On the vanishing of Iwasawa invariants of geometric cyclotomic \mathbb{Z}_p -extensions

by

AKIRA AIBA (Ibaraki)

0. Introduction. Several authors have studied Iwasawa invariants of cyclotomic \mathbb{Z}_p -extensions of a number field. The constant \mathbb{Z}_p -extension of an algebraic function field K over a finite field of characteristic p > 0 has often provided a useful analogy for the study of cyclotomic \mathbb{Z}_p -extensions of number fields. But little is known about the corresponding results for geometric \mathbb{Z}_p -extensions of K (cf. [4]). In this paper, we first define a geometric cyclotomic \mathbb{Z}_p -extension fields of a rational function field k such that the Iwasawa invariants of a geometric cyclotomic \mathbb{Z}_p -extension are zero. The main result is stated in Section 2. This is an analogue of G. Yamamoto's theorem ([7]). The proof is based on the central class field and genus field theory. The function field analogue that we need is essentially shown by Bae and Jung [1]. Following them, we determine in Section 3 all elementary abelian p-extensions of k whose class number is prime to p. Using this, we conclude the proof of our main theorem in Section 4.

1. Geometric cyclotomic \mathbb{Z}_p -extension. Let p be a prime and \mathbb{Z}_p the ring of p-adic integers. Let q be a power of p and \mathbb{F}_q the finite field of q elements. We set $k = \mathbb{F}_q(T)$, the rational function field over the finite field \mathbb{F}_q , and $O = O_k = \mathbb{F}_q[T]$. We write $k_{1/T}$ for the completion of k at the place corresponding to 1/T and choose a uniformizer π of $k_{1/T}$. Denote by C the field $k_{1/T}({}^{q-\sqrt{1}}{-\pi})$. In the following, by an extension of k we mean a separable extension of k for which any embedding into an algebraic closure $k_{1/T}^{\mathrm{ac}}$ lies in C viewed as a subfield of $k_{1/T}^{\mathrm{ac}}$. Let K be a finite abelian extension of k. Let O_K be the integral closure of O_k in K. Let I_K be the group of non-zero fractional ideals of O_K and P_K the group of non-zero principal ideals of O_K . We set $\operatorname{Pic}(O_K) = I_K/P_K$, the ideal class group of O_K . Let H_K be

²⁰⁰⁰ Mathematics Subject Classification: 11R23, 11R60.

A. Aiba

the Hilbert class field of K, i.e. the maximal unramified geometric abelian extension of K. We set $h_K = \sharp \operatorname{Pic}(O_K)$. It is known that $\operatorname{Gal}(H_K/K) \simeq \operatorname{Pic}(O_K)$.

Let K_{∞}/K be a geometric \mathbb{Z}_p -extension (i.e. K_{∞}/K is a Galois extension with $\Gamma = \operatorname{Gal}(K_{\infty}/K) \simeq \mathbb{Z}_p$ and for all n, the nth layer K_n has constant field \mathbb{F}_q). Let $A(K_n)$ be the p-Sylow subgroup of $\operatorname{Pic}(O_{K_n})$. Let $X_{\infty} = \lim_{k \to \infty} A(K_n)$ be the inverse limit of the groups $A(K_n)$ with respect to the norm map. Let Λ denote the complete group ring $\mathbb{Z}_p[[\Gamma]]$, so that $\Lambda \simeq \mathbb{Z}_p[[T]]$.

The proof of the next proposition is the same as that of Theorem 2 in [4].

PROPOSITION 1. If there are only a finite number of primes (of K) ramified in K_{∞}/K then X_{∞} is a noetherian torsion Λ -module. If there are infinitely many ramified primes then X_{∞} is not a noetherian Λ -module.

COROLLARY 1. Let K_{∞}/K be a geometric \mathbb{Z}_p -extension with only a finite number of ramified primes. Then there exist integers $\lambda = \lambda(K_{\infty}/K) \ge 0$, $\mu = \mu(K_{\infty}/K) \ge 0$, $\nu = \nu(K_{\infty}/K)$ and $n_0 \ge 0$ such that

$$\sharp A(K_n) = p^{\lambda n + \mu p^n + \nu} \quad \text{for all } n \ge n_0.$$

We denote by K_G the genus field of K. So K_G is the maximal geometric unramified abelian extension of K such that K_G/k is an abelian extension. As in the number field case it has been shown that (cf. [1, Lemma 1.1])

(*)
$$[K_G:K] = \frac{\prod_v e_v}{[K:k]},$$

where e_v is the ramification index of a place v of k in K. We use this result to prove the next proposition.

PROPOSITION 2. Let k_{∞}/k be a geometric \mathbb{Z}_p -extension over $k = \mathbb{F}_q(T)$ with only a finite number of ramified primes.

(1) If there is only one prime of k ramified in k_{∞}/k then $\lambda(k_{\infty}/k) = \mu(k_{\infty}/k) = \nu(k_{\infty}/k) = 0$.

(2) If there are more than two primes of k ramified in k_{∞}/k then $\lambda(k_{\infty}/k) > 0$ or $\mu(k_{\infty}/k) > 0$.

Proof. (1) See [4, p. 156].

(2) Let k_{∞}/k be a geometric \mathbb{Z}_p -extension which ramifies at P_1, \ldots, P_m (m > 1). There exists $n_0 \ge 0$ such that every prime which ramifies in k_{∞}/k_{n_0} is totally ramified. By (*),

$$p^{sm-n_0-s} \mid [(k_{n_0+s})_G : k_{n_0+s}] \sharp A(k_{n_0+s})$$

and

 $\log_p \sharp A(k_{n_0+s}) \ge (m-1)(s+n_0) - n_0 m.$

Therefore $\mu(k_{\infty}/k) > 0$ or $\lambda(k_{\infty}/k) \ge m - 1$.

Recall that the rational number field \mathbb{Q} has a unique \mathbb{Z}_p -extension \mathbb{Q}_{∞} $(\lambda(\mathbb{Q}_{\infty}/\mathbb{Q}) = \mu(\mathbb{Q}_{\infty}/\mathbb{Q}) = \nu(\mathbb{Q}_{\infty}/\mathbb{Q}) = 0)$ and for a number field K, we call the \mathbb{Z}_p -extension $K \cdot \mathbb{Q}_{\infty}/K$ a cyclotomic \mathbb{Z}_p -extension of K. By Proposition 2, it is natural to make the following:

DEFINITION. Let k_{∞}/k be a geometric \mathbb{Z}_p -extension unramified outside one prime over a rational function field $k = \mathbb{F}_q(T)$. Let K be a finite extension of k. We set $K_{\infty} = Kk_{\infty}$. We call the \mathbb{Z}_p -extension K_{∞}/K a geometric cyclotomic \mathbb{Z}_p -extension.

2. Main theorem. First, we define some notations and recall some properties of Artin–Schreier extensions. For details, see [5], [6].

Let F be a field of characteristic p > 0. If L is an abelian extension of degree p of F (an Artin-Schreier extension of F), then L can be written as $L = F(y_A)$, where y_A satisfies the equation

$$y_A^p - y_A = A$$
 with $A \in F$.

(1) Local case. Let $F = \mathbb{F}_q((t))$ be the power series field over a finite field \mathbb{F}_q . We let o be the valuation ring, \mathfrak{p} its maximal ideal and $v_{\mathfrak{p}}$ the valuation with respect to \mathfrak{p} . We put $L = F(y_A)$. Then L/F is unramified if and only if $A \in o + \mathcal{P}F$, where $\mathcal{P}F = \{x^p - x : x \in F\}$. In this case, let $\left(\frac{L/F}{\mathfrak{p}}\right)$ be the Frobenius automorphism and set $\left(\frac{A}{\mathfrak{p}}\right) = \left(\frac{L/F}{\mathfrak{p}}\right)y_A - y_A$.

For $a \in F^*$, $x \in F$, let $x\frac{da}{dt} = \sum_i c_i t^i$. It is known that $\operatorname{Res} xda = c_{-1}$ (the residue of a differential form xda) is independent of the choice of a uniformizer t. We set

$$\left(\frac{a,x}{\mathfrak{p}}\right) = \operatorname{Tr}\left(\operatorname{Res} x \frac{da}{a}\right),$$

where $\operatorname{Tr} = \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}$. If $F(y_A)/F$ is unramified, then $\left(\frac{a,A}{\mathfrak{p}}\right) = v_{\mathfrak{p}}(a)\left(\frac{A}{\mathfrak{p}}\right) \in \mathbb{F}_p$.

(2) Global case. We set $k = \mathbb{F}_q(T)$. Let $K = k(y_A)$ be an Artin–Schreier extension of k. One may assume that A is in standard form, that is,

$$A = \frac{B}{\prod P_i^{e_i}},$$

where

(a) $P_i \in O_k$ are irreducible polynomials,

- (b) e_i are positive integers relatively prime to p,
- (c) $B \in O_k$ is relatively prime to the denominator, and
- (d) deg $A = \deg B \deg(\prod P_i^{e_i})$ is negative.

The primes of k that ramify in $k(y_A)$ are exactly the P_i . From now on, when we consider an Artin–Schreier extension $k(y_{B/\prod P_i^{e_i}})$ of a global field, we assume that $B/\prod P_i^{e_i}$ is in standard form.

For $P \in O_k$ an irreducible polynomial of degree d, we let i_P be the natural embedding

$$i_P: k \hookrightarrow k_P \simeq \mathbb{F}_{q^d}((t)),$$

where k_P is the completion of k at P. For $a \in k^*, x \in k$, we define $\operatorname{Res}_P xda = \operatorname{Res} i_P(x)di_P(a)$. We can show the reciprocity law in this case as follows:

PROPOSITION 3 ([6, Chapter 4, §5]). For $a \in k^*, x \in k$,

$$\sum_{P} \left(\frac{i_P(a), i_P(x)}{P} \right) = 0,$$

where the sum runs over the irreducible polynomials of O_k .

COROLLARY 2. Let $P \neq Q$ be irreducible polynomials in O_k and $A = B/P^e$. Then

$$\left(\frac{A}{Q}\right) = -\operatorname{Tr}\left(\operatorname{Res}_P A \frac{dQ}{Q}\right).$$

Proof. By the definition and Proposition 3,

$$0 = \sum_{L} \left(\frac{i_L(Q), i_L(A)}{L} \right) = \left(\frac{i_P(Q), i_P(A)}{P} \right) + \left(\frac{i_Q(Q), i_Q(A)}{Q} \right)$$
$$= \operatorname{Tr} \left(\operatorname{Res}_P A \frac{dQ}{Q} \right) + \left(\frac{A}{Q} \right). \bullet$$

We now state our main result.

THEOREM. Let k_{∞}/k be a geometric cyclotomic \mathbb{Z}_p -extension which ramifies only at P_0 . Let the first layer be $k_1 = k(y_{B_0/P_0^{e_0}})$. Let K be an abelian p-extension of k, and P_1, \ldots, P_t be distinct prime factors different from P_0 of its conductor f_K . Let \widetilde{K} be the maximal elementary psubextension of K and $K_{\infty} = Kk_{\infty}$. If

(1)
$$\lambda(K_{\infty}/K) = \mu(K_{\infty}/K) = \nu(K_{\infty}/K) = 0,$$

then $t \leq 2$. Conversely, in each case of t = 0, 1 or 2, the following are necessary and sufficient conditions for (1):

In case t = 0, (1) always holds.

In case t = 1, (1) holds if and only if $K_1 = K_{1,G}$ and $\widetilde{K} = k(y_{C_1}, \ldots, y_{C_s})$ $\not\supseteq k(y_{B_0/P_0^{e_0}})$, where either

(1.1)

$$C_{i} = t_{i0}B_{0}/P_{0}^{e_{0}} + \sum_{j=1}^{s} t_{ij}B_{j}/P_{1}^{e_{j}} \quad for \ t_{ij} \in \mathbb{F}_{p} \ (1 \le j \le s),$$

$$\operatorname{Tr}\left(\operatorname{Res}_{P_{0}} \frac{B_{0}dP_{1}}{P_{0}^{e}P_{1}}\right) \neq 0$$

or

(1.2)
$$C_{i} = \sum_{j=0}^{s-1} t_{ij} B_{i} / P_{0}^{e_{j}} + t_{is} B_{s} / P_{1}^{e_{s}} \quad for \ t_{ij} \in \mathbb{F}_{p} \ (1 \le j \le s),$$
$$\operatorname{Tr} \left(\operatorname{Res}_{P_{1}} \frac{B_{s} dP_{0}}{P_{1}^{e_{s}} P_{0}} \right) \ne 0.$$

In case t = 2, (1) holds if and only if $K_1 = K_{1,G}$ and $\widetilde{K} = k(y_{C_1}, y_{C_2}) \not\supseteq k(y_{B_0/P_0^{e_0}})$, where $C_i = \sum_{j=0}^2 t_{ij} B_j / P_j^{e_j}$ for $t_{ij} \in \mathbb{F}_p$, rank $(t_{ij}) = 2$ and

$$\operatorname{Tr}\left(\operatorname{Res}_{P_{0}}\frac{B_{0}dP_{1}}{P_{0}^{e_{0}}P_{1}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{1}}\frac{B_{1}dP_{2}}{P_{1}^{e_{1}}P_{2}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{2}}\frac{B_{2}dP_{0}}{P_{2}^{e_{2}}P_{0}}\right)$$

$$\neq\operatorname{Tr}\left(\operatorname{Res}_{P_{0}}\frac{B_{0}dP_{2}}{P_{0}^{e_{0}}P_{2}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{1}}\frac{B_{1}dP_{0}}{P_{1}^{e_{1}}P_{0}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{2}}\frac{B_{2}dP_{1}}{P_{2}^{e_{2}}P_{1}}\right).$$

3. Review of the genus theory. Suppose that p is a prime and $\operatorname{Gal}(K/k)$ is an abelian p-group. Then the genus field K_G of K is also an abelian p-extension as is easily seen from (*). If p does not divide the class number of K, then K does not have any non-trivial geometric unramified abelian p-extension by class field theory, hence $K_G = K$. In the following we will assume $K_G = K$. Further, we consider the central p-class field K_C of K, that is, K_C is the maximal p-extension of K such that K_C/K is geometric, abelian and unramified, K_C/k is Galois and $\operatorname{Gal}(K_C/K)$ is in the center of $\operatorname{Gal}(K_C/k)$. Since a p-group must have a lower central series that terminates in the identity, one sees that $p \nmid h_K$ if and only if $K_C = K$. So we are interested in when $K_C = K$. This can be reduced to the case when $\operatorname{Gal}(K/k)$ is an elementary abelian p-group by the following result:

LEMMA 1 ([2, Theorem 1], [7, Lemma 3]). Let K/k be an abelian p-extension with $K_G = K$. Let \widetilde{K} be the maximal intermediate extension between k and K such that $\operatorname{Gal}(\widetilde{K}/k)$ is an elementary p-group. Then the p-rank of $\operatorname{Gal}(K_C/K)$ is equal to the p-rank of $\operatorname{Gal}((\widetilde{K})_C/\widetilde{K})$.

Now let K/k be a finite elementary abelian p-extension. Let $G = \operatorname{Gal}(K/k)$ and X_G be the group of characters of G. Let $\bigwedge^2(G)$ denote the exterior product of G. If $[K:k] = p^r$, we may view G and $\bigwedge^2(G)$ as \mathbb{F}_p -vector spaces of dimension r and r(r-1)/2, respectively. Let $\{\chi_1, \ldots, \chi_r\}$ be a basis of X_G over \mathbb{F}_p . Let S be the set of all primes of k which ramify on K. For each prime $P \in S$, let $\{\mathfrak{g}_1, \ldots, \mathfrak{g}_s\}$ be a basis of the decomposition group G_P over \mathbb{F}_p . Let $[\delta_{tu,\alpha\beta}]_{\mathfrak{p}}$ be the matrix over \mathbb{F}_p with s(s-1)/2 rows and r(r-1)/2 columns whose entry $\delta_{tu,\alpha\beta}$ in the tu row and $\alpha\beta$ column is defined by the relation

$$(\chi_{\alpha} \wedge \chi_{\beta})(\mathfrak{g}_t \wedge \mathfrak{g}_u) = \zeta_p^{\delta_{tu,\alpha\beta}},$$

where ζ_p is a fixed primitive *p*th root of unity and \wedge is the exterior product. Let $\Delta(K/k)$ be the matrix over \mathbb{F}_p whose rows are all the rows of the matrices $[\delta_{tu,\alpha\beta}]_{\mathfrak{p}}$ as \mathfrak{p} runs over all elements of S.

PROPOSITION 4 ([3, Theorem 3], [1, Proposition 2.2]). Let K/k be a finite elementary abelian p-extension. Then the following are equivalent:

(1) $\operatorname{Gal}(K_C/K)$ has trivial p-rank.

(2) $\Delta(K/k)$ has rank r(r-1)/2, where r is the p-rank of $\operatorname{Gal}(K/k)$.

Now we use this criterion to determine all elementary abelian p-extensions of k whose class number is prime to p.

Let P_1, \ldots, P_z be distinct monic irreducible polynomials and let $d_i = \deg P_i$ for each *i*. Let *K* be a finite elementary abelian *p*-extension of *k* whose conductor has prime factors P_1, \ldots, P_z . Let T_{P_i} be the inertia group of P_i and r_i be the *p*-rank of T_{P_i} .

If z = 1, then P_1 is the only prime of k which ramifies in K. So the decomposition group G_{P_1} of P_1 is G and p does not divide h_K .

If $z \ge 4$, then z < z(z-1)/2. The *p*-rank of $\bigwedge^2(G_{P_i})$ is at most $r_i(r_i+1)/2$. Since rank $G = \sum \operatorname{rank} T_{P_i}$ (cf. [1, Section 1]), the *p*-rank of $\bigwedge^2(G)$ is $\sum r_i(\sum r_i-1)/2$. We have

$$\frac{\sum r_i(\sum r_i - 1)}{2} - \sum_i \frac{r_i(r_i + 1)}{2} = \sum_{i < j} r_i r_j - \sum_i r_i$$
$$= \sum_{i=1}^{z-1} r_i(r_{i+1} - 1) + r_z(r_1 - 1) + \sum_{\substack{i+1 < j \\ (i,j) \neq (1,z)}} r_i r_j > 0.$$

So $\operatorname{Gal}(K_C/K)$ has non-trivial *p*-rank and *p* divides h_K . It remains to consider the cases: z = 2 and z = 3.

LEMMA 2. Suppose z = 2. Then $p \nmid h_K$ if and only if, by changing the order of P_1 and P_2 if necessary, $K = k(y_{A_{1,1}}, y_{A_{2,1}}, \ldots, y_{A_{2,s}})$ $(A_{i,j} = B_{i,j}/P_k^{e_{ij}})$ and

$$\operatorname{Tr}\left(\operatorname{Res}_{P_1} A_{1,1} \frac{dP_2}{P_2}\right) \neq 0.$$

Proof. Since $K_G = K$, the *p*-rank of *G* is $r = r_1 + r_2$. Since G_{P_i}/T_{P_i} is a cyclic group, the *p*-rank of G_{P_i} is r_i or $r_i + 1$. Hence in order that $\Delta(K/k)$ has rank r(r-1)/2, we must have

$$\binom{r}{2} \le \sum_{i=1}^{2} \binom{r_i+1}{2}.$$

Hence $p \nmid h_K$ only if $r_1 r_2 - (r_1 + r_2) \leq 0$. This inequality holds if and only if either $r_1 = r_2 = 2$ (in this case, the *p*-rank of G_{P_i} is $r_i + 1$ for i = 1, 2) or $r_i = 1$ for some *i*.

When $r_1 = r_2 = 2$, let $K = k(y_{A_{1,1}}, y_{A_{1,2}}, y_{A_{2,1}}, y_{A_{2,2}}),$ $T_{P_i} = \operatorname{Gal}(K/k(y_{A_{j,1}}, y_{A_{j,2}})) \quad (i = 1, 2, j \neq i).$

Let $\{\chi_{i,1}, \chi_{i,2}\}$ be a basis of the dual group of T_{P_i} over \mathbb{F}_p defined by $\chi_{i,k}(\sigma) = \zeta_p^{(\sigma-1)y_{A_{i,k}}}$ for $\sigma \in T_{P_i}$. Then with respect to the basis $\{\chi_{1,1} \land \chi_{1,2}, \ldots, \chi_{2,1} \land \chi_{2,2}\}$, by choosing suitable bases of G_{P_i} 's, the matrix $\Delta(K/k)$ is given by

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \left(\frac{A_{2,1}}{P_1}\right) & \left(\frac{A_{2,2}}{P_1}\right) & 0 & 0 & 0 \\ 0 & 0 & 0 & \left(\frac{A_{2,1}}{P_1}\right) & \left(\frac{A_{2,2}}{P_1}\right) & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & -\left(\frac{A_{1,1}}{P_2}\right) & 0 & -\left(\frac{A_{1,2}}{P_2}\right) & 0 & 0 \\ 0 & 0 & -\left(\frac{A_{1,1}}{P_2}\right) & 0 & -\left(\frac{A_{1,2}}{P_2}\right) & 0 \end{pmatrix}$$

Since

$$\det(\Delta(K/k)) = -\left(\frac{A_{2,1}}{P_1}\right) \left(\frac{A_{2,2}}{P_1}\right) \left(\frac{A_{1,1}}{P_2}\right) \left(\frac{A_{1,2}}{P_2}\right) + \left(\frac{A_{2,2}}{P_1}\right) \left(\frac{A_{2,1}}{P_1}\right) \left(\frac{A_{1,1}}{P_2}\right) \left(\frac{A_{1,2}}{P_2}\right) = 0,$$

p divides h_K .

When $r_i = 1$ and $r_j \ge 1$ arbitrary, we may assume that i = 1, j = 2. Let $K = k(y_{A_{1,1}}, y_{A_{2,1}}, \ldots, y_{A_{2,r_j}}), T_{P_1} = \operatorname{Gal}(K/k(y_{A_{2,1}}, \ldots, y_{A_{2,r_2}}))$ and $T_{P_2} = \operatorname{Gal}(K/k(y_{A_{1,1}}))$. Let χ_1 be a multiplicative character on the inertia group T_{P_1} defined by $\chi_1(\sigma) = \zeta_p^{(\sigma-1)y_{A_{1,1}}}$ for $\sigma \in T_{P_1}$ and $\{\chi_{2,1}, \chi_{2,2}, \ldots, \chi_{2,r_2}\}$ be a basis of the dual group of T_{P_2} defined by $\chi_{2,k}(\tau) = \zeta_p^{(\tau-1)y_{A_{2k}}}$ for $\tau \in T_{P_2}$. With respect to the basis $\{\chi_1 \land \chi_{2,1}, \chi_1 \land \chi_{2,2}, \ldots, \chi_{2,r_2}\}$, again by choosing suitable bases for G_{P_1} 's, the matrix $\Delta(K/k)$ is

$$\begin{pmatrix} \left(\frac{A_{2,1}}{P_1}\right) & \left(\frac{A_{2,2}}{P_1}\right) & \dots & \left(\frac{A_{2,r_2}}{P_1}\right) & 0 & 0 & \dots & 0\\ 0 & 0 & \dots & 0 & 1 & 0 & \dots & 0\\ 0 & 0 & \dots & 0 & 0 & 1 & \dots & 0\\ \vdots & \vdots\\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & 1\\ -\left(\frac{A_{1,1}}{P_2}\right) & 0 & \dots & 0 & 0 & 0 & \dots & 0\\ 0 & -\left(\frac{A_{1,1}}{P_2}\right) & \dots & 0 & 0 & 0 & \dots & 0\\ \vdots & \vdots\\ 0 & 0 & \dots & -\left(\frac{A_{1,1}}{P_2}\right) & 0 & 0 & \dots & 0 \end{pmatrix}$$

A. Aiba

So we see that $\Delta(K/k)$ has rank r(r-1)/2, where $r = r_2 + 1$, if and only if $\left(\frac{A_{1,1}}{P_2}\right) \neq 0$. By Corollary 2, this condition is equivalent to

$$\operatorname{Tr}\left(\operatorname{Res}_{P_1} A_{1,1} \frac{dP_2}{P_2}\right) \neq 0. \quad \blacksquare$$

LEMMA 3. Suppose z=3. Then $p \nmid h_K$ if and only if $K = k(y_{A_1}, y_{A_2}, y_{A_3})$ $(A_i = B_i/P_i^{e_i})$ and

$$\operatorname{Tr}\left(\operatorname{Res}_{P_{1}}A_{1}\frac{dP_{2}}{P_{2}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{2}}A_{2}\frac{dP_{3}}{P_{3}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{3}}A_{3}\frac{dP_{1}}{P_{1}}\right)$$

$$\neq\operatorname{Tr}\left(\operatorname{Res}_{P_{1}}A_{1}\frac{dP_{3}}{P_{3}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{2}}A_{2}\frac{dP_{1}}{P_{1}}\right)\operatorname{Tr}\left(\operatorname{Res}_{P_{3}}A_{3}\frac{dP_{2}}{P_{2}}\right).$$

Proof. Let T_{P_i} be the inertia group of P_i in G = Gal(K/k). Then the *p*-rank of G is $r_1 + r_2 + r_3$. Since G_{P_i}/T_{P_i} is a cyclic group, the *p*-rank of G_{P_i} is either r_i or $r_i + 1$. Hence the *p*-rank of $\bigwedge G_{P_i}$ is either $\binom{r_i}{2}$ or $\binom{r_i+1}{2}$ and

$$\binom{r}{2} \le \sum_{i=1}^{3} \binom{r_i+1}{2}.$$

Thus $p \nmid h_K$ only if $(r_1r_2 + r_1r_3 + r_2r_3) - (r_1 + r_2 + r_3) \leq 0$. This inequality holds if and only if $r_1 = r_2 = r_3 = 1$. (In this case, the *p*-rank of G_{P_i} is $r_i + 1$ for i = 1, 2, 3.) Let $K = k(y_{A_1}, y_{A_2}, y_{A_3})$ and $T_{P_i} = \text{Gal}(K/k(y_{A_j}, y_{A_k}))$, where $\{i, j, k\} = \{1, 2, 3\}$. Let χ_i be a multiplicative character on the inertia group T_{P_i} defined by $\chi_i(\sigma) = \zeta_p^{(\sigma-1)y_{A_i}}$ for $\sigma \in T_{P_i}$. With respect to the basis $\{\chi_1 \land \chi_2, \chi_1 \land \chi_3, \chi_2 \land \chi_3\}$ the matrix $\Delta(K/k)$ is given by

$$\begin{pmatrix} \left(\frac{A_2}{P_1}\right) & \left(\frac{A_3}{P_1}\right) & 0\\ -\left(\frac{A_1}{P_2}\right) & 0 & \left(\frac{A_3}{P_2}\right)\\ 0 & -\left(\frac{A_1}{P_3}\right) & -\left(\frac{A_2}{P_3}\right) \end{pmatrix}$$

So $\Delta(K/k)$ has rank 3 if and only if

$$\left(\frac{A_2}{P_1}\right)\left(\frac{A_3}{P_2}\right)\left(\frac{A_1}{P_3}\right) \neq \left(\frac{A_3}{P_1}\right)\left(\frac{A_1}{P_2}\right)\left(\frac{A_2}{P_3}\right).$$

By Corollary 2, this completes the proof. \blacksquare

EXAMPLE. Let p = q > 2. For $a, b \in \mathbb{F}_p$, and natural numbers e, f, g, we set $A_1 = 1/T^e$, $A_2 = 1/(T+a)^f$ and $A_3 = 1/(T+b)^g$. Let $K = k(y_{A_1}, y_{A_2}, y_{A_3})$. Then p is prime to h_K if and only if

$$(-1)^{e+f+g}a^{e-f}b^{g-e}(a-b)^{f-g} \neq 1, 0.$$

4. Proof of the Theorem. Suppose that $\lambda(K_{\infty}/K) = \mu(K_{\infty}/K) = \nu(K_{\infty}/K) = 0$. This condition is equivalent to $A(K_n) = 0$ for any sufficiently

large n. This is equivalent to $K_n = K_{n,G} = K_{n,C}$. By Lemma 1, \widetilde{K} must be an elementary abelian p-extension of k such that

$$\widetilde{K}k_1 = \widetilde{K}_n = (\widetilde{K}_n)_C = (\widetilde{K}k_1)_C.$$

By the argument of Section 3, when t = 0, K always satisfies this condition, and when $t \ge 3$, it does not.

In the case of t = 1, by Lemma 2,

$$Kk_1 = k(y_{A_0}, y_{A_1}, \dots, y_{A_s}),$$

where either

$$A_0 = B_0 / P_0^{e_0}, \quad A_i = B_i / P_1^{e_i} \quad (1 \le i \le s), \quad \operatorname{Tr}\left(\operatorname{Res}_{P_0} A_0 \frac{dP_1}{P_1}\right) \ne 0$$

or

$$A_i = B_i / P_0^{e_i}$$
 $(0 \le i \le s - 1), \quad A_s = B_s / P_1^{e_s}, \quad \operatorname{Tr}\left(\operatorname{Res}_{P_1} A_0 \frac{dP_0}{P_0}\right) \ne 0.$

It will suffice to find conditions for their subfields of index p to be different from k_1 . But these conditions are (1.1) and (1.2).

In the case of t = 2, we use Lemma 3 and the statement can be obtained in the same way.

Conversely, assume that K satisfies the conditions of the Theorem. Then $K_n = K_1 k_n = (K_n)_G$ and $(\widetilde{K}k_n)_C = (\widetilde{K}k_1)_C = \widetilde{K}k_1 = \widetilde{K}k_n$ for all $n \ge 1$. This completes the proof.

Acknowledgements. The author is grateful to the referee for his very careful reading of the manuscript and for his comments that improved the presentation.

References

- S. Bae and H. Jung, Central extensions and Hasse norm principle over function fields, Tokyo J. Math. 24 (2001), 93–106.
- G. Cornell and M. Rosen, The class group of an absolutely abelian l-extension, Illinois J. Math. 32 (1988), 453–461.
- F. Gerth, The Hasse norm principle for abelian extensions of number fields, Bull. Amer. Math. Soc. 83 (1977), 264–266.
- [4] R. Gold and H. Kisilevsky, On geometric Z_p-extensions of function fields, Manuscripta Math. 62 (1988), 145–161.
- H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, J. Reine Angew. Math. 172 (1934), 37–54.
- [6] S. Iyanaga (ed.), Suuron [Number Theory], Iwanami Shoten, Tokyo, 1969 (in Japanese).

A. Aiba

 G. Yamamoto, On the vanishing of Iwasawa invariants of absolutely abelian p-extensions, Acta Arith. 94 (2000), 365–371.

Department of Mathematical Sciences Ibaraki University Mito, Ibaraki 310-8512, Japan E-mail: aiba@mx.ibaraki.ac.jp

> Received on 19.2.2001 and in revised form on 9.8.2002

(3976)

122