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On the vanishing of Iwasawa invariants of
geometric cyclotomic Zp-extensions

by

Akira Aiba (Ibaraki)

0. Introduction. Several authors have studied Iwasawa invariants of
cyclotomic Zp-extensions of a number field. The constant Zp-extension of
an algebraic function field K over a finite field of characteristic p > 0 has
often provided a useful analogy for the study of cyclotomic Zp-extensions of
number fields. But little is known about the corresponding results for geo-
metric Zp-extensions of K (cf. [4]). In this paper, we first define a geometric
cyclotomic Zp-extension of K (Section 1). Our aim is the determination of
all abelian p-extension fields of a rational function field k such that the Iwa-
sawa invariants of a geometric cyclotomic Zp-extension are zero. The main
result is stated in Section 2. This is an analogue of G. Yamamoto’s theo-
rem ([7]). The proof is based on the central class field and genus field theory.
The function field analogue that we need is essentially shown by Bae and
Jung [1]. Following them, we determine in Section 3 all elementary abelian
p-extensions of k whose class number is prime to p. Using this, we conclude
the proof of our main theorem in Section 4.

1. Geometric cyclotomic Zp-extension. Let p be a prime and Zp
the ring of p-adic integers. Let q be a power of p and Fq the finite field
of q elements. We set k = Fq(T ), the rational function field over the finite
field Fq, and O = Ok = Fq[T ]. We write k1/T for the completion of k at the
place corresponding to 1/T and choose a uniformizer π of k1/T . Denote by
C the field k1/T (q−1

√−π). In the following, by an extension of k we mean a
separable extension of k for which any embedding into an algebraic closure
kac

1/T lies in C viewed as a subfield of kac
1/T . LetK be a finite abelian extension

of k. Let OK be the integral closure of Ok in K. Let IK be the group of non-
zero fractional ideals of OK and PK the group of non-zero principal ideals
of OK . We set Pic(OK) = IK/PK , the ideal class group of OK . Let HK be
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the Hilbert class field of K, i.e. the maximal unramified geometric abelian
extension of K. We set hK = ]Pic(OK). It is known that Gal(HK/K) '
Pic(OK).

Let K∞/K be a geometric Zp-extension (i.e.K∞/K is a Galois extension
with Γ = Gal(K∞/K) ' Zp and for all n, the nth layer Kn has constant
field Fq). Let A(Kn) be the p-Sylow subgroup of Pic(OKn). Let X∞ =
lim←−A(Kn) be the inverse limit of the groups A(Kn) with respect to the norm
map. Let Λ denote the complete group ring Zp[[Γ ]], so that Λ ' Zp[[T ]].

The proof of the next proposition is the same as that of Theorem 2 in [4].

Proposition 1. If there are only a finite number of primes (of K) ram-
ified in K∞/K then X∞ is a noetherian torsion Λ-module. If there are
infinitely many ramified primes then X∞ is not a noetherian Λ-module.

Corollary 1. Let K∞/K be a geometric Zp-extension with only a fi-
nite number of ramified primes. Then there exist integers λ= λ(K∞/K)≥ 0,
µ = µ(K∞/K) ≥ 0, ν = ν(K∞/K) and n0 ≥ 0 such that

]A(Kn) = pλn+µpn+ν for all n ≥ n0.

We denote by KG the genus field of K. So KG is the maximal geometric
unramified abelian extension of K such that KG/k is an abelian extension.
As in the number field case it has been shown that (cf. [1, Lemma 1.1])

(∗) [KG : K] =
∏
v ev

[K : k]
,

where ev is the ramification index of a place v of k in K. We use this result
to prove the next proposition.

Proposition 2. Let k∞/k be a geometric Zp-extension over k = Fq(T )
with only a finite number of ramified primes.

(1) If there is only one prime of k ramified in k∞/k then λ(k∞/k) =
µ(k∞/k) = ν(k∞/k) = 0.

(2) If there are more than two primes of k ramified in k∞/k then
λ(k∞/k) > 0 or µ(k∞/k) > 0.

Proof. (1) See [4, p. 156].
(2) Let k∞/k be a geometric Zp-extension which ramifies at P1, . . . , Pm

(m > 1). There exists n0 ≥ 0 such that every prime which ramifies in k∞/kn0

is totally ramified. By (∗),
psm−n0−s | [(kn0+s)G : kn0+s]]A(kn0+s)

and
logp ]A(kn0+s) ≥ (m− 1)(s+ n0)− n0m.

Therefore µ(k∞/k) > 0 or λ(k∞/k) ≥ m− 1.
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Recall that the rational number field Q has a unique Zp-extension Q∞
(λ(Q∞/Q) = µ(Q∞/Q) = ν(Q∞/Q) = 0) and for a number field K, we call
the Zp-extension K · Q∞/K a cyclotomic Zp-extension of K. By Proposi-
tion 2, it is natural to make the following:

Definition. Let k∞/k be a geometric Zp-extension unramified outside
one prime over a rational function field k = Fq(T ). Let K be a finite exten-
sion of k. We set K∞ = Kk∞. We call the Zp-extension K∞/K a geometric
cyclotomic Zp-extension.

2. Main theorem. First, we define some notations and recall some
properties of Artin–Schreier extensions. For details, see [5], [6].

Let F be a field of characteristic p > 0. If L is an abelian extension of
degree p of F (an Artin–Schreier extension of F ), then L can be written as
L = F (yA), where yA satisfies the equation

ypA − yA = A with A ∈ F .

(1) Local case. Let F = Fq((t)) be the power series field over a finite
field Fq. We let o be the valuation ring, p its maximal ideal and vp the
valuation with respect to p. We put L = F (yA). Then L/F is unramified if
and only if A ∈ o + PF , where PF = {xp − x : x ∈ F}. In this case, let(L/F

p

)
be the Frobenius automorphism and set

(
A
p

)
=
(L/F

p

)
yA − yA.

For a ∈ F ∗, x ∈ F , let xdadt =
∑
i cit

i. It is known that Resxda = c−1

(the residue of a differential form xda) is independent of the choice of a
uniformizer t. We set (

a, x

p

)
= Tr

(
Resx

da

a

)
,

where Tr = TrFq/Fp . If F (yA)/F is unramified, then
(
a,A
p

)
= vp(a)

(
A
p

)
∈ Fp.

(2) Global case. We set k = Fq(T ). Let K = k(yA) be an Artin–Schreier
extension of k. One may assume that A is in standard form, that is,

A =
B∏
P eii

,

where

(a) Pi ∈ Ok are irreducible polynomials,
(b) ei are positive integers relatively prime to p,
(c) B ∈ Ok is relatively prime to the denominator, and
(d) degA = degB − deg(

∏
P eii ) is negative.

The primes of k that ramify in k(yA) are exactly the Pi. From now on,
when we consider an Artin–Schreier extension k(yB/∏P eii ) of a global field,
we assume that B/

∏
P eii is in standard form.
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For P ∈ Ok an irreducible polynomial of degree d, we let iP be the
natural embedding

iP : k ↪→ kP ' Fqd((t)),

where kP is the completion of k at P . For a ∈ k∗, x ∈ k, we define ResP xda
= Res iP (x)diP (a). We can show the reciprocity law in this case as follows:

Proposition 3 ([6, Chapter 4, §5]). For a ∈ k∗, x ∈ k,
∑

P

(
iP (a), iP (x)

P

)
= 0,

where the sum runs over the irreducible polynomials of Ok.

Corollary 2. Let P 6= Q be irreducible polynomials in Ok and A =
B/P e. Then (

A

Q

)
= −Tr

(
ResP A

dQ

Q

)
.

Proof. By the definition and Proposition 3,

0 =
∑

L

(
iL(Q), iL(A)

L

)
=
(
iP (Q), iP (A)

P

)
+
(
iQ(Q), iQ(A)

Q

)

= Tr
(

ResP A
dQ

Q

)
+
(
A

Q

)
.

We now state our main result.

Theorem. Let k∞/k be a geometric cyclotomic Zp-extension which
ramifies only at P0. Let the first layer be k1 = k(yB0/P

e0
0

). Let K be an
abelian p-extension of k, and P1, . . . , Pt be distinct prime factors differ-
ent from P0 of its conductor fK . Let K̃ be the maximal elementary p-
subextension of K and K∞ = Kk∞. If

(1) λ(K∞/K) = µ(K∞/K) = ν(K∞/K) = 0,

then t ≤ 2. Conversely , in each case of t = 0, 1 or 2, the following are
necessary and sufficient conditions for (1):

In case t= 0, (1) always holds.
In case t= 1, (1) holds if and only if K1 =K1,G and K̃ = k(yC1 , . . . , yCs)

6⊃ k(yB0/P
e0
0

), where either

(1.1)

Ci = ti0B0/P
e0
0 +

s∑

j=1

tijBj/P
ej
1 for tij ∈ Fp (1 ≤ j ≤ s),

Tr
(

ResP0

B0dP1

P e0P1

)
6= 0
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or

(1.2)

Ci =
s−1∑

j=0

tijBi/P
ej
0 + tisBs/P

es
1 for tij ∈ Fp (1 ≤ j ≤ s),

Tr
(

ResP1

BsdP0

P es1 P0

)
6= 0.

In case t = 2, (1) holds if and only if K1 = K1,G and K̃ = k(yC1 , yC2) 6⊃
k(yB0/P

e0
0

), where Ci =
∑2
j=0 tijBj/P

ej
j for tij ∈ Fp, rank(tij) = 2 and

Tr
(

ResP0

B0dP1

P e00 P1

)
Tr
(

ResP1

B1dP2

P e11 P2

)
Tr
(

ResP2

B2dP0

P e22 P0

)

6= Tr
(

ResP0

B0dP2

P e00 P2

)
Tr
(

ResP1

B1dP0

P e11 P0

)
Tr
(

ResP2

B2dP1

P e22 P1

)
.

3. Review of the genus theory. Suppose that p is a prime and
Gal(K/k) is an abelian p-group. Then the genus field KG of K is also an
abelian p-extension as is easily seen from (∗). If p does not divide the class
number of K, then K does not have any non-trivial geometric unramified
abelian p-extension by class field theory, hence KG = K. In the following
we will assume KG = K. Further, we consider the central p-class field KC

of K, that is, KC is the maximal p-extension of K such that KC/K is ge-
ometric, abelian and unramified, KC/k is Galois and Gal(KC/K) is in the
center of Gal(KC/k). Since a p-group must have a lower central series that
terminates in the identity, one sees that p -hK if and only if KC = K. So
we are interested in when KC = K. This can be reduced to the case when
Gal(K/k) is an elementary abelian p-group by the following result:

Lemma 1 ([2, Theorem 1], [7, Lemma 3]). Let K/k be an abelian
p-extension with KG = K. Let K̃ be the maximal intermediate extension
between k and K such that Gal(K̃/k) is an elementary p-group. Then the
p-rank of Gal(KC/K) is equal to the p-rank of Gal((K̃)C/K̃).

Now let K/k be a finite elementary abelian p-extension. Let G =
Gal(K/k) and XG be the group of characters of G. Let

∧2(G) denote the ex-
terior product of G. If [K : k] = pr, we may view G and

∧2(G) as Fp-vector
spaces of dimension r and r(r − 1)/2, respectively. Let {χ1, . . . , χr} be a
basis of XG over Fp. Let S be the set of all primes of k which ramify on K.
For each prime P ∈ S, let {g1, . . . , gs} be a basis of the decomposition group
GP over Fp. Let [δtu,αβ ]p be the matrix over Fp with s(s − 1)/2 rows and
r(r−1)/2 columns whose entry δtu,αβ in the tu row and αβ column is defined
by the relation

(χα ∧ χβ)(gt ∧ gu) = ζ
δtu,αβ
p ,
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where ζp is a fixed primitive pth root of unity and ∧ is the exterior product.
Let∆(K/k) be the matrix over Fp whose rows are all the rows of the matrices
[δtu,αβ ]p as p runs over all elements of S.

Proposition 4 ([3, Theorem 3], [1, Proposition 2.2]). Let K/k be a
finite elementary abelian p-extension. Then the following are equivalent :

(1) Gal(KC/K) has trivial p-rank.
(2) ∆(K/k) has rank r(r − 1)/2, where r is the p-rank of Gal(K/k).

Now we use this criterion to determine all elementary abelian p-exten-
sions of k whose class number is prime to p.

Let P1, . . . , Pz be distinct monic irreducible polynomials and let di =
degPi for each i. Let K be a finite elementary abelian p-extension of k
whose conductor has prime factors P1, . . . , Pz. Let TPi be the inertia group
of Pi and ri be the p-rank of TPi .

If z = 1, then P1 is the only prime of k which ramifies in K. So the
decomposition group GP1 of P1 is G and p does not divide hK .

If z ≥ 4, then z < z(z − 1)/2. The p-rank of
∧2(GPi) is at most

ri(ri + 1)/2. Since rankG =
∑

rankTPi (cf. [1, Section 1]), the p-rank of∧2(G) is
∑
ri(
∑
ri − 1)/2. We have∑

ri(
∑
ri − 1)

2
−
∑

i

ri(ri + 1)
2

=
∑

i<j

rirj −
∑

i

ri

=
z−1∑

i=1

ri(ri+1 − 1) + rz(r1 − 1) +
∑

i+1<j
(i,j)6=(1,z)

rirj > 0.

So Gal(KC/K) has non-trivial p-rank and p divides hK . It remains to con-
sider the cases: z = 2 and z = 3.

Lemma 2. Suppose z = 2. Then p -hK if and only if , by changing the
order of P1 and P2 if necessary , K = k(yA1,1 , yA2,1 , . . . , yA2,s) (Ai,j =
Bi,j/P

eij
k ) and

Tr
(

ResP1 A1,1
dP2

P2

)
6= 0.

Proof. Since KG = K, the p-rank of G is r = r1 + r2. Since GPi/TPi is a
cyclic group, the p-rank of GPi is ri or ri + 1. Hence in order that ∆(K/k)
has rank r(r − 1)/2, we must have

(
r

2

)
≤

2∑

i=1

(
ri + 1

2

)
.

Hence p -hK only if r1r2 − (r1 + r2) ≤ 0. This inequality holds if and only
if either r1 = r2 = 2 (in this case, the p-rank of GPi is ri + 1 for i = 1, 2) or
ri = 1 for some i.
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When r1 = r2 = 2, let

K = k(yA1,1 , yA1,2 , yA2,1 , yA2,2),

TPi = Gal(K/k(yAj,1 , yAj,2)) (i = 1, 2, j 6= i).

Let {χi,1, χi,2} be a basis of the dual group of TPi over Fp defined by

χi,k(σ) = ζ
(σ−1)yAi,k
p for σ ∈ TPi . Then with respect to the basis {χ1,1∧χ1,2,

. . . , χ2,1 ∧ χ2,2}, by choosing suitable bases of GPi ’s, the matrix ∆(K/k) is
given by




1 0 0 0 0 0
0

(A2,1

P1

) (A2,2

P1

)
0 0 0

0 0 0
(A2,1

P1

) (A2,2

P1

)
0

0 0 0 0 0 1
0 −

(A1,1

P2

)
0 −

(A1,2

P2

)
0 0

0 0 −
(A1,1

P2

)
0 −

(A1,2

P2

)
0



.

Since

det(∆(K/k))

= −
(
A2,1

P1

)(
A2,2

P1

)(
A1,1

P2

)(
A1,2

P2

)
+
(
A2,2

P1

)(
A2,1

P1

)(
A1,1

P2

)(
A1,2

P2

)

= 0,

p divides hK .
When ri = 1 and rj ≥ 1 arbitrary, we may assume that i = 1, j = 2. Let

K = k(yA1,1 , yA2,1 , . . . , yA2,rj
), TP1 = Gal(K/k(yA2,1 , . . . , yA2,r2

)) and TP2 =
Gal(K/k(yA1,1)). Let χ1 be a multiplicative character on the inertia group

TP1 defined by χ1(σ) = ζ
(σ−1)yA1,1
p for σ ∈ TP1 and {χ2,1, χ2,2, . . . , χ2,r2} be

a basis of the dual group of TP2 defined by χ2,k(τ) = ζ
(τ−1)yA2k
p for τ ∈ TP2 .

With respect to the basis {χ1 ∧χ2,1, χ1 ∧χ2,2, . . . , χ2,r2−1 ∧χ2,r2}, again by
choosing suitable bases for GP1 ’s, the matrix ∆(K/k) is




(A2,1

P1

) (A2,2

P1

)
. . .

(A2,r2
P1

)
0 0 . . . 0

0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...
...

...
0 0 . . . 0 0 0 . . . 1

−
(A1,1

P2

)
0 . . . 0 0 0 . . . 0

0 −
(A1,1

P2

)
. . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

0 0 . . . −
(A1,1

P2

)
0 0 . . . 0




.
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So we see that ∆(K/k) has rank r(r − 1)/2, where r = r2 + 1, if and only
if
(A1,1

P2

)
6= 0. By Corollary 2, this condition is equivalent to

Tr
(

ResP1 A1,1
dP2

P2

)
6= 0.

Lemma 3. Suppose z=3. Then p -hK if and only if K=k(yA1 , yA2 , yA3)
(Ai = Bi/P

ei
i ) and

Tr
(

ResP1 A1
dP2

P2

)
Tr
(

ResP2 A2
dP3

P3

)
Tr
(

ResP3 A3
dP1

P1

)

6= Tr
(

ResP1 A1
dP3

P3

)
Tr
(

ResP2 A2
dP1

P1

)
Tr
(

ResP3 A3
dP2

P2

)
.

Proof. Let TPi be the inertia group of Pi in G = Gal(K/k). Then the
p-rank of G is r1 + r2 + r3. Since GPi/TPi is a cyclic group, the p-rank of
GPi is either ri or ri + 1. Hence the p-rank of

∧
GPi is either

(
ri
2

)
or
(
ri+1

2

)

and (
r

2

)
≤

3∑

i=1

(
ri + 1

2

)
.

Thus p -hK only if (r1r2 + r1r3 + r2r3)− (r1 + r2 + r3) ≤ 0. This inequality
holds if and only if r1 = r2 = r3 = 1. (In this case, the p-rank of GPi is ri+1
for i = 1, 2, 3.) Let K = k(yA1 , yA2 , yA3) and TPi = Gal(K/k(yAj , yAk)),
where {i, j, k} = {1, 2, 3}. Let χi be a multiplicative character on the inertia

group TPi defined by χi(σ) = ζ
(σ−1)yAi
p for σ ∈ TPi . With respect to the

basis {χ1 ∧ χ2, χ1 ∧ χ3, χ2 ∧ χ3} the matrix ∆(K/k) is given by



(
A2
P1

) (
A3
P1

)
0

−
(
A1
P2

)
0

(
A3
P2

)

0 −
(
A1
P3

)
−
(
A2
P3

)


 .

So ∆(K/k) has rank 3 if and only if
(
A2

P1

)(
A3

P2

)(
A1

P3

)
6=
(
A3

P1

)(
A1

P2

)(
A2

P3

)
.

By Corollary 2, this completes the proof.

Example. Let p = q > 2. For a, b ∈ Fp, and natural numbers e, f, g,
we set A1 = 1/T e, A2 = 1/(T + a)f and A3 = 1/(T + b)g. Let K =
k(yA1 , yA2 , yA3). Then p is prime to hK if and only if

(−1)e+f+gae−fbg−e(a− b)f−g 6= 1, 0.

4. Proof of the Theorem. Suppose that λ(K∞/K) = µ(K∞/K) =
ν(K∞/K) = 0. This condition is equivalent to A(Kn) = 0 for any sufficiently
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large n. This is equivalent to Kn = Kn,G = Kn,C . By Lemma 1, K̃ must be
an elementary abelian p-extension of k such that

K̃k1 = K̃n = (K̃n)C = (K̃k1)C .

By the argument of Section 3, when t = 0, K always satisfies this condition,
and when t ≥ 3, it does not.

In the case of t = 1, by Lemma 2,

K̃k1 = k(yA0 , yA1 , . . . , yAs),

where either

A0 = B0/P
e0
0 , Ai = Bi/P

ei
1 (1 ≤ i ≤ s), Tr

(
ResP0 A0

dP1

P1

)
6= 0

or

Ai = Bi/P
ei
0 (0 ≤ i ≤ s− 1), As = Bs/P

es
1 , Tr

(
ResP1 A0

dP0

P0

)
6= 0.

It will suffice to find conditions for their subfields of index p to be different
from k1. But these conditions are (1.1) and (1.2).

In the case of t = 2, we use Lemma 3 and the statement can be obtained
in the same way.

Conversely, assume that K satisfies the conditions of the Theorem. Then

Kn = K1kn = (Kn)G and ( ˜̃Kkn)C = (K̃k1)C = K̃k1 = ˜̃
Kkn for all n ≥ 1.

This completes the proof.
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