma 4.2. If T ∈ Hn0 (q) and N ∈ Cr(Q/µ), where n > r > 0, then

(4.12) I((N, 0mn−r), Q, T ) = I(N,Q, Ψn,r(T )),

where Ψn,r = Ψn,rQ is the Zharkovskaya homomorphism; moreover ,

(4.13) I(0mn , Q, T ) = Ψn,0(T ).

Proof. In order to prove (4.12) we may assume that T is a homogeneous
element of the form (3.2) with triangular representatives Mα of the form
(4.7), where µ(Mα) = µ(T ) = µ. By (3.13) we have

I((N, 0mn−r), Q, T ) =
∑

α, (N,0mn−r)
( tD′α 0

∗ tD′′α

)
≡0 (modµ)

cαjQ

((
D′α ∗
0 D′′α

))−1

× e
{
µ−2

(
Q[N ] 0

0 0

)
·
( tD′αB

′
α ∗
∗

)}
=

∑
α,N tD′α≡0 (modµ)

cαjQ(D′′α)−1jQ(D′α)−1e{µ−2Q[N ] tD′αB
′
α}

= I(N,Q, Ψn,r(T )).

Formula (4.13) directly follows from (3.13) and (4.9).
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5. Automorphic expansion of interaction sums and explicit for-
mulas. We are going to investigate here the role played by iSums in deduc-
tion of finite formulas for the action of Hecke operators on theta-functions.
Since these sums do not depend on harmonic factors in the definition of
theta-functions, for their investigation one can use theta-functions (2.7)
without harmonic factors.

In this section we again assume that Q is the matrix of a fixed integral
nonsingular quadratic form q(X) in an even number m = 2k of variables,
(s, l) is the signature of q, q the level of Q, χQ the corresponding Dirichlet
character modulo q, and H ∈M(Q).

We shall say that an integral m ×m-matrix D is an automorph of the
matrix Q (or an automorph of the form q) with multiplier µ = µ(D) if

µ−1Q[D] ∈ Em and detµ−1Q[D] = detQ.

The set of all automorphs of Q with multiplier µ will be denoted by

(5.1) A(Q,µ) = {D ∈ Zmm |µ−1Q[D] ∈ Em, detµ−1Q[D] = detQ}.
The set A(Q,µ) may be empty (see, for example, Proposition 6.2 below). It
is clear that

A(Q,µ)Λm = A(Q,µ), where Λm = GLm(Z),

and so the group Λm operates on each of the sets A(Q,µ) by right multiplica-
tion. Since all automorphs of A(Q,µ) are integral matrices of determinants
±µm/2, it follows that each set of classes of automorphs A(Q,µ)/Λm is finite.

Proposition 5.1. Let T be a homogeneous nonzero element of Hm0 (q)
with multiplier µ(T ) = µ. Then the following three conditions are equivalent.

(1) The action of the Hecke operator |jT with j = jQ(M,Z) on the theta-
function (2.7) of genus n = m is given by

(5.2) Θm(V,Z;H,Q)|jT

=


∑

D∈A(Q,µ)/Λ

c(D,Q, T )Θm(µD−1V,Z;µ−1H[D], µ−1Q[D])

if A(Q,µ) 6= ∅,
0 if A(Q,µ) = ∅,

where Λ = Λm, with some coefficients c(D,Q, T ) depending only on
D, Q, and T .

(2) The formula (5.2) is valid with the coefficients of the form

(5.3) c(D,Q, T ) = I(D,Q, T ),

where I(D,Q, T ) are the iSums (3.13).
(3) (The automorphic expansion of iSums) For each matrixN ∈Cm(Q/µ)

in the set (3.12) with n = m the following formulas hold :
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(5.4) I(N,Q, T ) =


∑

D∈A(Q,µ)/Λ,D|N

I(D,Q, T ) if A(Q,µ) 6= ∅,

0 if A(Q,µ) = ∅,

where the condition D |N means that the matrix D−1N is integral.

Proof. By (3.11) with n = m and P = 1, we can rewrite the left hand
side of (5.2) in the case A(Q,µ) 6= ∅ in the form∑
N∈Cm(Q/µ)

I(N,Q, T )e{µ−1Q[N − µV2]X +
√
−1µ−1H[N − µV2]Y

+ 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}

=
∑

D∈A(Q,µ)/Λ

c(D,Q, T )Θm(µD−1V,Z;µ−1H[D], µ−1Q[D]).

By setting here V2 = 0mm, we get the relation∑
N∈Cm(Q/µ)

I(N,Q, T )e{µ−1Q[N ]X +
√
−1µ−1H[N ]Y + 2 tV1QN}

=
∑

D∈A(Q,µ)/Λ

c(D,Q, T )
∑
N∈Zmm

e{µ−1Q[DN ]X +
√
−1µ−1H[DN ]Y

+ 2 t(µD−1V1)µ−1 tDQDN}.

Collecting in the last sum the terms with DN = Ñ ∈ Zmm we can rewrite it
in the form∑
eN∈Zmm

( ∑
D∈A(Q,µ)/Λ

D−1 eN∈Zmm

c(D,Q, T )e{µ−1Q[Ñ ]X +
√
−1µ−1H[Ñ ]Y }

)
e{2 tV1QÑ}.

If Ñ ∈ A(Q,µ)/Λ, then the condition D−1Ñ ∈ Zmm with D ∈ A(Q,µ)/Λ
implies ÑΛ = DΛ, i.e., Ñ = D. Therefore, the coefficient of e{2 tV1QD} in
the last sum is equal to

c(D,Q, T )e{µ−1Q[D]X +
√
−1µ−1H[D]Y }.

Comparing it with the corresponding coefficient on the left, we get (5.3).
From (3.11) and formula (5.2) for the case A(Q,µ) 6= ∅ with coefficients

of the form (5.3) we get the identity∑
N∈Cm(Q/µ)

I(N,Q, T )e{µ−1Q[N − µV2]X +
√
−1µ−1H[N − µV2]Y

+ 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}



288 A. Andrianov

=
∑

D∈A(Q,µ)/Λ

I(D,Q, T )Θm(µD−1V,Z;µ−1H[D], µ−1Q[D])

=
∑

D∈A(Q,µ)/Λ

I(D,Q, T )
∑

N ′∈Zmm

e{µ−1Q[D][N ′ − µD−1V2]X

+
√
−1µ−1H[D][N ′ − µD−1V2]Y

+ 2 t(µV1)µ−1QDN ′ − t(µV1)µ−1Q(µV2)}

=
∑

N∈Cm(Q/µ)

( ∑
D∈A(Q,µ)/Λ,D|N

I(D,Q, T )
)
e{µ−1Q[N − µV2]X

+
√
−1µ−1H[N − µV2]Y + 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)},

because clearly N = DN ′ ∈ Cm(Q/µ) if D ∈ A(Q,µ) and N ′ ∈ Zmm. By
putting here V2 = 0 and comparing the Nth Fourier coefficients of the first
and last series, by the uniqueness of the Fourier expansion of the analytical
and periodic (in V1) function (Θm|jT )((V1, 0), Z;H,Q), we obtain the first
case of (5.4). If A(Q,µ) = ∅, then it is easy to see that the second case of
(5.2) and (3.11) with n = m and P = 1 imply the second case of (5.4).

Finally, if (3) is true, then in the case A(Q,µ) 6= ∅, by (3.11) with n = m
and P = 1 and (5.4), we obtain

Θm(V,Z;H,Q)|jT =
∑

N∈Cm(Q/µ)

( ∑
D∈A(Q,µ)/Λ,D|N

I(D,Q, T )
)

× e{µ−1Q[N − µV2]X +
√
−1µ−1H[N − µV2]Y

+ 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}
=

∑
D∈A(Q,µ)/Λ

I(D,Q, T )
∑

N=DN ′, N ′∈Zmm

e{µ−1Q[N − µV2]X

+
√
−1µ−1H[N − µV2]Y + 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}

=
∑

D∈A(Q,µ)/Λ

I(D,Q, T )
∑

N ′∈Zmm

e{µ−1Q[D][N ′ − µD−1V2]X

+
√
−1µ−1H[D][N ′ − µD−1V2]Y

+ 2 t(µV1)µ−1QDN ′ − t(µV1)µ−1Q(µV2)}
=

∑
D∈A(Q,µ)/Λ

I(D,Q, T )Θm(µD−1V,Z;µ−1H[D], µ−1Q[D]).

But if A(Q,µ) = ∅, the second case of (5.4) and formula (3.11) imply the
second case of (5.2).

Let us now turn to an arbitrary genus n ≥ 1.

Proposition 5.2. Let T be a homogeneous element of Hn0 (q) with mul-
tiplier µ(T ) = µ, satisfying the condition
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(5.5) T ∈ Ψm,nQ (Hm0 (q)) if n < m,

where Ψm,nQ is the Zharkovskaya map (4.6). Suppose that the element Ψn,mT
∈ Hm0 (q), where, for n < m, Ψn,mQ T is an inverse image of T under the
map Ψm,nQ , satisfies at least one of the equivalent conditions (1), (2), or (3)
of Proposition 5.1. Then the following two assertions hold :

(1) (Automorphic expansions of iSums of genus n) For each matrix N ∈
Cn(Q/µ) the following expansions of the iSums hold :

(5.6) I(N,Q, T ) =


∑

D∈A(Q,µ)/Λ,D|N

I(D,Q, Ψn,mQ T ) if A(Q,µ) 6= ∅,

0 if A(Q,µ) = ∅,

where Λ = Λm = GLm(Z) and the condition D |N means that the matrix
D−1N is integral.

(2) (Explicit formulas for the action of |jT on a theta-function of genus
n with a harmonic form) For each polynomial harmonic form P on Cm

n

relative to the pair (Q,H) satisfying (2.9),

(5.7) ΘnP (V,Z;H,Q)|jT

=


∑

D∈A(Q,µ)/Λ

I(D,Q, Ψn,mQ T )ΘnP |µ−1D(µD−1V,Z;µ−1H[D], µ−1Q[D]),

0,

depending on whether A(Q,µ) 6= ∅ or A(Q,µ) = ∅, where j = jQ,P (M,Z) is
the automorphic factor (2.14), and

(P |µ−1D)(X) = P (µ−1DX) (X ∈ Cm
n ).

Proof. If n > m and N ∈ Cn(Q/µ), then it is easy to see that there is
a matrix γ ∈ GLn(Z) such that Nγ = (N ′, 0mn−m) with N ′ ∈ Cm(Q/µ). By
Lemmas 3.2 and 4.2, we obtain

(5.8) I(N,Q, T ) = I((N ′, 0mn−m), Q, T ) = I(N ′, Q, Ψn,mT ),

and, by (5.4) for the case A(Q,µ) 6= ∅, we have

I(N ′, Q, Ψn,mT ) =
∑

D∈A(Q,µ)/Λm, D|N ′
I(D,Q, Ψn,mT )

=
∑

D∈A(Q,µ)/Λm, D|N

I(D,Q, Ψn,mT ),

since the conditions D |N ′ and D |N are clearly equivalent, which proves
the first case of (5.6). But if n ≤ m and N ∈ Cn(Q/µ), then clearly N ′ =
(N, 0mm−n) ∈ Cm(Q/µ) and, by (5.5), Ψn,mQ T ∈ Hm0 (q). Hence, by the first
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case of (5.4), we can write

I(N ′, Q, Ψn,mQ T ) =
∑

D∈A(Q,µ)/Λm, D|N ′
I(D,Q, Ψn,mQ (T ))

=
∑

D∈A(Q,µ)/Λm, D|N

I(D,Q, Ψn,mQ T ).

On the other hand, by (4.12),

(5.9) I(N ′, Q, Ψn,mT ) = I(N,Q, Ψm,n(Ψn,mT )) = I(N,Q, T ).

These arguments prove part (1) if A(Q,µ) 6= ∅. But if A(Q,µ) = ∅, then
by (5.8) and the second case of (5.4) we see that I(N,Q, T ) = 0 for all
N ∈ Cn(Q,µ) if n > m. But if n ≤ m and N ∈ Cn(Q/µ), then again
N ′ = (N, 0mm−n) ∈ Cm(Q/µ) and, by (5.5), Ψn,mQ T ∈ Hm0 (q). By the second
case of (5.4) we have I(N ′, Q, Ψn,mQ T ) = 0, which, by (5.9), implies the
second case of (5.6).

Part (2) follows from (1) and Proposition 3.1. Indeed, from (3.11) and
the first case of (5.6) we get the formula

ΘnP ((V1, V2), X +
√
−1Y ;H,Q)|jT

=
∑

N∈Cn(Q/µ)

( ∑
D∈A(Q,µ)/Λ,D|N

I(D,Q, Ψn,mT )
)
P (µ−1(N − µV2))

× e{µ−1Q[N − µV2]X +
√
−1µ−1H[N − µV2]Y

+ 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}
=

∑
D∈A(Q,µ)/Λ

I(D,Q, Ψn,mT )
∑

N=DN ′, N ′∈Zmn

P (µ−1(N − µV2))

× e{µ−1Q[N − µV2]X +
√
−1µ−1H[N − µV2]Y

+ 2 t(µV1)µ−1QN − t(µV1)µ−1Q(µV2)}
=

∑
D∈A(Q,µ)/Λ

I(D,Q, Ψn,mT )
∑

N ′∈Zmn

P (µ−1D(N ′ − µD−1V2))

× e{µ−1Q[D][N ′ − µD−1V2]X +
√
−1µ−1H[D][N ′ − µD−1V2]Y

+ 2 t(µV1)µ−1QDN ′ − t(µV1)µ−1Q(µV2)}
=

∑
D∈A(Q,µ)/Λ

I(D,Q, Ψn,mT )ΘnP |µ−1D(µD−1V,Z;µ−1H[D], µ−1Q[D]),

which proves the first case of (5.7). The second directly follows from the
second case of (5.6) and formula (3.11).

In this section we have deduced several reformulations of transforma-
tion formulas for the action of Hecke operators on theta-functions by using
quite formal computations. However, for real proof of certain basic formulas
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one cannot escape arithmetical considerations. In our work [An86, Theorem
1] formulas (5.2) were completely proved, although, for accuracy, it should
be noted that, as follows from the proofs of that theorem and related lem-
mas, their formulations must be completed by the statement that all sums
over classes of automorphs are set to be zero when the corresponding au-
tomorphs do not exist, just as above in the formulations of Propositions
5.1 and 5.2. The proof of the formulas is heavily based on a complicated
technique of explicit factorizations of certain standard polynomials (Rankin
polynomials) over symplectic Hecke–Shimura rings under their parabolic
embeddings, which was earlier developed in [An79, Chapter 2] and later de-
tailed in [An87, §3.5]. Perhaps, it could be useful to write now a simplified
exposition of the proof, but it would require plenty of time without any
new method or results at the end. As we have seen above, formulas (5.2)
imply (5.3), (5.4), (5.6), and (5.7). On the other hand, in order to justify
all these formulas it would be sufficient to prove independently the elemen-
tary formulas (5.4) for fairly simple trigonometric sums I(N,Q, T ), which,
in general, has not been done yet. In the rest of this paper we consider some
cases where the formulas can be proved elementarily without using parabolic
embeddings.

6. Action of Hecke operators corresponding to Tn(p). In this sec-
tion we preserve the assumptions and notation of the previous section. In
particular, Q is the matrix of a fixed integral nonsingular quadratic form
q(X) in an even number m = 2k of variables, q the level of Q, χQ the
corresponding Dirichlet character modulo q, and H ∈ M(Q). By using an
elementary approach, we shall prove the formulas (5.7) for the action of the
Hecke operators |jTn(p) with p prime not dividing q on theta-functions (2.8)
of genus n with harmonic coefficients. Similar formulas for theta-series (2.2)
of positive definite quadratic forms (without harmonic coefficients) were
proved in [An80] and by another method in [An87, §5.2.2]. Here we general-
ize the approach used in [An80]. According to the approach of the previous
section, we consider first the case when the harmonic form P equals 1. We
start with direct formulas for the action of the operator corresponding to
Tn(p) on the theta-function (2.7).

Proposition 6.1. For each prime p not dividing the level q of Q, for
every n = 1, 2, . . . and for each N ∈ Cn(Q/p) the corresponding iSum can
be written in the form

(6.1) I(N,Q, Tn(p))

= χQ(pr(N))p−r(N)k+r(N)(r(N)+1)/2

n−r(N)∏
γ=1

(1 + χQ(p)pγ+r(N)−k),
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where r(N) = rp(N) is the rank of N over the field Fp = Z/pZ; the action of
|jTn(p) with j = jQ(M,Z) on Θn(V,Z;H,Q) is given in the same notation
by the formula

(6.2) Θn(V,Z;H,Q)|jTn(p)

=
∑

N∈Cn(Q/p)

(
χQ(pr(N))p−r(N)k+r(N)(r(N)+1)/2

n−r(N)∏
γ=1

(1 + χQ(p)pγ+r(N)−k)
)

×e{pV, Z, p−1H, p−1Q;N},

where the notation (3.15) is utilized.

Proof. It is well known (see, e.g., [An87, §3.3]) that a decomposition
(3.2) of Tn(p) with p prime not dividing q into left cosets modulo the group
Γn0 (q) can be taken in the form

(6.3) Tn(p) =
n∑

α=0

∑
D∈Λn\ΛnDnαΛn

B∈B(D)/≡(modD)

(
Γn0 (q)

(
p · tD−1 B

0 D

))
,

where Λn = GLn(Z), Dn
α = Dn

α(p) =
( 1n−α 0

0 p·1α
)
, B ranges over a system of

representatives for the set

B(D) = {B ∈ Znn | tBD = tDB}

modulo the equivalence relation

B ≡ B′ (mod D) ⇔ (B −B′)D−1 ∈ Znn.

Moreover, a system of representatives for Λn\ΛnDn
αΛ

n can be taken in the
form

(6.4) Λn\ΛnDn
αΛ

n

=
{
Dn
αε(x)

∣∣∣∣ x ∈ Pn−α,n(p) with ε(x) =
(
x

x̂

)
∈ SLn(Z)

}
,

where Pn−α,n(p) is a system for representatives for the set of all matrices
x ∈ Zn−αn which can be completed to a matrix ( xbx ) ∈ SLn(Z) modulo the
equivalence relation

(6.5) x ' x′ (mod p) ⇔ x ≡ Cx′ (mod p) with C ∈ GLn−α(Z/pZ).

Note that the rank of every x ∈ Pn−α,n(p) over Fp is n− α.
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By using the decomposition (6.3) and formulas (3.13), we have

(6.6) I(N,Q, Tn(p))

=
n∑

α=0

∑
D∈Λn\ΛnDnαΛn, N tD≡0 (mod p)

B∈B(D)/≡(modD)

jQ(D)−1e{p−2Q[N ] tDB}

=
m∑
α=0

χQ(pα)p−αk
∑

D∈Λn\ΛnDnαΛn, N tD≡0 (mod p)
B∈B(D)/≡(modD)

e{p−2BQ[N ] tD}

since the character χQ = χ−1
Q is real. If we take the system of representatives

for Λn\ΛnDn
αΛ

n in the form (6.4), then, since B(Dn
αε(x)) = B(Dn

α)ε(x), it
follows that a system of representatives for B(Dn

αε(x))/≡(modDn
αε(x)) can

be taken in the form

{B(Dn
α)/≡(modDn

α)}ε(x) =
{
B =

(
0 0
0 B′

) ∣∣∣∣ B′ = tB′ ∈ Zαα/pZαα
}
ε(x).

For D = Dn
αε(x) = ( x

pbx ) in the set (6.4), the condition N tD ≡ 0 (mod p)
is clearly equivalent to the congruence N tx ≡ 0 (mod p). Thus, with these
systems of representatives we find that the last sum is equal to
n∑

α=0

χQ(pα)p−αk

×
∑

x∈Pn−α,n(p), N tx≡0 (mod p)
B′= tB′∈Zαα/pZαα

e
{
p−2

(
0 0
0 B′

)
ε(x)Q[N ] t(Dn

αε(x))
}

=
n∑

α=0

χQ(pα)p−αk
∑

x∈Pn−α,n(p), N tx≡0 (mod p)
B′= tB′∈Zαα/pZαα

e{B′x̂Q[N ] tx̂/p}

=
n∑

α=0

χQ(pα)p−αk
∑

x∈Pn−α,n(p), N tx≡0 (mod p)

pα(α+1)/2

=
n∑

α=0

χQ(pα)p−αk+α(α+1)/2Rnα(N),

where
Rnα(N) =

∑
x∈Pn−α,n(p), N tx≡0 (mod p)

1,

since each of the matrices x̂Q[N ] tx̂/p, together with the matrix Q[N ]/p, is
even, and the number of symmetric matrices B′ in Zαα/pZαα is pα(α+1)/2. It is
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clear thatRnα(ANB) = Rnα(N) ifA,B are integral matrices of orderm and n,
respectively, with determinants prime to p. Therefore Rnα(N) = Rnα

((
1r 0
0 0

))
,

where r = rp(N) is the rank of N over Fp. It clearly follows that Rnα(N) = 0
if r > α, and Rnα(N) is equal to the number of elements of Pn−α,n−r(p)
if r ≤ α. It is well known that the last number can be computed by the
formula

(6.7) #(Pn−α,n−r(p)) =
ϕn−r(p)

ϕn−α(p)ϕα−r(p)
(r ≤ α)

(see, e.g., [An87, Lemma 3.2.18]), where ϕa(x) = (x− 1)(x2− 1) · · · (xa− 1)
and ϕ0(x) = 1. Thus we arrive at the formula

(6.8) I(N,Q, Tn(p)) =
n∑
α=r

χQ(pα)p−αk+α(α+1)/2 ϕn−r(p)
ϕn−α(p)ϕα−r(p)

= χ(pr)p−rk+r(r+1)/2
n−r∑
β=0

pβ(β+1)/2ϕn−r(p)
ϕn−r−β(p)ϕβ(p)

χ(pβ)pβ(r−k)

= χQ(pr)p−rk+r(r+1)/2
n−r∏
γ=1

(1 + χQ(p)pγ+r−k) (r = rp(N)),

where we have exploited the identity

(6.9)
b∑

β=0

xβ(β+1)/2ϕb(x)
ϕβ(x)ϕb−β(x)

zβ =
b∏

γ=1

(1 + xγz)

following by an easy induction similarly to the binomial formula. This proves
formula (6.1).

Finally, formula (3.11) for P = 1 and T = Tn(p) with the notation (3.15)
can be written in the form

Θn(V,Z;H,Q)|jTn(p)

=
n∑
r=0

∑
N∈Cn(Q/p), rp(N)=r

(
χQ(pr)p−rk+r(r+1)/2

n−r∏
γ=1

(1 + χQ(p)pγ+r−k)
)

× e{pV, Z, p−1H, p−1Q;N},

which is, in fact, formula (6.2).

Proposition 6.2. Let Q be the matrix of an integral nonsingular quad-
ratic form in an even number of variables m = 2k, q the level of Q, and
χQ the corresponding Dirichlet character. Let p be a prime number not di-
viding q. Then the set A(Q, p) of automorphs is empty or not depending on
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whether χQ(p) = −1 or χQ(p) = 1. In the latter case,

(6.10) Θm(V,Z;H,Q)|jTm(p)

= pk
k∏
i=1

(1 + p−i)
∑

D∈A(Q, p)/Λm

Θm(pD−1V,Z; p−1H[D], p−1Q[D]),

where j = jQ(M,Z) and Λm = GLm(Z).

Proof. To examine the existence of automorphs of Q with multiplier p,
we use the language of quadratic spaces with quadratic form q modulo p
in the sense of [An87, Appendix 2]. Let (V, f) be a quadratic space over
Fp = Z/pZ associated to the quadratic form q(X) modulo p. We recall that
in this case V can be considered as the set of m-rows over Fp and f : V→ Fp
is a quadratic function given by

f((u1, . . . , um)) = q(u1, . . . , un) mod p.

A quadratic space (V′, f ′) is called a subspace of (V, f) if V′ ⊂ V and the
restriction of f to V′ is equal to f ′. The bilinear scalar product u ·v ∈ Fp of
u,v ∈ V is defined by

u · v = f(u + v)− f(u)− f(v).

Two vectors u,v ∈ V with u ·v = 0 are called orthogonal. A space (V, f) is
said to be the direct (or orthogonal) sum of subspaces (V1, f1), . . . , (Vt, ft),

(V, f) =
t⊕
i=1

(Vi, fi),

if each v in V is uniquely of the shape v = v1 + · · · + vt and f(v) =
f1(v1)+ · · ·+ft(vt). A nonzero quadratic space with zero quadratic function
is called isotropic. A quadratic space (V, f) is said to be degenerate if it
contains an isotropic direct summand, otherwise it is called nondegenerate.
If p does not divide the determinant det q = detQ or the level of Q, then
the corresponding quadratic space (V, f) is nondegenerate.

A set of vectors of the quadratic space (V, f) is said to be isotropic if the
vectors are linearly independent and span an isotropic subspace. According
to [An78, Lemma 5.2] or [An87, Proposition A.2.14], the number i(V, f ; r)
of different isotropic sets of r vectors in a nondegenerate quadratic space
(V, f) over Fp can be computed by the formulas

(6.11) i(V, f ; r)

=


(pk − χQ(p))(pk−1 + χQ(p)) if r = 1,

pr(r−1)/2(pk − χQ(p))(pk−r + χQ(p))
r−1∏
i=1

(p2(k−i) − 1) if r > 1,
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where k = m/2 and χQ(p) is the character (2.15)–(2.17) of the form q. In
particular, for r = m/2 = k we obtain

(6.12) i(V, f ; k)

=


0 if χQ(p) = −1,
(p− 1)(p0 + 1) if χQ(p) = 1 and k = 1,
pk(k−1)/2(pk − 1)(p0 + 1)

∏k−1
i=1 (p2(k−i) − 1) if χQ(p) = 1 and k > 1.

Returning to automorphs, we first note that if they exist, the set A(Q, p)
is contained in a single double coset modulo Λ = Λm:

(6.13) A(Q, p) ⊂ ΛDm
k Λ with Dm

k = Dm
k (p) =

(
1k 0
0 p · 1k

)
.

In fact, if D ∈ A(Q, p), then detD = pk, and so the elementary divisors of
D (see, e.g., [An87, §3.2.1]) have the form pe1 , . . . , pem where 0 ≤ e1 ≤ · · · ≤
em and e1 + · · · + em = k. Since p does not divide detQ, it follows from
the properties of elementary divisors and the definition of automorphs that
the elementary divisors of the matrix pD−1, i.e., p1−em , . . . , p1−e1 , coincide
with those of D. Therefore, 0 ≤ eα ≤ 1, and so e1 = · · · = ek = 0 and
ek+1 = · · · = em = 1, which proves (6.13). From (6.13) and (5.1) we can
write

(6.14) A(Q, p) = {D ∈ ΛDm
k Λ | p−1Q[D] ∈ Em} = ΛDm

k Λ ∩ Cm(Q/p).

Thus, each automorph of A(Q, p) can be written in the form D = UDm
k V

with U, V ∈ Λ, and the rows u1, . . . ,um of tU satisfy the condition

Em = tV −1EmV 3 p−1 tV −1Q[D]V −1 = p−1 t(UDm
k )QUDm

k ,

which means, as is not difficult to see, that the rows u1, . . . ,uk considered
modulo p form an isotropic set of k vectors of the space V = (Fp)m with
quadratic function given by the form q modulo p. Hence χQ(p) = 1. Con-
versely, if χQ(p) = 1, then there is an isotropic set of k integral m-rows
considered modulo p, which can be completed to a matrix tU ∈ Λ so that
the matrix UDm

k belongs to A(Q, p). This proves the first assertion.
Let us now assume that χQ(p) = 1 and consider the sum

(6.15) S(Q, p) =
∑

D∈A(Q,p)/Λ

Θm(pD−1V,Z; p−1H[D], p−1Q[D])

(with Λ = Λm). By (6.14) we have

A(Q, p)/Λ = (ΛDm
k Λ ∩ Cm(Q/p))/Λ.

According to (6.4) with n = m we can write

ΛDm
k Λ/Λ = t{Λ\ΛDm

k Λ} = { tε(x)Dm
k | x ∈ Pk,m(p)},
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where as above ε(x) =
(

xbx ) ∈ SLm(Z). The condition D ∈ Cm(Q/p) for D
of the form tε(x)Dm

k is clearly equivalent to tx ∈ Ck(Q/p). Hence

(6.16) A(Q, p)/Λ = { tε(x)Dm
k | x ∈ Pk,m(p), tx ∈ Ck(Q/p)}.

Thus, the sum (6.15) can be written in the form

(6.17) S(Q, p) =
∑

D∈(ΛDmk Λ/D∩Cm(Q/p))/Λ

Θm(pD−1V,Z; p−1H[D], p−1Q[D])

=
∑

x, tx∈ tPk,m(p)∩Ck(Q/p)

Θm(p(Dm
k )−1 tε(x)−1V,Z, p−1H[ tε(x)Dm

k ];

p−1Q[ tε(x)Dm
k ])

=
∑

x, tx∈ tPk,m(p)∩Ck(Q/p)

∑
N∈Zmn

e{p−1Q[ tε(x)Dm
k (N − p(Dm

k )−1 tε(x)−1V2)]X

+
√
−1 p−1H[ tε(x)Dm

k (N − p(Dm
k )−1 tε(x)−1V2)]Y

+ 2 · tV1ε(x)−1p(Dm
k )−1p−1Q[ tε(x)Dm

k ]N

− tV1ε(x)−1p(Dm
k )−1p−1Q[ tε(x)Dm

k ]p(Dm
k )−1 tε(x)−1V2}

=
∑

x, tx∈ tPk,m(p)∩Ck(Q/p)

∑
N∈Zmm

e{p−1Q[ tε(x)Dm
k N − pV2]X

+
√
−1 p−1H[ tε(x)Dm

k N − pV2]Y + 2 t(pV1)p−1Q tε(x)Dm
k N

− t(pV1)p−1Q(pV2)}
=
∑
N∈Zmm

Φ(N)e{pV, Z, p−1H, p−1Q;N},

where the notation (3.15) is again used, and where

(6.18) Φ(N) =
∑

x, tx∈ tPk,m(p)∩Ck(Q/p)
N∈ tε(x)Dmk Zmm

1.

If N = tε(x)Dm
m/2N

′ with tx ∈ tPk,m(p) ∩ Ck(Q/p) and an integral ma-
trix N ′, then the matrix

p−1Q[N ] = p−1 tN ′Dm
k ε(x)Q tε(x)Dm

k N
′

= p−1 tN ′Dm
k

(
xQ tx xQ tx̂

x̂Q tx x̂Q tx̂

)
Dm
k N

′ = tN ′
(
p−1xQ tx xQ tx̂

x̂Q tx px̂Q tx̂

)
N ′

is clearly even. Hence, Φ(N) = 0 unless N ∈ Cm(Q/p), and we can rewrite
the expression (6.17) for the sum S(Q, p) in the form

(6.19) S(Q, p) =
∑

N∈Cm(Q/p)

Φ(N)e{pV, Z, p−1H, p−1Q;N}.
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If N ∈ Zmm and the rank rp(N) of N over Fp is r, then there is a matrix
U ∈ Λ = GLm(Z) such that UN = Dm

m−rN
′, where Dm

m−r = Dm
m−r(p)

and N ′ is an integral matrix. By transposition of the representative system
(6.4) for α = m − r, we conclude that U−1Dm

m−r = tε(z)Dm
m−rU

′, where
z ∈ Pr,m(p) and U ′ ∈ Λ. Therefore

(6.20) N = U−1Dm
m−rN

′ = tε(z)Dm
m−rN

′′

(z ∈ Pr,m(p), N ′′ = U ′N ′ ∈ Zmm).

In addition, the condition rp(N) = rp(x) is equivalent to the condition that
the r ×m-block N ′′1 of the matrix N ′′ =

(N ′′1
N ′′2

)
satisfies

(6.21) rp(N ′′1 ) = rp

((
N ′′1
pN ′′2

))
= rp( tε(z)−1N) = r.

It is easy to see that the matrix z = z(N) ∈ Pr,m(p) in the factorization
(6.20) is uniquely determined by N , and the condition N ∈ Cm(Q/p) is
equivalent to tz ∈ Cr(Q/p). We define a partial order on the union of the
sets Pα,m(p) by setting x � y if each row of x is congruent modulo p to a lin-
ear combination of rows of y. This implies in particular that rp(x) ≤ rp(y).
If z = z(N) � x ∈ Pα,m, then there is an integral r × α-matrix v such that
vx ≡ z (mod p). It is clear that rp(v) = rp(z) = r. One can easily see that
there exists a matrix V ∈ Λ satisfying V ≡

(
v 0
∗ ∗
)

(mod p) and such that
V ε(x) = ε(z). Hence,

N = tε(z)Dm
m−rN

′′ = tε(x) tV Dm
m−rN

′′

= tε(x)Dm
m−α(Dm

m−α)−1 tV Dm
m−rN

′′ = tε(x)Dm
m−αÑ

with Ñ ∈ Zmm. Vice versa, if N = tε(x)Dm
m−αÑ , where x ∈ Pα,m(p) and

Ñ ∈ Zmm, then txÑ1 ≡ tzN1 (mod p), where Ñ1 is the upper α ×m-block
of Ñ , which implies, by (6.20), that z � x. These arguments show that the
sum (6.18) can be written in the form

(6.22) Φ(N) =
∑

x, tx∈ tPk,m(p)∩Ck(Q/p)
z(N)�x

1.

In order to compute this sum we return to the language of quadratic spaces.
For z ∈ Pr,m(p) we denote by V (z) the subspace of V spanned over Fp by
the rows of z. Then the condition z(N) � x means that V (z(N)) ⊂ V (x),
and the condition tx ∈ Ck(Q/p) means that the space V (x) is isotropic.
It follows that Φ(N) is equal to the number of different isotropic subspaces
of V of dimension k which contain V (z(N)). Since χQ(p) = 1, there are
i(V, f ; k)/#(GLk(Fp)) > 0 isotropic subspaces of dimension k, and every
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basis of V (z(N)) can be completed to a basis of an isotropic subspace of
dimension m/2 in exactly

i(V, f ; k)
i(V, f ; r)

=


1 if r = k,(
pk(k−1)/2−r(r−1)/2(p0 + 1)

k−1∏
i=r

(p2(k−i) − 1)
)
/(pk−r + 1)

if 1 ≤ r < k

ways. Two completed bases v1, . . . ,vr,vr+1, . . . ,vk and v1, . . . ,vr,
v′r+1, . . . ,v

′
k with k > r span the same space over Fp if and only if

(v1, . . . ,vr,v′r+1, . . . ,v
′
k) = (v1, . . . ,vr,vr+1, . . . ,vk)

(
1r B

0k−rr D

)
,

where B is an r × (k − r)-matrix over Fp and D ∈ GLk−r(Fp). Therefore,
an easy calculation shows that the number Φ(N) of different isotropic sub-
spaces of (V, f) of dimension k = m/2 which contain V (z(N)) is equal
to

i(V, f ;m/2)
i(V, f ; r)pr(k−r)#(GLk−r(Fp))

=
i(V, f ;m/2)

i(V, f ; r)pr(k−r)p(k−r)(k−r−1)/2
∏k−r
i=1 (pi − 1)

=


1 if r = k,
k−r∏
i=1

(pi−1 + 1) if r < k.

Thus we finally get

(6.23) Φ(N) =


1 if χQ(p) = 1 and r(N) = k,
k−r(N)∏
i=1

(pi−1 + 1) if χQ(p) = 1 and r(N) < k,

where r(N) = rp(N). Substituting this in (6.17), we obtain

(6.24)
∑

D∈A(Q, p)/Λ

Θm(pD−1V,Z; p−1H[D], p−1Q[D])

=
∑

N∈Cm(Q/p), r(N)=k

e{pV, Z, p−1H, p−1Q;N}

+
∑

N∈Cm(Q/p), r(N)<k

k−r(N)∏
i=1

(pi−1 + 1)e{pV, Z, p−1H, p−1Q;N}.
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On the other hand, by formula (6.2) with n = m, we have

(6.25) Θm(V,Z;H,Q)|jTm(p)

=
∑

N∈Cm(Q/p)

(
χQ(pr(N))p−r(N)k+r(N)(r(N)+1)/2

×
m−r(N)∏
γ=1

(1 + χQ(p)pγ+r(N)−k)
)

× e{pV, Z, p−1H, p−1Q;N}.

Let us now compare this formula with (6.24). If r(N) = rp(N) = m/2 = k,
then the coefficient of e{pV, Z, p−1H, p−1Q;N} on the right side of (6.25)
is

p−r(N)k+r(N)(r(N)+1)/2

m−r(N)∏
γ=1

(1 + pγ+r(N)−k)

= p−k(k−1)/2
k∏
γ=1

(1 + pγ) = pk
k∏
i=1

(1 + p−i),

but if r(N) < m/2 = k, on replacing of γ by i = γ+ r(N)−k the coefficient
can be written in the form

p−r(N)k+r(N)(r(N)+1)/2
k∏

i=1+r(N)−k

(1 + pi)

= p−r(N)k+r(N)(r(N)+1)/2
( k∏
i=1

(1 + pi)
)( 0∏

i=1+r(N)−k

(1 + pi)
)

= p−r(N)k+r(N)(r(N)+1)/2+k(k+1)/2
( k∏
i=1

(1 + p−i)
)( k−r(N)∏

j=1

(1 + p1−j)
)
,

where in the last product we have set i = 1−j. Similarly to the first product,
we can rewrite the second product in the form

k−r(N)∏
j=1

(1 + p1−j) =
k−r(N)∏
j=1

p1−j(pj−1 + 1)

= p−(k−r(N))(k−r(N)−1)/2

k−r(N)∏
j=1

(pj−1 + 1).

Thus, the whole coefficient is equal to
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p−r(N)k+r(N)(r(N)+1)/2+k(k+1)/2−(k−r(N))(k−r(N)−1)/2

×
( k∏
i=1

(1 + p−i)
)( k−r(N)∏

j=1

(1 + p1−j)
)

= pk
( k∏
i=1

(1 + p−i)
)( k−r(N)∏

j=1

(1 + p1−j)
)
.

Comparing the corresponding coefficients, we arrive at (6.10).

It is not difficult to deduce from (5.6) with n = m and N = 0mm and (4.9)
that for χQ(p) = 1 the set A(Q, p)/Λm of classes of automorphs of Q with
multiplier p modulo the group Λm = GLm(Z) consists of

#(A(Q, p)/Λm) =
k−1∏
i=0

(1 + pi)

elements.
In order to consider the action of the Hecke operators corresponding to

the elements Tn(p) with n 6= m, we have to compute the images and inverse
images of these elements under Zharkovskaya homomorphisms.

Lemma 6.3. Let n > r ≥ 0 and let p be a prime not dividing detQ.
Then

(6.26) Ψn,rQ (Tn(p)) =
n−r∏
i=1

(1 + χQ(p)pi+r−k)T r(p),

where k = m/2; in particular , if r < k ≤ n and χQ(p) = −1, then
Ψn,rQ (Tn(p)) = 0, and T r(p) 6∈ Ψn,rQ (Hn0 (q)); otherwise, the product in (6.26)
is not zero and T r(p) ∈ Ψn,rQ (Hn0 (q)).

Proof. Let us present the element Tn(p) in the shape (3.2) with trian-
gular representatives Mα of the form (4.7) for r = n− 1 ≥ 1. Then it is not
hard to see that D′′α = ±1 or ± p, and that in the notation of the definition
of the Zharkovskaya homomorphism for r = n− 1 we have the expansions∑

α,D′′α=±1

(Γn−1
0 (q)M ′α) = Tn−1(p),

∑
α,D′′α=±p

(Γn−1
0 (q)M ′α) = pnTn−1(p).

Hence
Ψn,n−1
Q (Tn(p)) = (1 + pn(χQ(p)pk)−1)Tn−1(p)

= (1 + χQ(p)pn−k)Tn−1(p).
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This formula clearly remains true also for n = 1 with T 0(p) = 1. Then (6.26)
follows by iteration. If r < k ≤ n and χQ(p) = −1, then the factor on the
right corresponding to i = k − r (and only in this case) equals zero. The
rest is clear: since the sets of generators (3.3) are algebraically independent,
it follows that each homogeneous element of Hn0 (q) with multiplier p is a
constant multiple of Tn(p).

We can finally prove the following formulas for the images of theta-
functions under the action of Hecke operators corresponding to elements
Tn(p).

Theorem 6.3. Let Q be a nonsingular even matrix of an even order
m = 2k with signature (s, l), q the level of Q, and χQ the character of
the corresponding quadratic form; let H ∈ M(Q), and P be a polynomial
harmonic form on Cm

n of weight (d, d′) relative to the pair Q,H. Finally , let
p be a rational prime not dividing q. Then the following explicit formulas
hold for the action of the Hecke operator |jTn(p) with automorphic factor
j = jQ,P of the form (2.14) on the theta-function (2.8) of genus n with
harmonic coefficient form P :

(6.27) ΘnP (V,Z;H,Q)|jTn(p) = pn(n+1)/2−knξ(n,m)

×
∑

D∈A(Q, p)/Λm

ΘnP |p−1D(pD−1V,Z; p−1H[D], p−1Q[D])

if χQ(p) = 1, where

ξ(n,m) =



n−k∏
i=1

(1 + p−i) if n > k,

1 if n = k,

k−n∏
i=1

(1 + pi−1) if n < k,

(P |p−1D)(X) = P (p−1DX),

and

(6.28) ΘnP (V,Z;H,Q)|jTn(p) = 0 if χQ(p) = −1 and n ≥ k.
Proof. If χQ(p) = 1, then by Proposition 6.2 the set A(Q, p) is not empty

and the relation (6.10) holds. In this case, by Lemma 6.3, the elements
T = Tn(p) satisfy the condition (5.5) of Proposition 5.2, and according to
that proposition and Proposition 6.2, for every n = 1, 2, . . . ,

(6.29) ΘnP (V,Z;H,Q)|jTn(p) =
∑

D∈A(Q, p)/Λm

I(D,Q, Ψn,mQ (Tn(p)))

×ΘnP |p−1D(pD−1V,Z; p−1H[D], p−1Q[D]).
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Then (6.27) follows from (6.10), (6.26) and (6.29) by considering the four
cases: n > m, m > n > k, n = k, or n < k. For example, if n > m, then

I(D,Q, Ψn,mQ (Tn(p))) = I
(
D,Q,

( n−m∏
i=1

(1 + pi+k)
)
Tm(p)

)
=
(
pk

k∏
i=1

(1 + p−i)
)( n−m∏

i=1

(1 + pi+k)
)

= pk+(n−m)(n−m+1)/2+(n−m)k
n−m∏
i=1

(1 + p−i),

which proves (6.27) in this case. The other cases can be handled similarly.
If χQ(p) = −1, then by Lemma 6.3 the condition (5.5) of Proposition

5.2 for T = Tn(p) is satisfied unless n < k = m/2. In this case, looking at
(6.2), one can note that the rank r(N) = rp(N) modulo p of each matrix
N ∈ Cn(Q, p) is less than k = m/2, since otherwise among the rows of the
matrix tN modulo p there are k rows which form an isotropic set of k vectors
in (V, f), contrary to (6.12). Therefore, each term of the sum on the right
of (6.1) and (6.2) contains a product including a factor with n−r(N) ≥ γ =
k− r(N) ≥ 1, which is zero. In particular, I(N,Q, Tm(p)) = 0. Then (6.28)
follows from Proposition 5.2.

Appearance of a power of p on the right of (6.27) in contrast to similar
formulas for theta-series of positive definite quadratic forms obtained in
[An80] and [An87] is due to different normalization of Hecke operators.
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