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Cycles of polynomial mappings in several variables
over rings of integers in finite extensions of the rationals

by

T. PEzDA (Wroctaw)

1. Introduction. For a commutative ring R with unity and ¢ = (45(1),
., @) where ) € R[X,,..., Xy]|, we define a cycle for & as a k-tuple
Zo,T1, ..., Tr_q of different elements of RN such that

b(To) =T, D(T1) =T2, ..., D(Tp_1) = To.

The number k is called the length of this cycle.

The study of possible cycle lengths for polynomial mappings of one vari-
able with coefficients from Zg, the ring of integers in a finite extension K
of the rationals, was started in [Nal], where it was shown that the lengths
are bounded by 772" with [K : Q] = n. The proof used the result of [Ev]
about the number of solutions of x 4+ y = a with z,y € Zk invertible.

A much better bound, namely (2" — 1)2""! was obtained in [Pel] via
embeddings Zx into its suitable localizations.

For the study of iterations of polynomials, rational mappings and power
series over discrete valuations rings see [MoSil|, [MoSi2], [NeRo], [No], [Zi].

In [Pe2] an estimate for lengths of cycles for polynomials in N variables
over some discrete valuation rings was obtained, and as a result it was
inferred that the cycle length for a polynomial mapping in N variables with
coefficients from Zg, K as above, is bounded by on(1+3N+N?) - A g every
finitely generated domain D of characteristic 0 is embeddable into a suitable
p-adic ring the lengths of cycles in N variables with coefficients from D are
bounded by a constant solely depending on D, N as pointed out in [HNa].

For a survey of topics related to polynomial cycles see [Na2], [Na3].

In this paper we will sharpen the results given in [Pe2]. This together with
Theorem 3.2, which says that the cycle lengths for polynomial mappings in
N > 2 variables are uniquely determined by the corresponding lengths in
their localizations, will allow us to give some asymptotic formulae for cycles
in N > 2 variables over Zk.
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2. Notations. Throughout, R is a discrete valuation domain of charac-
teristic zero, and P is the unique maximal ideal of R. We assume that the
quotient field R/P is finite and has N(P) = p/ elements (p is prime). Let
7 be a generator of the principal ideal P and let v be the norm of R, nor-
malized so that v(m) = 1/p. We denote by w the corresponding exponent,
defined by

_ logw(x)
w(zx) = — o p

We put w(p) = e. Hence e is the ramification index of R.
We extend v and w to RN by putting

@) =v((@D, ..., ™)) = max{v(=™),i=1,...,N},
w(@) = w((zW,. .., 2™M)) = min{w(z®),i=1,...,N}.

The congruence symbol Z = 7 (mod P?) will be used for vectors Z,7 in RV to
indicate that the corresponding components are congruent, or equivalently
w(T — Y) > d. The image of T € R under the canonical mapping RN —
RN/PRYN = (R/P)" will be denoted by T + PR".

A cycle T, ..., Tp—1 is called a (x)-cycle if w(T; —7;) > 1 for all 4, j. We
call a cycle Ty, . .. normalized if To = 0, the zero element in RV,

Let B(R, N) be the maximal length, if it exists, of cycles of polynomial
mappings in N variables over R. If the cycle lengths are unbounded we put
B(R,N) = oc.

Let G(R/P, M) denote the set of orders prime to p of cyclic subgroups of
the linear group GLys(R/P) of invertible M x M matrices with coefficients
from the field R/P.

Let H(R/P,M) denote the set of orders prime to p of elements A €
G Ly (R/P) such that for some 7 € (R/P)M the vectors 7, Ay, A%7, ... span
the whole (R/P)M.

Denote by g(R/P, M) the biggest element in G(R/P, M). In the similar
manner we define h(R/P, M).

Let CYCL(R, N) be the set of all possible cycle lengths for polynomial
mappings in N variables with coefficients from R.

In this paper a polynomial mapping refers, if not specified differently, to
a polynomial mapping in several variables with coefficients from R.

If @ is a polynomial mapping in N variables with coefficients from R
then @'(0) denotes the Jacobian matrix of @ at 0.

forx #0 and w(0)= co.
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In [Pe2] it was shown that B(R, N) < p/NtetIN+efNg(R N)N. As a
corollary it was inferred that B(Zg, N) < 2n(H3N+N?) where Zx is the
ring of integers in K, a finite extension of Q of degree n.

3. Main results. Here R, P,v,... are as in the previous section. For
real x let [x] be the smallest integer > x. Define

k

Z(k) = [og, (2 'N +1)].
j=1

THEOREM 3.1. We have:

(i) The length of a (x)-cycle for a polynomial mapping in N variables
s of the shape
-
p* I [ s
i=1

where N
+1
o< ﬂogp(pz(flogz DL N +1+ log,, (efl)v

and h; € H(R/P,lz‘),ll +...+10. <N.

(i) B(R,N) < p/N(p/N — 1)pMossr”1oe DT 1log, T2

(iii) For arbitrary 1 <r < N there is a ()-cycle of length p/™ —1 in RN
and B(R,N) > p/N(p/N —1).

COROLLARY 3.1. Let K be a finite extension of Q of degree n. Then

B(ZK, N) < minpr(pr N 1)p(10gp(pz(hog2 E])+Nﬂ+1+10gp N;ejll) < 4"NN2,
p

where the minimum is taken over all non-zero prime ideals p of Zx, #Zk [p
=pl and e is the ramification index of p.

THEOREM 3.2. Let R be a Dedekind domain. Let P(R) denote the set
of all non-zero prime ideals of R. If N > 2 then
CYCL(R,N)= ()| CYVCL(R,,N)= () CYCL(R,N),
peP(R) peP(R)

where }A%p is the completion of R, with respect to the obvious valuation. In
particular, this holds for the rings of integers in finite extensions of Q.

REMARK 3.1. Theorem 3.2 does not hold for N = 1. In fact from [Pel] it
follows that CYCL(Zy, 1) ={1,2,4}, whereas CYCL(Z,1) = {1, 2}.
THEOREM 3.3. For natural n and N let

B(n,N) = K-[I}}a&an(ZK’ N).

p prime
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Then for N > 2:

2nN
N B(n. N) > (27N _ 1)(3n(N—[Nlog; 31) _ ¢
(i) B(n,N) > ( ) 2 ) gn(N—[Nlogy 37 _ 1
> 4nN,
.. . logy B(n, N) _
(i) anég}sz nN =1

i particular, for N > 2,
lim 10g4 B(?’L, N)
n n

(iii) 4V < B(Z,N) < 4V N2

THEOREM 3.4. Let K be a fixed finite extension of Q. For a prime num-
ber p denote by c(p) the minimum of #Zk /P, where P is a prime ideal of
Zx lying above pZ. Write {c(p) : p prime} = {q1 < q2 < ...}. Let k be the
largest with q < q%. For positive real y1, ...,y set
Alyr, - ye) ={(myma,...,mk):0<m, 0<m; <y, i=1,....k;

m4+my+...+mp <y +mii=1,...,k},

M(y1,...,yx) = max (m+my+ ... +my).
(m,ma,...mp) EA(YL,-,yk)

Then:
(i) @ <exp(M(lng,...,Ing)) < nmNmf(B(zK,N))l/N
< limsup(B(Zx, M)/ < gf.

(i) If qu > i and g3q2 > g} then
lim(B(Zi, N))'/Y = ¢}

(this holds for instance for q3 > ¢3).
(iii) Let K be an extension of Q of degree 2 or 3 such that the ideal 27
is not prime. Then

lim (B(Zic, N)'Y = 4.

4. Some properties of cycles. Let Tg,...,Tr_1 be a cycle for a poly-
nomial mapping &. We put T, = &(Tp,—1) for m =k, k+1,...

LEMMA 4.1. Let Ty, ...,Tr_1 be a cycle for a polynomial mapping .
(i) If a € R is invertible, b € RN and 7; = aZ; +b then o, ..., Yj_; is

a cycle for the polynomial mapping a®(a~*(X —b))+b, which has coefficients
from R.
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(ii) If k = s then To, Tr, Tar, - - -, T(s—1)y 15 a cycle for " =Po... 0P,

T

the rth iteration of ®.

(iii) For r = 1,...,k — 1 and arbitrary i,j we have w(Tit,
w(Tjr — Tj).

(iv) If (r —i k) =1 then w(T, — T;) = w(T1 — To).

(v) There is a cycle Yy, ...,Yp_q for some polynomial mapping ¥ such
that all components of all g, ’s are pairwise different.

— %) =

Proof. Points (i)—(iv) were proved in [Pe2]. For the proof of (v) consider
an invertible matrix

1 b v v ... pNl
01 0 0 0
A=]10 0 1 0 0
00 0 0 ... 1

for b € Z. Then there exists b € Z such that AZg,..., AT,_1 is a cycle for
the polynomial mapping A o ® o A~! with coefficients from R such that the
first components of this cycle are pairwise different.

Fix such a b. Take a fixed vector ¥ € R such that the first components

of AZy+7,...,AT),_1+7v are non-zero. Then we consider an invertible matrix
1 0 0 0
c 1 0 0
B=| & 01 0|,
AN o0 1

and for some ¢ € Z we get a cycle B(AZog + ©),..., B(ATy_1 + v) which
fulfils our requirements. =

LEMMA 4.2. Let @ be a polynomial mapping in N variables with coeffi-
cients from R. Then T =7 (mod P?) implies ®(Z) = ®() (mod P?).

Proof. Clear. u

PROPOSITION 4.1. Let R be a discrete valuation ring with a valuation
v and let R be the completion of R with respect to v. Then CYCL(R,N) =
CYCL(R,N) for all N > 1. Moreover, the sets of lengths of (x)-cycles in
RY and RYN also coincide.

Proof. Clearly CYCL(R,N) C CyCE(R N). Let To, ..., Tp—1 be a cycle
for a polynomial mapping @ : RN — RN with coefﬁments from R. We can

assume, according to Lemma 4.1(v), that all components of T;’s are pairwise
different. Put @ = (&), ... &), Write

45(1)(le . aXN) = C](:lefil +... +C[()Z) +GZ(X1, .. ,XN)
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with c( e R,G; € R[Xl, ..., Xn]. Notice that fori = 1,..., N the numbers
(4) (4) (@ (1) —(N))).
b Ty )

Co -5 Cp . satisfy the system of equations (with =; = T
c[()li) + cgl)x(() R c,(z) 1(306 ))k_l = mgl) G; (CC(()I), e 7$(()N)),
D 4 D @Dt 2l gl )
j ) (1 1 i 1 N
R L T LI
Now we replace Ty, ...,Tk—1 by Yo, - - -, Yr_1 With coefficients from R, such
that 7, is sufficiently close to Z;. We proceed similarly with the coeffi-
cients of G, i.e. we take H;(Xy,...,Xy) with the same monomials as in

Gi(X1,...,Xn) but with coefficients from R sufficiently close to the corre-
sponding coefficients of G;.
We thus get a tuple 4, .. .,y,_; with different elements, which is a cycle

for & = (@1),... &), where 0 (Xy,...,XN) = c() .—|—c/,(€11X{g !

H;(Xy,...,Xn) and the cg.i) are the solution of a similar system of equations,

but with G; replaced by H;, and Z; by 7,. Such a solution (cg)7 : c](;) 1)
will lie in R.

The statement concerning (*)-cycles follows from the observation that
approximating a (x)-cycle in RN sufficiently closely by elements from RN

we get a (x)-cycle in RV u

LEMMA 4.3. Let 0 = Zo,T1,...,Tm_1 be a normalized (x)-cycle in RN
for @. Then l| k implies w(T;) < w(Tk) (also for I,k > m with Ty, Tm+1, - - -
defined at the beginning of this section).

Proof. Put k =1ls. We have
w(Tg) = w(Tk, — To) = w(Tis — To)
= w((Trs —Ti(s—1)) + (Ti(s—1) = Ti(s—2)) +- - -+ (T —71) +(T1 —To))
> min{w(Ts — Tys—1)), - - - W(Ty — To) } = w(Ty — To) = w(Ty).
We have used Lemma 4.1(iii). =
LEMMA 4.4. The length of a polynomial cycle in RN can be written in

the form ab, where a is the length of a certain (x)-cycle in RY and b < p/N.
Conversely, every number of that form is the length of a suitable cycle in RN .

Proof. The first part was proved in [Pe2]. To prove the existence part
note that owing to Proposition 4.1 it suffices to consider the case of complete
R (the number f is the same for both R and R).

Let b = 1+ r for a suitable 0 < r < p and fix @,...,a, € RV
such that @; + PRYN # aj + PRYN for i # j, and moreover @y = 0. Put
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=D —(N)\ 1 ) - _n - :
j a; ..., ). Fix a (x)-cycle gy =0, ...,7,_; for a mapping @. Put
M =ab=a(l+r).
We Wlll ShOW that yo,yo‘i_al, .« .. 7y0+ar7§17yl+617 o e 7y1+aT’ P ’ya_17
e sTy_1 + @ is a (¥)-cycle in RN . For this purpose take for n > 1 a poly-
nomial mapping

U (X) =", (X1,...,XN)

Sl
I
~~

N
= [ - X -ap" v D)ex ~a,)

+
VN
=

_(w)\pf P (pf _ _
(1= (Xy =@ ) (X + @01 — ).
7=0 w=1
For j =0,...,r and [ > 0 we have
O (Gy) = 4+ @5 (mod P,

Let I,, be the ideal of R[X1, ..., X ] generated by Hj]‘ial(Xw— (W (Fo)) ™),
w=1,...,N.Let L, = (Lg), ... 7L%N)) be such that
L= 3 el XD XY
0<i1,yin<M—1
with LS}”) congruent (mod I,) to the wth component %Sw) of ¥,,. We easily

see that () = Wi(7,) for j =0,..., M.
As R is compact, there is a sequence ny < ng < ... such that for all 0 <

i1,...,in <M—-1and w=1,..., N we have limj_, bglfl)w = Cw,i1,..in
for some ¢y, iy € R. Put L= (LW, ... L)) where
LW(Xy,..., Xy) = > Curig,in X1 X

0<iy iy <M—1
Then for j =0,...,r and [ > 0 such that [(1 4+ r) + j < M we have
Ll(HT)ﬂ@o) = klfgo L%?”“@o) = kliglo erz(kHTHj (o) =W + @y,
which easily gives the statement of the lemma. =

LEMMA 4.5. Let 0 = To,Z1,...,Tm_1 be a (¥)-cycle in RN (this cycle
is normalized according to the definition from Section 2). Let {w(T1), ...,
W(Tm—1)} = {d1 < ... < dy} and m; = min{j : w(T;) = d;}. Then 1 =
m1|m2| |mr|m

Proof. Leti > 1and putl = (m;, m;+1). Lemma 4.3 implies that w(7;) <
w(Tm, ); on the other hand tm; + smi;1 =1 (modm) with suitable positive
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integers ¢, s. Thus, using Lemma 4.1(iii), we have
w(fl) = w(ftmi+5mi+l)
> min({w(f(j+1)mi+smi+1 - fjmi+5mi+1) : 0 S j S t— ]‘}
U {w( (k+1)mip1 — Tkm¢+1) 0<k<s-— 1}) > w(fmi)v

as W(Tm,,,) > w(Tp,). Thus we get w(T;) = w(Tm,), and m;{m;1 would
imply | < m;, a contradiction. A similar argument shows that each m;
divides m. =

LEMMA 4.6. Let @ be a polynomial mapping in several variables (with
coefficients from R),®(0) = 7,w(T) = d,?'(0) = A. Then

Ts=0°(0) = (A + A2+ ...+ A+ )T (mod P*Y)  for all s > 0.

Proof. By induction. Note that for § such that w(y) > d one has (from
Taylor’s expansion) ¢(7) = ¢(0) + @'(0)y (mod P??). =

LEMMA 4.7. Let 0 = To,Z1,...,Tm—1 be a (¥)-cycle for &, m; as in
Lemma 4.5, and put ($™)'(0) = A;. Then

il _ min{M : (AZM_1 +.o 4+ A+ D%, =0 (mod P)}.
m;

A similar relation holds for m/m,.

Proof. The previous lemma gives Ty, = (AM A+ T )Emz
(mod P?%). Since d; > 0, the number min{M : (AM~1 4. +A + )bz,
= 0 (mod P)} is therefore the minimal M such that w(ZTpsm,) > d;. By
definition we have m;y1 = min{j : w(Z;) = d;+1} = min{j : w(z;) > d;}.
Owing to m; | m;+1 we get the result. A similar argument works for the case
i=7r.m

5. (x)-cycles of length not divisible by p

PROPOSITION 5.1. Let m be the length of a ()-cycle in RN not divisible
by p. Then we can write m = hy ...h,, where h; € H(R/P,l;),l1 + ...+ 1,
< N.

Proof. Let Ty, Z1,...,Tm—1 be a (x)-cycle for a polynomial mapping &
of RN. By Lemma 4.1(i), we can assume that Top = 0. Let d;, m; be as in
Lemma 4.5, i.e.

{w@1),..., w@Tm-1)} ={d1 <...<d;}, m;=min{j:w(T;)=d}.

Lemma 4.3 shows that w‘difkmi, k=1,2,..., are well defined elements of
RN . Define auxiliary linear spaces over the field R/P:

L; = Lin({n 4Ty, + PRN : k=0,1,2,...}).

Here, Lin means the linear span over R/P. We consider L; in a natural way
as a linear subspace of (R/P)N
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For s = 1,...,r define A = (&™)'(0), which is an N x N matrix with
coefficients from R. It could be considered in a natural way as a linear
transformation of (R/P)N

LEMMA 5.1. For ¢ < s and natural j we have Asw_difjmi =7 YT,
(mod P). Equivalently Aq|r, =idp,.

Proof. We have ZTjm,ym, = P (Tjm;) = Tm, + AsTjm, plus terms of de-
gree > 2 in Tj,,. By Lemma 4.3 we have w(Zjm,) > d;i. SO Tjm,+m, = Tm, +
AsTjm; (mod P?%). From Lemma 4.1 we get Tjm,+m, = Tjm,; (mod P%).
Finally, since ds > d;, we get AsTjm, = Tjm, (mod P%*1) and by division
by 7%, we get the statement. m

LEMMA 5.2. We have L; N (L1 + ...+ Li—1) = {0} fori < r. In other
words the sum L1 + ...+ L, is dz'rect Moreover L; 7é {G} and dim L; =
min{s : W’diT(S_H) + PRN € Lin(r~%Zg,, + PRY, 7 ’a:(s Dm; T PRV,

i, + PRN)}.

Proof. Notice that Lemma 4.6 gives
0=Zm = Zm/mpm; = (A" 4 4 Ay + DT, (mod P2%)

and
(AT L ¢ Ay + T (%, + PRYN) = 0.

2

As for t > 0 the operators A;ﬂ/m"_ +...+A;+ 1 and A;‘ffl + .+ A+T
commute we then have

(AM™ L L A+ DAY 4 A+ D(r %, + PRY) =0

(3

and again using Lemma 4.6,

(A’.”/mi L 4 A+ D 5Ty, + PRY) = 0.

7

So finally (AT/™ ' 4 4+ A+ )|, =0.
Forye LN (L, + ...+ L;—1) we thus have, owing to Lemma 5.1,
O=AM™ 1L 4+ A+Dy= 27
m;
As m/m; is not 0 in R/P we thus obtain 7 = 0.

Let s be the minimal natural such that W*dif(sﬂ)mi + PRV ¢
Lin(r~%Zj,, + PRY : 1 < j < s). To obtain the asserted formula for
dim L; it suﬂﬁces to show for ¢t > s + 1 that

7%y, + PRY € Lin(n~%T(_1),,, + PRY,..., 7~ 4Ty, + PRY).
From the very definition of s this holds for t = s 4+ 1. Assume that it holds
for some t > s+ 1. This gives

A%y, + PRY € Lin(Aim™%Z(_ 1), + PRY, ..., Air~ YTy, + PRY).
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As for [ > 0 we have (14 1)m; = Tm; + AiTim, (mod P?4) we get
(1) TN Ty, + PRY = 7% T, + Ain” Ty, + PRY
and
(2) A %Zy,, + PRY € Lin(r~ %% 41y, + PRY, 77 %%, + PRY).
Hence we obtain
%%y 1ym, + PRY = 1% Ty, + Aim % T4y, + PRY

€ Lin(r~%Zp, + PR, Air ™% (1), + PRY,..., Air~ Ty, + PRY).
From this and (2) we get the statement of the lemma. =

LEMMA 5.3. A; — I is invertible on L; and

% = min{M : AM =T on L;}

(2
=min{M : AM 4 4 A+ T=0o0nL;}.
A similar relation holds for m/m,.

m/m;—

Proof. From the proof of Lemma 5.2 we have A, Ty 4 A+1=0
on L; and (A;n/mi_l —DN+...+(A;—1I)=—(m/m;)l on L;. As m/m; ¢ P
it follows that A; — I is invertible on L;. So Afwfl +...+ A+, =0if
and only if (AM —1I)|,, = 0.

For M > 1 we have A,f\/‘[_l—i-...—i-Ai—FI\Li = 0 if and only if

(AM=1 4+ A+ D)%%, € PRV,

The statement now follows from Lemma 4.7. u

From (1) it follows that

L; = Lin(n~%%,,, + PRN, Air=%%,,, + PRN, A2n~%7,, + PRN .. ).

To finish the proof of Proposition 5.1 notice that
mo M3 m

e
with, according to Lemma 5.3, ma/mi € H(R/P,l1),...,m/m, e H(R/P,1,),
where dim L; = I; (clearly L; is isomorphic to (R/P)%). The statement of
the proposition now follows from Lemma 5.2. u

6. (x)-cycles of length p®
PROPOSITION 6.1. Let 0 = Ty, T1,...,Tpe—1 be a (x)-cycle for a polyno-
mial mapping ©. Then
N(e+1
o < Nog (p? 1% ) 4 N)] 41+ log, L)

where Z(k) is defined in Section 3.
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Proof. Put w(Tp) = dy, Ay = (#7")'(0). In particular d, = oo for r > a.

LEMMA 6.1. For any k > 1> 0, we have

k: l 1 pkfl_l k1
= Z ATp= Y (p § )(AZ—I)Pk‘ll%pl (mod P24),
v=0

k—l_l_

dy, > min{2d;, d; + e, w((A; — I)? Ty)},
w((A; —I)? Py p1) = min{dy, 2d;, d; + e}

Proof. The congruences follow from Lemma 4.6 and from the identity
S Xv=3"0 (M) (X —1)"~17". The inequalities follow from the second
congruence upon observing that w(p) =e. =

LEMMA 6.2. Let A be an N x N matrix with coefficients from R. Let
Z € RN with w(T) = d and r be a natural number. Assume that AMT =0
(mod P*7) for some natural M. Then AN"Z =0 (mod P4*").

Proof. Induction on r. For » = 0 this clearly holds. Now assume that
it holds for all » < s and all possible A, T, d. So for some M we have
AM7E =0 (mod P¥*+1). Then A acts on L = Lin(r~% + PRN, A(r—9% +
PRN), A%2(r=9Z + PRY),...), which is a subspace of (R/P)". We see that
A is nilpotent on L, the dimension of L is < N, so we get AY|; = 0. This
means AN (779 + PRY) = 0 or equivalently ANZ =0 (mod P4*1).

Put w(ANT) = d +m. Som > 1.

If m > s+ 1 then ANZ = 0 (mod P4t*+1) and clearly ANCHzZ = 0
(mod Pd+s+1)_

If m < s then we use the inductive assumption for AVT instead of Z and
s+ 1—m instead of r. Hence ANGH1=m) ANF = () (mod P4+m+s+1-m) and,
as N(s+1) > N(s+1—m) + N, we get ANGTDZ =0 (mod P4+s+1). w

LEMMA 6.3. We have dz,) > 2F for k < [logy e].

Proof. Recall that [z] and Z(k) were defined in Section 3. For k = 0
we have Z(0) = 0;dp = w(z1) > 1 (as we consider (x)-cycles). Assume
that for some k < logye we have dzy) > 2% and consider dz(k+1) with
k+1 < [logye]. For r > Z(k), Lemma 6.1 yields

. r—Z(k) _1_
(3) dr > min{2d gy, dz k) + e, w((Azwy — )P Z,0m)}-
For f > max{Z(k),a}, Lemma 6.1 implies
B—Z(k) _1_
w((Aza — I)P 'Z,200) > dzgny +2F,
whence by Lemma 6.2,

w((Az ) — I)Qkapzm) > dy) + 2"
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Since pZ+1)=2(k) _ 1 > 9k N we have
Z(k+1)—Z (k) _1__
w((Aza —I)P o) > dyg + 2.

Now taking r = Z(k + 1) in (3) we arrive at
dzerry > min{2d ), dz + €, dzg + 25} > 28
LEMMA 6.4. Ay = Afkil (mod P%) for 0 <1 < k, which means that all

. d . . phl
entries of Ay, are congruent (mod P%) to the corresponding entries of A} .

Proof. We have

pkl 1

A= @y = ]
J

k—1 k—1
=0

(@Pl)/(fjpl) = ((@pl)/(ﬁ))p = A:;’ (mOdel),
as from Lemma 4.3, Z;,; = 0 (mod P%) and therefore (dipl)’(fjpz) = (@pl)’(ﬁ)
(mod P%). w

LEMMA 6.5. Let m be such that d,, > e. Then dﬂogp(pm-‘rNﬂ >e+1.

Proof. For m > « this is obvious. So let m < «. Lemma 6.1 gives

w((Ap — P " Tpm) > min{dy, 2dm, dm + €} = min{oo, 2d,,, d,, + €}
>dm+ 1.
By Lemma 6.4 we have A, = Agm (mod P). Hence

o—m__1__

0= (A, —I)7P Tpm = (A — NP " lgpm
= (4p — I)(paim_l)pmfpm (mod Pdm+1).

Now we use Lemma 6.2 to obtain (A9 — I)VZ,m = 0 (mod P4m+1). Note
that 8 = [log,(p™ + N)] is bigger than m and (pP~™ — 1)p™ > N. Hence
(A — IP" " @y = (A9 — D)@ "9 3 =0 (mod P11,
Having this we apply Lemma 6.1 to obtain dg > min{2d,,, d,, +e,dy, +1} >

e+1. =
LEMMA 6.6. Let m > logpN be such that d,, > e+ 1. Then

N 1
a<m+1+logpﬂ.
p—1
Proof. We may assume that o > m. Applying Lemma 6.1 (with k = «,
l = a —1), we obtain

p—1

(4) 0= Tpa = Z (Z,;) (Aa—1— I)pivilfpafl (mod PQdo‘_l);
v=0

in particular

0= (Aot — )P 'Zpa—1 (mod Ple—1t1),
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Since (Ap—1—1)P~1 = (A’goﬁ1 —I)P~1 = (Ag—1)?" "' ®=1) (mod P), we obtain
0= (Ag—D)P" """ Vg 01 (mod Pla—1t1)
and therefore, by Lemma 6.2, (4g — I)VZ a-1 = 0 (mod P%—1+1). Since
p*~ ' >p" > N, we get
(5) (Aae1 = DTpo1 = (Ag — D7 Tpas = (Ag — D" Tpas
= (A — DTpo1 = 0 (mod Ple—271),

P
Applying A,—1 — I to (4) yields

p—1
(Aa—l - I)pfpa71 = — Z <Z;> (Aa—l _ I)pivfpa—l =0 (IHOd Pda—1+e+1)'
v=1

a—m—1

Since d,, > e + 1, Lemma 6.4 implies AL, = Ay, 1 (mod P, and
therefore using (5) we get
0= (A8 " — )PTpas

prlTm-1 a—1—m P
(T (", a0 e
v
v=0
= (Ap — 1P "Tpa (mod pla—1tetly,
Suppose now that p®>~™ (p — 1) > (e + 1)N. Then Lemma 6.2 implies
0= (Am — I)pafmil(p_l)fpafl (mod pla—1tetly
and therefore, by Lemma 6.4 and (5),

(Age1 = DP ' Tpar = (A" = 1P s
priTm—1 a—1—m p—1
N S
v
v=0

= (A, — I)paflfm(p_l)fpaq =0 (mod Pla—1Fetly,
By (4) and (5) we then obtain

p—1
n — —1= — p —v—1=
0= (Ag1 —DP T 01 = — Ay — NPV lg
(ot = 17 s = = 5 () (o =077

= —pTpo—1 (mod pla—itetly

contradicting w(pTpa-1) = da—1 +e. Hence (e+1)N > p*~ ™ 1(p—1), which
is equivalent to the assertion. m

To finish the proof of the proposition notice that Lemma 6.3 leads to
dz(Mog, e]) = € and, by Lemma 6.5, dﬂogp(pzmog2 DNy = €+ 1. As of course

[logp(pz (Mogzel) 1 N)] > log, N, Lemma 6.6 finally yields the statement. m
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7. Proof of Theorem 3.1

7.1. Proof of Theorem 3.1(i). Theorem 3.1(i) follows directly from Pro-
positions 5.1 and 6.1 because if we have a (x)-cycle of length mp® then there
is a (x)-cycle of length m and there is a (x)-cycle of length p® (this follows
directly from Lemma 4.1(ii)).

7.2. Proof of Theorem 3.1(ii). Note that the numbers h; € H(R/P, ;)
satisfy h; < pfl — 1 and [[_, i < (0 —1)... (pflr — 1) < pflit+l) <
p/N. The rest follows from Theorem 3.1(i) and Lemma 4.4.

7.3. Proof of Theorem 3.1(iii). Note that in the passage from R to R
the number f is preserved. Having a (x)-cycle of a given length in R" by
extending by zeros we obtain a (x)-cycle of the same length in RY. So in
view of Lemma 4.4 and Proposition 4.1 it suffices to find a (x)-cycle of length
p/N —1in RYN for a complete R. As the statement of this point is clear for
pfN — 1 =1, we assume that pfV —1 > 1.

Let a field S be a finite extension of R/P of degree N. Let &y be a gener-
ator of the multiplicative group S\ {0}. Then the minimal monic polynomial
f € (R/P)|X] of & over R/P is of degree N. Write X?'" 1 —1 = f(X)g(X)
with relatively prime polynomials f,g. From the Hensel lemma there are
F,G € R[X] such that X?""~1 — 1 = F(X)G(X) where F (mod P) = f,
G (mod P) = g,deg F' = N, F monic. Clearly F' is irreducible.

Let ¢ be such that F(¢) = 0. We have a bijection j : RN — R[¢] given
by

; _ N-1

jx1,...,zN) =z + 22l + ... + xNE )
Let A : R[¢] — R[€] be multiplication by €. It is easy to check that j71Aj :
RY — RY is a polynomial mapping (even linear).

Let r be the smallest natural such that {" = 1. So F(X)| X" — 1 and
f(X)| X" — 1. Hence ¢} = 1 and this gives p/~ —1 < r. So 1,5,...,§pr_2
are pairwise different elements of R[¢]. The tuple j7'(p),i (&p),. ..,
j_l(ﬁpr_2p) is a cycle of length p/N — 1 for j71Aj. It is a (*)-cycle as
i~ Y(€p) — 571 (p) = (0,p,0,...,0) — (p,0,0,...,0) for N > 2 and (£ — 1)p
for N = 1. Notice that for N = 1 the number £ lies in R.

8. Proof of Corollary 3.1. The first estimate in the corollary follows
from Theorem 3.1(ii), as we can embed Zg into (Zk),. We have 27y =
T B Set fi = [Zk/P1 : Z/2Z]. We consider Zi as a subring of
(ZK)sp,, which satisfies the assumptions of Theorem 3.1 with p = 2,e =
e1, f = fi,ef <n.So Theorem 3.1(ii) gives

B(Zk, N) < 27N (2/N — 1)aftosa (271022 D)1+ Ltlogy (N(e1))
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Taking into account the definition of Z (k) we easily arrive at the statement
of the corollary, considering separately the cases f = n, e = 1 and f <
n/2,e <n.

9. Proof of Theorem 3.2. The equality CYCL(R,, N) = CyCC(}/%p, N)
follows from Proposition 4.1, as R, is a discrete valuation ring. Clearly,
CYCL(R,N) C CYCL(R,,N) for all p € P(R).

Suppose now that k € CYCL(R,,, N) for all p € P(R), and let B C P(R)
be a finite non-empty set such that #(R/p) > k for all p € P(R) \ B and
for some positive a(p) the ideal [] 5 p(®) is principal. For each p € B,

let Zpo,...,Tpr—1 be a cycle of some polynomial mapping P, : Rév — Rév.
We set &, = (&{V,..., 8", where 8" € R,[Xy,...,Xy] and T,; =
(mgg, cee xl(g]’\i[)) with xffl) € R,. According to Lemma 4.1(v), we may assume

that :cgl) # :c‘(gsq)) whenever (i,7) # (v, s).
For p € P(R), let w, : R, — Z U {oo} be the (surjective) exponent of
Ry, ie. wy(Ry) = {00,0,1,2,...}. Let M € R be such that

wp (M) >wp( I @) - a:fj?,)) for all p € B
(i,r)#(v,5)
and wy(M) = 0 for all p € P(R) \ B (the existence of such an M clearly
follows from the properties of B). Our construction depends on a suitable

(r

approximation of the elements T, Z) by elements from R which is supplied by
the following lemma.

LEMMA 9.1. There exist elements a; of R such that wy(x EJTZ - .CCZ(T)) >
kwy (M) for all (i,7) and p € B and

min {wp(f’/’fgl) —z{V), Wy ( H(m,(?) - 9722)))} =0

r#£s

for0<v<i<k—1andalpeP(R)\B.
Proof. Let z(T) € R be such that wy(z, (T) (T)) > kwy, (M) for all (i,7)

and p € B. We Shall construct elements ao, al, ...,ai_1 € R such that
(©) min {u, (= + M) = (o0 + M¥a)) iy ( TLD - )} =0
r#s

for all i # v and p € P(R) \ B. Once this is done, we set %(1) = zl-(l) + MFa;
and :EZ(-T) = zl-(r) for r > 2, and the lemma follows.
We set ag = 0 and suppose that for some 1 < < k — 1 we have already

constructed ag, aq, ..., a;_1 such that (6) holds for 0 < v < i <[l—1 and all
p € P(R) \ B. Since the elements z,gr) are pairwise distinct by construction,
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the set B’ of all p € P(R) \ B satisfying

wp (TI2 = 2)) >0

r#s

is finite. Hence it suffices to determine a; such that, for all p € B,
wp(zl(l) — 20+ M*a;—a)) =0 for0<wv<L

For each p € B', we have M* ¢ p and #(R/p) > k > [, and therefore there

exists a;, € Ry such that wy(z o _ (1) + Mk(al,p —ay))=0for 0 <wv <l
Choosing a; € R such that a; = a;, (modpR,) for all p € B’ yields the
assertion. m

Let now xlm € R be as in Lemma 9.1, set T; = (l‘z(-l), e ,:L‘Z(-N)) € RN and
construct a polynomial mapping @ = (™), ..., W)y : RN — RN such that
To,...,Tr_1 is a cycle of @. Let E(T) € R[Xy,...,Xn] be any polynomials
satisfying 3" = @,(f) (mod M*R,[X1, ..., Xn]) for p € B. Put

o (X1,..., Xn) +ZM’“ J[bgr H(Xl—xgﬂ)
v=0
= —(r)
v=0

(" )
J

with suitable coefficients bj ,B
in such a way that

€ R. We must determine these coefficients

(71 2l =o"(a E”, o x§N>>

j=1 v=0

+ @(r)(x(l), e ,:cEN))

7

forall0 <i<k—1land 1 <r < N (where a:g") = ZE(OT)). Fori =0, (7) reduces

to I‘Y) =M kb(()r) + 5(r)( (1 ) :r(()N)), which has a solution b(r) € R since
by construction wy, (ajgr) - Q5( )(:17(()1), . (N))) > wy (MF) for all p € P(R).

Suppose now that, for some [ < k — 1, the coefficients bg- ), B](-T) € R have
been determined for j < [ — 1 such that (7) holds for i« <! — 1. We must

find b, B™ such that

A0 + 4;B) = 4,
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where for s € {1,2},

-1
A = ME H(ml(s) - ng)),
v=0

ZM’”[ ”H +B”H o)

—(r N
~ 3 )(xl( ),...,xl( )).
Hence it is sufficient to prove that, for all p € P(R),
wp(A) > wy (A1 R + A2R) = min{w, (A1), w,(A2)}.

If p & B, then min{w, (A1), w,(A2)} = 0 by Lemma 9.1 and we are done. If
p € B, then wy(A) > (k — [+ 1)wy (M) by construction, and we shall prove
that, for s € {1,2}, wy(As) < (k — 1+ 1)wy(M). Indeed, for 0 < v <[ -1
and p € B, we have :El(s) - :cq(f) = :zsgsl) - :U,(fq)) (mod pkwe (M)Rp) and therefore,
for p € B, we have

-1
Ay = MF H(mfil) — a:x(,sﬂ))) (modp(%_l)w"(M)Rp).
v=0

By the definition of M, we have wp(H (x‘(fl) - a;,(fz,)) < wp(M), and
since k — [ + 1 < 2k — [, the assertion follows.

10. Proof of Theorem 3.3. Let m be the middle term appearing in
Theorem 3.3(i). Note that m < 4™V. Let K be a fixed field of degree n over
Q such that pZk are prime ideals for all natural primes p < 4™. Such a
field exists owing to a much more general theorem due to Hasse. Lemma 4.4
guarantees that (for #Z /p = pf)

{1,2,....p'"} CcCYCL((Zk)y, N).

Owing to Theorem 3.2, to prove Theorem 3.3(i) it suffices to show that
for every non-zero prime ideal p of Zx we have m € CYCL((Zk )y, N).

CASE 1: p lies above some pZy with p > 4". We then have p/N > pN >
4"N > m, so m € CYCL((Zk)p, N).

CASE 2: p = pZgk with some p such that 5 < p < 4™ In this case
p!N = p™N > 57N > m and again we are done.

CASE 3: p = 3Zk. Note that N — [Nlog3 %1 > 1 (as N > 2). Now

Theorem 3.1(iii) shows that there is a (x)-cycle of length 3N~ [Vlogs D1

in (ZK){,V
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Note that for N > 2, (n, N) # (1,3) one has
2nN

N _q : < 3
( ){3H(NfN10g3§1)_1J - ’

so Lemma 4.4 guarantees that for such (n, N) we get m € CYCL((Zk )y, N).

For (n,N) = (1,3) we have m = 56 = 14 - 4, so by Lemma 4.4 we
should find a (*)-cycle of length 4 in Z3. A tuple (3,0,0), (0,3,0), (—3,0,0),
(0,—3,0) is such a cycle for the mapping (X,Y, 7)) — (=Y, X, Z).

CASE 4: p = 2Zk. This case clearly follows from Lemma 4.4 and Theo-
rem 3.1(iii).

The last estimate follows from the consideration of two cases, namely
g(N—[Nlogs 31) _ 1 < %QnN and 27N > gn(N—[Nlog; 3D 1> %QnN.

Theorem 3.3(ii) follows from Theorem 3.3(i) and Corollary 3.1; so does
Theorem 3.3(iii), as Q is the only field of degree 1 over Q.

11. Proof of Theorem 3.4

11.1. Proof of Theorem 3.4(i). Let [K : Q] = n and put

(8) Q= P{la s Qe = pg’“ (p; prime).

Notice that for y; < ... < y, we have
Y1 < M(y177yk) S 2y1

(the left inequality follows from (y1,¢,0,0,...,0)€ A(y1,. .., yx) for small €).
Hence ¢1 < exp(M(Ingqi,...,Ingx)). The right inequality in Theorem 3.4(i)
follows directly from Corollary 3.1.

So we turn to the inequality

exp(M(Ingi,...,Ing)) < limNinf(B(ZK, NN,

Let (m,mq,...,my) be a fixed element in A(Ingy,...,Ingg) such that
m+my+...+mp=M(Ing,...,Ing).
Fix € > 0. Let N be sufficiently large. Fix r,r1,...,r; such that
r € [exp((1 —e)mN),exp(mN)], 7 € [exp((1 —e)m;N), exp(m;N)],

and additionally assume that for m; > 0 the number r; is of the shape

p?!Ti — 1, where T; is natural. Note that as m,my, ..., mg,p1,..., Pk, N, € are
fixed such a choice of r,rq,...,r, is possible for sufficiently large N. Put
s =rri...r,. Notice that

9) s <exp(N(m+mi+...+my)) <exp(N -2Ing) = ¢7V.

LEMMA 11.1. s € CYCL(ZKk, N).

Proof. According to Theorem 3.2 it suffices to show s € CYCL((Zk )y, N)
for all non-zero prime ideals p of Zg.
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CASE 1: #Zx/p > ¢}. In this case Lemma 4.4 and (9) give the state-
ment.
CASE 2: #Zk /p < ¢i. From (8) we infer that p lies above p;Z for some

Jj < k. Write #Zk /p = pfj. By the very definition of qi,...,q; and (8) we
have

(10) n Z Fj Z fj.

To get the statement it suffices, by Lemma 4.4, to prove that
S F:

(11) F:Trl-u"ﬂj—l'rj-ﬁ-l-”'rkg (ij)N
J

and that r; is the length of a (x)-cycle in (Zg))'.
Now (11) follows from
s
- < exp(mN)exp(miN)...exp(m;j—1N)exp(m;q1N)...exp(mypN)
j
=exp((m+mi+...4+mj_1 +mjp1 +...+m)N) < exp(Nlng;)

=q) = )" < ().
If mj = 0 then r; = 1 and clearly there is a (x)-cycle of length r;

in (ZK)fDV. So let m; > 0. By Theorem 3.1(iii) it suffices to prove U; =
n!T;/F; < N, which follows from
U, - n!T) < In(exp(m;N) + 1) < In(exp(NIng;) + 1)
L Fjlnp; [ Inp;
_ In(exp(Nlngj) +1)
N In g;
Now, as U; is natural by (10), the lemma follows. =

1
<N+ D) for large N.

To finish the proof note that for large N we have
B(Zg,N)>s>exp((l—¢)(m+mi+...+my)N)
=exp((1 —e)M(Ingi,...,Ingg)N).

11.2. Proof of Theorem 3.4(ii). It suffices to note that by the simplex
method for y; < y2 < y3 we have
: +yo +
M(y1,y2,y3) = min {22/17 W} and M (y1,y2) = M(y1) = 2y1.

11.3. Proof of Theorem 3.4 (iii). Here we have q; = 2 and q3 > 5 > 2.
So the statement follows from (ii).
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