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On the vanishing of Iwasawa invariants of
geometric cyclotomic Z,-extensions

by

AKIRA AIBA (Ibaraki)

0. Introduction. Several authors have studied Iwasawa invariants of
cyclotomic Z,-extensions of a number field. The constant Z,-extension of
an algebraic function field K over a finite field of characteristic p > 0 has
often provided a useful analogy for the study of cyclotomic Z,-extensions of
number fields. But little is known about the corresponding results for geo-
metric Z,-extensions of K (cf. [4]). In this paper, we first define a geometric
cyclotomic Z,-extension of K (Section 1). Our aim is the determination of
all abelian p-extension fields of a rational function field k such that the Iwa-
sawa invariants of a geometric cyclotomic Z,-extension are zero. The main
result is stated in Section 2. This is an analogue of G. Yamamoto’s theo-
rem ([7]). The proof is based on the central class field and genus field theory.
The function field analogue that we need is essentially shown by Bae and
Jung [1]. Following them, we determine in Section 3 all elementary abelian
p-extensions of k whose class number is prime to p. Using this, we conclude
the proof of our main theorem in Section 4.

1. Geometric cyclotomic Z,-extension. Let p be a prime and Z,
the ring of p-adic integers. Let ¢ be a power of p and F, the finite field
of ¢ elements. We set k = F,(T), the rational function field over the finite
field Fy, and O = Oy = Fy[T]. We write ky,p for the completion of k at the
place corresponding to 1/7" and choose a uniformizer 7 of k7. Denote by
C' the field ky ;7 (*~/—). In the following, by an exztension of k we mean a
separable extension of k for which any embedding into an algebraic closure
k:??T lies in C viewed as a subfield of k?;T Let K be a finite abelian extension
of k. Let Ok be the integral closure of Oy in K. Let Ix be the group of non-
zero fractional ideals of O and Pg the group of non-zero principal ideals
of Og. We set Pic(Ok) = Ik / Pk, the ideal class group of Ok. Let Hx be
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the Hilbert class field of K, i.e. the maximal unramified geometric abelian
extension of K. We set hx = §Pic(Ok). It is known that Gal(Hg /K) ~
PIC(OK)

Let Ko /K be a geometric Z,-extension (i.e. Ko /K is a Galois extension
with I' = Gal(K/K) ~ Z, and for all n, the nth layer K,, has constant
field F,). Let A(K,) be the p-Sylow subgroup of Pic(Ok, ). Let Xoo =
lim A(K,,) be the inverse limit of the groups A(K,) with respect to the norm
map. Let A denote the complete group ring Z,[[I']], so that A ~ Z,[[T7]].

The proof of the next proposition is the same as that of Theorem 2 in [4].

PROPOSITION 1. If there are only a finite number of primes (of K) ram-
ified in Ko /K then Xo is a noetherian torsion A-module. If there are
infinitely many ramified primes then X is not a noetherian A-module.

COROLLARY 1. Let K /K be a geometric Zjy-extension with only a fi-
nite number of ramified primes. Then there ezist integers A= AKo /K ) >0,
= puKw/K)>0,v=v(Ks/K) and ng > 0 such that

BA(K,) = pM P Y for all n > ny.

We denote by K¢ the genus field of K. So K is the maximal geometric
unramified abelian extension of K such that K¢/k is an abelian extension.
As in the number field case it has been shown that (cf. [1, Lemma 1.1})

I, €
* Kg: K| =28
where e, is the ramification index of a place v of k in K. We use this result
to prove the next proposition.

PROPOSITION 2. Let koo /k be a geometric Zi,-extension over k = F (T
with only a finite number of ramified primes.

(1) If there is only one prime of k ramified in koo /k then Akoo/k) =
plkso/k) = v(koo/k) = 0.

(2) If there are more than two primes of k ramified in koo /k then
Mkoo/k) >0 or p(keo/k) > 0.

Proof. (1) See [4, p. 156].

(2) Let koo /k be a geometric Z,-extension which ramifies at Py, ..., Py,

(m > 1). There exists ny > 0 such that every prime which ramifies in ke /kn,
is totally ramified. By (x),

psmingis ‘ [(kno-i-s)G : kno-&-S]ﬁA(kno-f-s)
and
log, #A(kng+s) = (m —1)(s + ng) — nom.

Therefore p(koo/k) > 0 or AMkoo/k) >m —1. m
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Recall that the rational number field Q has a unique Z,-extension Qs
(AMQx/Q) = Qs /Q) = ¥(Qs/Q) = 0) and for a number field K, we call
the Z,-extension K - Qo /K a cyclotomic Z,-extension of K. By Proposi-
tion 2, it is natural to make the following;:

DEFINITION. Let ko /k be a geometric Zy-extension unramified outside
one prime over a rational function field k = F,(T"). Let K be a finite exten-
sion of k. We set Ko, = Kko. We call the Z,-extension K,/K a geometric
cyclotomic Z,-extension.

2. Main theorem. First, we define some notations and recall some
properties of Artin—Schreier extensions. For details, see [5], [6].

Let F be a field of characteristic p > 0. If L is an abelian extension of
degree p of F' (an Artin-Schreier extension of F'), then L can be written as
L = F(ya), where y4 satisfies the equation

v —ya=A with AeF.

(1) Local case. Let F' = F,((t)) be the power series field over a finite
field F,. We let o be the valuation ring, p its maximal ideal and v, the
valuation with respect to p. We put L = F(y4). Then L/F is unramified if
and only if A € o+ PF, where PF = {2P —z : € F}. In this case, let
(L‘/TF) be the Frobenius automorphism and set (%) = (L'/TF)yA —YA.

For a € F*,x € F, let xi—? = c;t'. Tt is known that Resxda = c_;
(the residue of a differential form xda) is independent of the choice of a

uniformizer t. We set
<ﬂ> =Tr (Res az@> ,
p a

where Tr = Trg_jr,. If F'(ya)/F is unramified, then (%) = vy (a)(%) eF,.
(2) Global case. We set k =1TF4(T'). Let K = k(ya) be an Artin-Schreier
extension of k. One may assume that A is in standard form, that is,

B

A= —
e

where

(a) P; € Oy are irreducible polynomials,

(b) e; are positive integers relatively prime to p,

(c) B € Oy is relatively prime to the denominator, and
(d) deg A = deg B — deg([[ P{*) is negative.

The primes of k that ramify in k(y4) are exactly the P;. From now on,
when we consider an Artin-Schreier extension k(yp, [y pei) of a global field,
we assume that B/ [[ P is in standard form.
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For P € Oy an irreducible polynomial of degree d, we let ip be the
natural embedding
ip:k—kp~TFu((t)),

where kp is the completion of k£ at P. For a € k*, x € k, we define Resp xzda
= Resip(x)dip(a). We can show the reciprocity law in this case as follows:

PROPOSITION 3 ([6, Chapter 4, §5]). For a € k*,x € k,

3 (ip(a)}jp(x)> _

P

where the sum runs over the irreducible polynomials of Oy.

COROLLARY 2. Let P # @ be irreducible polynomials in O and A =

B/P¢. Then
A dQ)
— | =—Tr{Resp A— ).
(Q> ( e
Proof. By the definition and Proposition 3,

0— EL: <iL(Q),LiL(A)> _ <iP(Q)]73iP(A)> n (iQ(Q)C,;Q(A)>

= TI'(RGSP A%) + <%> n

We now state our main result.

THEOREM. Let koo/k be a geometric cyclotomic Zy-extension which
ramifies only at Py. Let the first layer be k1 = k:(yBo/Pgo). Let K be an
abelian p-extension of k, and Py,...,P; be distinct prime factors differ-

ent from Py of its conductor fx. Let K be the mazimal elementary p-
subextension of K and Koo = Kkoo. If
(1) AMEoo/K) = p(Koo/K) = v(Koo /K) =0,
then t < 2. Conversely, in each case of t = 0,1 or 2, the following are
necessary and sufficient conditions for (1):

In case t=0, (1) always holds.

In case t=1, (1) holds if and only if K; =K, ¢ and K= kE(yoys---yyc.)
2 k(yp, peo), where either

Ci:ting/POeO—f—Ztiij/Pfj f07" tij EFP (1§j§8),
(1.1) j=1

BydP,
Tr( R 0
r( esp, PP, ) #
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or
s—1

Ci= ZtijBi/Poej +tisBs/Pre for tij €F, (1<j < s),
(1.2) 3=0

B.dP,
Tr| R — 0.
( e Pf%) 7

In case t = 2, (1) holds if and only if K1 = K1, and K = k(ye,,yc,) 2
k(yp, peo), where C; = Z?:o tiij/Pjej for t;; € Fp, rank(t;;) =2 and

Bodpl Bldpg BZdPO
Tr (Resp0 POEO P, > Tr (Res P, m Tr( Resp, P2€2 7

BodP; BidPy Bad Py
T Sapn | T T pe2p )
# Tr (Res Po PP, ) r (Res Py Pr Py > r <Resp2 Peh, )

3. Review of the genus theory. Suppose that p is a prime and
Gal(K/k) is an abelian p-group. Then the genus field K of K is also an
abelian p-extension as is easily seen from (x). If p does not divide the class
number of K, then K does not have any non-trivial geometric unramified
abelian p-extension by class field theory, hence K¢ = K. In the following
we will assume K¢ = K. Further, we consider the central p-class field K¢
of K, that is, K¢ is the maximal p-extension of K such that K¢ /K is ge-
ometric, abelian and unramified, K¢ /k is Galois and Gal(K¢/K) is in the
center of Gal(K¢/k). Since a p-group must have a lower central series that
terminates in the identity, one sees that p{hg if and only if K¢ = K. So
we are interested in when Ko = K. This can be reduced to the case when
Gal(K/k) is an elementary abelian p-group by the following result:

LeEMMA 1 ([2, Theorem 1], [7, Lemma 3]). Let K/k be an abelian
p-extension with Ko = K. Let K be the mazimal intermediate extension
between k and K such that Gal(f(/k:) is an elementary p-group. Then the
p-rank of Gal(K¢/K) is equal to the p-rank of Gal((K)c/K).

Now let K/k be a finite elementary abelian p-extension. Let G =
Gal(K/k) and X¢ be the group of characters of G. Let A*(G) denote the ex-
terior product of G. If [K : k] = p", we may view G and \*(G) as F,-vector
spaces of dimension r and r(r — 1)/2, respectively. Let {x1,...,x,} be a
basis of X over FF),. Let S be the set of all primes of £ which ramify on K.
For each prime P € S, let {g1,...,8s} be a basis of the decomposition group
Gp over Fp,. Let [04y,08]p be the matrix over I, with s(s — 1)/2 rows and
r(r—1)/2 columns whose entry 04, in the tu row and a3 column is defined
by the relation

6tua
(Xa A xB) (8t A gu) = G,



118 A. Aiba

where (), is a fixed primitive pth root of unity and A is the exterior product.
Let A(K/k) be the matrix over F,, whose rows are all the rows of the matrices
[0tu,aplp as p runs over all elements of S.

PROPOSITION 4 ([3, Theorem 3], [1, Proposition 2.2]). Let K/k be a
finite elementary abelian p-extension. Then the following are equivalent:

(1) Gal(K¢/K) has trivial p-rank.
(2) A(K/k) has rank r(r — 1)/2, where r is the p-rank of Gal(K/k).

Now we use this criterion to determine all elementary abelian p-exten-
sions of k£ whose class number is prime to p.

Let Pi,..., P, be distinct monic irreducible polynomials and let d; =
deg P; for each i. Let K be a finite elementary abelian p-extension of k
whose conductor has prime factors P, ..., P,. Let Tp, be the inertia group
of P; and r; be the p-rank of Tp,.

If z = 1, then P; is the only prime of k which ramifies in K. So the
decomposition group Gp, of P; is G and p does not divide hg.

If z > 4, then z < z(z — 1)/2. The prank of A\*(Gp,) is at most
ri(ri + 1)/2. Since rank G = > rank Tp, (cf. [1, Section 1}), the p-rank of

A’ (G) is S ri(Xr; — 1)/2. We have
ri(Q i —1 ri( n 1)
ST gt s s

7 1<J

z—1
Zrl riv1 — 1) +7r.(r1—1)+ Z rir; > 0.
i=1 i+1<j
(1,5)#(1,2)
So Gal(K¢/K) has non-trivial p-rank and p divides hg. It remains to con-
sider the cases: z =2 and z = 3.

LEMMA 2. Suppose z = 2. Then pthg if and only if, by changing the
order of Py and Py if necessary, K = k(ya, »YAs.,--- Ya,.) (Aij =
BZ‘J‘/PI:U) and

TI‘(E{GSP1 Al 15— > 7& 0.

Proof. Since K = K, the p-rank of G is r = r1 +19. Since Gp, /Tp, is a
cyclic group, the p-rank of Gp, is r; or r; + 1. Hence in order that A(K/k)
has rank r(r — 1)/2, we must have

()=2(")

Hence pthg only if ri7r9 — (r1 + r2) < 0. This inequality holds if and only
if either r1 = ro = 2 (in this case, the p-rank of Gp, is r; + 1 for i = 1,2) or
r; = 1 for some i.
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When r; =7y = 2, let

K = k(yAl,l7yA1,27yA2,1vyA2,2)7
Tp, = Gal(K/k(ij,wij,z)) (i=1,2,j# Z)

Let {xi,1,x:2} be a basis of the dual group of Tp, over F, defined by

o—1 )
Xi k(o) = ng WAL for o € Tp,. Then with respect to the basis {x1,1 Ax1,2,

.., X2,1 A\ x2,2}, by choosing suitable bases of G p,’s, the matrix A(K/k) is
given by

1 AO 4 0 0 0
o (F) (3 0 oo
0 0 0 (7)) (7)) o
0 0 0 0 0 1
0 (7)) 0 (%) 0 0
o o —(F) 0 —(F) 0
Since
det(A(K/F))
_ (Ao (A2 (A1) [(Ar n Ao\ (Ao \ (A1) [ A2
B Py Py P P P Py Py Py

p divides h.

When 7; = 1 and r; > 1 arbitrary, we may assume that i = 1, j = 2. Let
K = k(yA1,17yA2,1’ s 7yA2,7‘j )’ Tp = GaI(K/k(yAQ,lv 9 YAs ., )) and Tp, =
Gal(K/k(ya,.))- Let x1 be a multiplicative character on the inertia group

Tp, defined by x1(0) = ngg_l)yAl’l for o € Tp, and {x2,1,X2,2,- - X2.r» } D€

a basis of the dual group of T'p, defined by x2,1(7) = C;,(,T_l)yA% for 7 € Tp,.
With respect to the basis {x1 A X2,1, X1 AX2.25- s X2.ra—1 A X2,r, }» 8gaIN by
choosing suitable bases for Gp,’s, the matrix A(K/k) is

Az r
() (%) (=) 00 o
0 0 ... 0 1.0 .0
0 0 ... 0 01 ..0
0 0 0 00 1
~(32) 0 0 00
o —(F)
0 0 (3 00 0



120 A. Aiba

So we see that A(K/k) has rank r(r — 1)/2, where r = ry + 1, if and only
if (A1 1) # 0. By Corollary 2, this condition is equivalent to

TI‘(RGSPI All ) 750 n

LEMMA 3. Suppose z=3. Then pthg if and only if K=k(ya,, YAy, YAs)
(AZ = Bl/Pzel) and

Tr (Resp1 A —= P ) Tr <ResP2 Ay—= dFs ) Tr (ResP3 Az—— b >
Py Py

dPs dP, dpb,
# Tr <ResP1 A —= > Tr <ReSp2 Ag—— ) Tr (Re5p3 As3—= )
P P,

Proof. Let Tp, be the inertia group of P; in G = Gal(K/k). Then the
p-rank of G is r1 + ro + r3. Since Gp, /Tp, is a cyclic group, the p-rank of
Gp, is either r; or r; + 1. Hence the p-rank of A Gp, is either (g) or (”’Ll)

2
and
3
r r; +1
< .
()= (")

Thus pthg only if (riry + ri7r3 +rors) — (11 + 72 + r3) < 0. This inequality
holds if and only if r1 = ro = r3 = 1. (In this case, the p-rank of Gp, is r; +1
for i = 1,2,3.) Let K = k(ya,,y4,,Y4;) and Tp, = Gal(K/k(ya,,ya.)),
where {i,j,k} = {1,2,3}. Let x; be a multiplicative character on the inertia

group Tp, defined by x;(o) = ,(,U WA for o € Tp,. With respect to the

basis {x1 A X2, X1 A X3, X2 A X3} the matrix A(K/k) is given by
(#) () 0
-(#) 0 (%)
0 -() -(#)
So A(K/k) has rank 3 if and only if

(7) () () (7)(7)(7)

By Corollary 2, this completes the proof. m

bS

EXAMPLE. Let p = q > 2. For a,b € F,, and natural numbers e, f, g,
we set Ay = 1/T¢, Ay = 1/(T +a)) and A3 = 1/(T +b)9. Let K =
kE(ya,,ya,,ya,). Then p is prime to hx if and only if

(1) 96T p97¢(a — b)/ 79 #£ 1, 0.

4. Proof of the Theorem. Suppose that \N( Ko /K) = (Ko /K) =
V(Koo /K) = 0. This condition is equivalent to A(K,,) = 0 for any sufficiently
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large n. This is equivalent to K,, = K,, ¢ = K, ,¢. By Lemma 1, K must be
an elementary abelian p-extension of k£ such that

kkl = I?n = (I}n)c = (kkl)c

By the argument of Section 3, when ¢ = 0, K always satisfies this condition,
and when ¢ > 3, it does not.
In the case of t = 1, by Lemma, 2,

-[?kl = k(onayAm"')yAs)’

where either
AOZB[)/POEO, Al:Bl/Plel (1§Z§8), TI'(RGSPOAO > 750
or

dP,
A =Bi/PS (0<i<s—1), As=DB/P, Tr<ResP1Ao 0);&0

It will suffice to find conditions for their subfields of index p to be different
from k;. But these conditions are (1.1) and (1.2).

In the case of t = 2, we use Lemma 3 and the statement can be obtained
in the same way.

Conversely, assume that K satisfies the conditions of the Theorem. Then

K, = Kik, = (Kn)g and (Kkp)e = (Kki)e = Kky = Kk, for all n > 1.
This completes the proof.
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