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Cycles of polynomial mappings in several variables
over rings of integers in finite extensions of the rationals

by

T. Pezda (Wrocław)

1. Introduction. For a commutative ring R with unity and Φ = (Φ(1),
. . . , Φ(N)), where Φ(i) ∈ R[X1, . . . ,XN ], we define a cycle for Φ as a k-tuple
x0, x1, . . . , xk−1 of different elements of RN such that

Φ(x0) = x1, Φ(x1) = x2, . . . , Φ(xk−1) = x0.

The number k is called the length of this cycle.
The study of possible cycle lengths for polynomial mappings of one vari-

able with coefficients from ZK , the ring of integers in a finite extension K
of the rationals, was started in [Na1], where it was shown that the lengths
are bounded by 77·2n with [K : Q] = n. The proof used the result of [Ev]
about the number of solutions of x+ y = a with x, y ∈ ZK invertible.

A much better bound, namely (2n − 1)2n+1, was obtained in [Pe1] via
embeddings ZK into its suitable localizations.

For the study of iterations of polynomials, rational mappings and power
series over discrete valuations rings see [MoSi1], [MoSi2], [NeRo], [No], [Zi].

In [Pe2] an estimate for lengths of cycles for polynomials in N variables
over some discrete valuation rings was obtained, and as a result it was
inferred that the cycle length for a polynomial mapping in N variables with
coefficients from ZK , K as above, is bounded by 2n(1+3N+N2). As every
finitely generated domain D of characteristic 0 is embeddable into a suitable
p-adic ring the lengths of cycles in N variables with coefficients from D are
bounded by a constant solely depending on D,N as pointed out in [HNa].

For a survey of topics related to polynomial cycles see [Na2], [Na3].
In this paper we will sharpen the results given in [Pe2]. This together with

Theorem 3.2, which says that the cycle lengths for polynomial mappings in
N ≥ 2 variables are uniquely determined by the corresponding lengths in
their localizations, will allow us to give some asymptotic formulae for cycles
in N ≥ 2 variables over ZK .
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2. Notations. Throughout, R is a discrete valuation domain of charac-
teristic zero, and P is the unique maximal ideal of R. We assume that the
quotient field R/P is finite and has N(P ) = pf elements (p is prime). Let
π be a generator of the principal ideal P and let v be the norm of R, nor-
malized so that v(π) = 1/p. We denote by w the corresponding exponent,
defined by

w(x) = − log v(x)
log p

for x 6= 0 and w(0) =∞.

We put w(p) = e. Hence e is the ramification index of R.
We extend v and w to RN by putting

v(x) = v((x(1), . . . , x(N))) = max{v(x(i)), i = 1, . . . , N},
w(x) = w((x(1), . . . , x(N))) = min{w(x(i)), i = 1, . . . , N}.

The congruence symbol x ≡ y (modP d) will be used for vectors x, y in RN to
indicate that the corresponding components are congruent, or equivalently
w(x − y) ≥ d. The image of x ∈ RN under the canonical mapping RN →
RN/PRN = (R/P )N will be denoted by x+ PRN .

A cycle x0, . . . , xk−1 is called a (∗)-cycle if w(xi−xj) ≥ 1 for all i, j. We
call a cycle x0, . . . normalized if x0 = 0, the zero element in RN .

Let B(R,N) be the maximal length, if it exists, of cycles of polynomial
mappings in N variables over R. If the cycle lengths are unbounded we put
B(R,N) =∞.

Let G(R/P ,M) denote the set of orders prime to p of cyclic subgroups of
the linear group GLM (R/P ) of invertible M ×M matrices with coefficients
from the field R/P .

Let H(R/P,M) denote the set of orders prime to p of elements A ∈
GLM (R/P ) such that for some y ∈ (R/P )M the vectors y,Ay,A2y, . . . span
the whole (R/P )M .

Denote by g(R/P,M) the biggest element in G(R/P ,M). In the similar
manner we define h(R/P ,M).

Let CYCL(R,N) be the set of all possible cycle lengths for polynomial
mappings in N variables with coefficients from R.

In this paper a polynomial mapping refers, if not specified differently, to
a polynomial mapping in several variables with coefficients from R.

If Φ is a polynomial mapping in N variables with coefficients from R
then Φ′(0) denotes the Jacobian matrix of Φ at 0.
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In [Pe2] it was shown that B(R,N) ≤ pfN+e+fN+efNg(R,N)N . As a
corollary it was inferred that B(ZK , N) ≤ 2n(1+3N+N2), where ZK is the
ring of integers in K, a finite extension of Q of degree n.

3. Main results. Here R,P, v, . . . are as in the previous section. For
real x let dxe be the smallest integer ≥ x. Define

Z(k) =
k∑

j=1

dlogp(2
j−1N + 1)e.

Theorem 3.1. We have:

(i) The length of a (∗)-cycle for a polynomial mapping in N variables
is of the shape

pα
r∏

i=1

hi,

where

α < dlogp(p
Z(dlog2 ee) +N)e+ 1 + logp

N(e+ 1)
p− 1

,

and hi ∈ H(R/P, li), l1 + . . .+ lr ≤ N .

(ii) B(R,N) < pfN (pfN − 1)pdlogp(pZ(dlog2 ee)+N)e+1+logp
N(e+1)
p−1 .

(iii) For arbitrary 1 ≤ r ≤ N there is a (∗)-cycle of length pfr− 1 in RN

and B(R,N) ≥ pfN (pfN − 1).

Corollary 3.1. Let K be a finite extension of Q of degree n. Then

B(ZK , N) < min
p
pfN (pfN − 1)pdlogp(pZ(dlog2 ee)+N)e+1+logp

N(e+1)
p−1 � 4nNN2,

where the minimum is taken over all non-zero prime ideals p of ZK , #ZK/p
= pf and e is the ramification index of p.

Theorem 3.2. Let R be a Dedekind domain. Let P(R) denote the set
of all non-zero prime ideals of R. If N ≥ 2 then

CYCL(R,N) =
⋂

p∈P(R)

CYCL(Rp, N) =
⋂

p∈P(R)

CYCL(R̂p, N),

where R̂p is the completion of Rp with respect to the obvious valuation. In
particular , this holds for the rings of integers in finite extensions of Q.

Remark 3.1. Theorem 3.2 does not hold for N = 1. In fact from [Pe1] it
follows that

⋂
p prime CYCL(Zp, 1) = {1, 2, 4}, whereas CYCL(Z, 1) = {1, 2}.

Theorem 3.3. For natural n and N let

B(n,N) = max
K: [K:Q]=n

B(ZK , N).
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Then for N ≥ 2:

(i) B(n,N) ≥ (2nN − 1)(3n(N−dN log3
3
2 e) − 1)

⌊
2nN

3n(N−dN log3
3
2 e) − 1

⌋

� 4nN ;

(ii) lim
nN→∞, N≥2

log4B(n,N)
nN

= 1,

in particular , for N ≥ 2,

lim
n

log4B(n,N)
n

= N ;

(iii) 4N � B(Z,N)� 4NN2.

Theorem 3.4. Let K be a fixed finite extension of Q. For a prime num-
ber p denote by c(p) the minimum of #ZK/P, where P is a prime ideal of
ZK lying above pZ. Write {c(p) : p prime} = {q1 < q2 < . . .}. Let k be the
largest with qk < q2

1. For positive real y1, . . . , yk set

∆(y1, . . . , yk) = {(m,m1, . . . ,mk) : 0 ≤ m, 0 ≤ mi ≤ yi, i = 1, . . . , k;

m+m1 + . . .+mk ≤ yi +mi, i = 1, . . . , k},
M(y1, . . . , yk) = max

(m,m1,...,mk)∈∆(y1,...,yk)
(m+m1 + . . .+mk).

Then:

q1 < exp(M(ln q1, . . . , ln qk)) ≤ lim inf
N

(B(ZK , N))1/N(i)

≤ lim sup
N

(B(ZK , N))1/N ≤ q2
1.

(ii) If q4 > q2
1 and q3q2 > q3

1 then

lim
N

(B(ZK , N))1/N = q2
1

(this holds for instance for q3 > q2
1).

(iii) Let K be an extension of Q of degree 2 or 3 such that the ideal 2ZK
is not prime. Then

lim
N

(B(ZK , N))1/N = 4.

4. Some properties of cycles. Let x0, . . . , xk−1 be a cycle for a poly-
nomial mapping Φ. We put xm = Φ(xm−1) for m = k, k + 1, . . .

Lemma 4.1. Let x0, . . . , xk−1 be a cycle for a polynomial mapping Φ.

(i) If a ∈ R is invertible, b ∈ RN and yi = axi + b then y0, . . . , yk−1 is
a cycle for the polynomial mapping aΦ(a−1(X−b))+b, which has coefficients
from R.
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(ii) If k = rs then x0, xr, x2r, . . . , x(s−1)r is a cycle for Φr = Φ ◦ . . . ◦ Φ︸ ︷︷ ︸
r

,

the rth iteration of Φ.
(iii) For r = 1, . . . , k − 1 and arbitrary i, j we have w(xi+r − xi) =

w(xj+r − xj).
(iv) If (r − i, k) = 1 then w(xr − xi) = w(x1 − x0).
(v) There is a cycle y0, . . . , yk−1 for some polynomial mapping Ψ such

that all components of all yi’s are pairwise different.

Proof. Points (i)–(iv) were proved in [Pe2]. For the proof of (v) consider
an invertible matrix

A =




1 b b2 b3 . . . bN−1

0 1 0 0 . . . 0
0 0 1 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 1




for b ∈ Z. Then there exists b ∈ Z such that Ax0, . . . , Axk−1 is a cycle for
the polynomial mapping A ◦Φ ◦A−1 with coefficients from R such that the
first components of this cycle are pairwise different.

Fix such a b. Take a fixed vector v ∈ RN such that the first components
of Ax0+v, . . . , Axk−1+v are non-zero. Then we consider an invertible matrix

B =




1 0 0 . . . 0
c 1 0 . . . 0
c2 0 1 . . . 0
. . . . . . . . . . . . . . . . . . .

cN−1 0 0 . . . 1


 ,

and for some c ∈ Z we get a cycle B(Ax0 + v), . . . , B(Axk−1 + v) which
fulfils our requirements.

Lemma 4.2. Let Φ be a polynomial mapping in N variables with coeffi-
cients from R. Then x ≡ y (modP d) implies Φ(x) ≡ Φ(y) (modP d).

Proof. Clear.

Proposition 4.1. Let R be a discrete valuation ring with a valuation
v and let R̂ be the completion of R with respect to v. Then CYCL(R,N) =
CYCL(R̂,N) for all N ≥ 1. Moreover , the sets of lengths of (∗)-cycles in
RN and R̂N also coincide.

Proof. Clearly CYCL(R,N) ⊂ CYCL(R̂,N). Let x0, . . . , xk−1 be a cycle
for a polynomial mapping Φ : R̂N → R̂N with coefficients from R̂. We can
assume, according to Lemma 4.1(v), that all components of xi’s are pairwise
different. Put Φ = (Φ(1), . . . , Φ(N)). Write

Φ(i)(X1, . . . ,XN ) = c
(i)
k−1X

k−1
1 + . . .+ c

(i)
0 +Gi(X1, . . . ,XN )
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with c(i)
j ∈ R̂,Gi ∈ R̂[X1, . . . ,XN ]. Notice that for i = 1, . . . , N the numbers

c
(i)
0 , . . . , c

(i)
k−1 satisfy the system of equations (with xj = (x(1)

j , . . . , x
(N)
j )):





c
(i)
0 + c

(i)
1 x

(1)
0 + . . .+ c

(i)
k−1(x(1)

0 )k−1 = x
(i)
1 −Gi(x

(1)
0 , . . . , x

(N)
0 ),

c
(i)
0 + c

(i)
1 x

(1)
1 + . . .+ c

(i)
k−1(x(1)

1 )k−1 = x
(i)
2 −Gi(x

(1)
1 , . . . , x

(N)
1 ),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c
(i)
0 + c

(i)
1 x

(1)
k−1 + . . .+ c

(i)
k−1(x(1)

k−1)k−1 = x
(i)
0 −Gi(x

(1)
k−1, . . . , x

(N)
k−1).

Now we replace x0, . . . , xk−1 by y0, . . . , yk−1 with coefficients from R, such
that yt is sufficiently close to xt. We proceed similarly with the coeffi-
cients of Gi, i.e. we take Hi(X1, . . . ,XN ) with the same monomials as in
Gi(X1, . . . ,XN ) but with coefficients from R sufficiently close to the corre-
sponding coefficients of Gi.

We thus get a tuple y0, . . . , yk−1 with different elements, which is a cycle

for Φ̃ = (Φ̃(1), . . . , Φ̃(N)), where Φ̃(i)(X1, . . . ,XN ) = c̃
(i)
0 + . . .+ c̃

(i)
k−1X

k−1
1 +

Hi(X1, . . . ,XN ) and the c̃(i)
j are the solution of a similar system of equations,

but with Gi replaced by Hi, and xt by yt. Such a solution (c̃(i)
0 , . . . , c̃

(i)
k−1)

will lie in R.
The statement concerning (∗)-cycles follows from the observation that

approximating a (∗)-cycle in R̂N sufficiently closely by elements from RN

we get a (∗)-cycle in RN .

Lemma 4.3. Let 0 = x0, x1, . . . , xm−1 be a normalized (∗)-cycle in RN

for Φ. Then l | k implies w(xl) ≤ w(xk) (also for l, k ≥ m with xm, xm+1, . . .
defined at the beginning of this section).

Proof. Put k = ls. We have

w(xk) = w(xk − x0) = w(xls − x0)

= w((xls−xl(s−1))+(xl(s−1)−xl(s−2))+. . .+(x2l−xl)+(xl−x0))

≥ min{w(xls − xl(s−1)), . . . , w(xl − x0)} = w(xl − x0) = w(xl).

We have used Lemma 4.1(iii).

Lemma 4.4. The length of a polynomial cycle in RN can be written in
the form ab, where a is the length of a certain (∗)-cycle in RN and b ≤ pfN .
Conversely , every number of that form is the length of a suitable cycle in RN .

Proof. The first part was proved in [Pe2]. To prove the existence part
note that owing to Proposition 4.1 it suffices to consider the case of complete
R (the number f is the same for both R and R̂).

Let b = 1 + r for a suitable 0 ≤ r < pfN and fix a0, . . . , ar ∈ RN

such that ai + PRN 6= aj + PRN for i 6= j, and moreover a0 = 0. Put
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aj = (a(1)
j , . . . , a

(N)
j ). Fix a (∗)-cycle y0 = 0, . . . , ya−1 for a mapping Φ. Put

M = ab = a(1 + r).
We will show that y0, y0+a1, . . . , y0+ar, y1, y1+a1, . . . , y1+ar, . . . , ya−1,

. . . , ya−1 + ar is a (∗)-cycle in RN . For this purpose take for n ≥ 1 a poly-
nomial mapping

Ψn(X) = Ψn(X1, . . . ,XN )

=
N∏

w=1

(1− (Xw − a(w)
r )p

fn(pf−1))Φ(X − ar)

+
r−1∑

j=0

( N∏

w=1

(1− (Xw − a(w)
j )p

fn(pf−1))
)

(X + aj+1 − aj).

For j = 0, . . . , r and l ≥ 0 we have

Ψ l(1+r)+j
n (y0) ≡ yl + aj (modPn+1).

Let In be the ideal of R[X1, . . . ,XN ] generated by
∏M−1
j=0 (Xw−(Ψ jn(y0))(w)),

w = 1, . . . , N . Let Ln = (L(1)
n , . . . , L

(N)
n ) be such that

L(w)
n =

∑

0≤i1,...,iN≤M−1

b
(n)
w,i1,...,iN

Xi1
1 . . .XiN

N

with L(w)
n congruent (mod In) to the wth component Ψ (w)

n of Ψn. We easily
see that Ljn(y0) = Ψ jn(y0) for j = 0, . . . ,M .

As R is compact, there is a sequence n1 < n2 < . . . such that for all 0 ≤
i1, . . . , iN ≤M − 1 and w = 1, . . . , N we have limk→∞ b

(nk)
w,i1,...,iN

= cw,i1,...,iN
for some cw,i1,...,iN ∈ R. Put L = (L(1), . . . , L(N)), where

L(w)(X1, . . . ,XN ) =
∑

0≤i1,...,iN≤M−1

cw,i1,...,iNX
i1
1 . . .XiN

N .

Then for j = 0, . . . , r and l ≥ 0 such that l(1 + r) + j ≤M we have

Ll(1+r)+j(y0) = lim
k→∞

Ll(1+r)+j
nk

(y0) = lim
k→∞

Ψ l(1+r)+j
nk

(y0) = yl + aj ,

which easily gives the statement of the lemma.

Lemma 4.5. Let 0 = x0, x1, . . . , xm−1 be a (∗)-cycle in RN (this cycle
is normalized according to the definition from Section 2). Let {w(x1), . . . ,
w(xm−1)} = {d1 < . . . < dr} and mi = min{j : w(xj) = di}. Then 1 =
m1 |m2 | . . . |mr |m.

Proof. Let i ≥ 1 and put l = (mi,mi+1). Lemma 4.3 implies that w(xl) ≤
w(xmi); on the other hand tmi + smi+1 ≡ l (modm) with suitable positive
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integers t, s. Thus, using Lemma 4.1(iii), we have

w(xl) = w(xtmi+smi+1)

≥ min({w(x(j+1)mi+smi+1 − xjmi+smi+1) : 0 ≤ j ≤ t− 1}
∪ {w(x(k+1)mi+1 − xkmi+1) : 0 ≤ k ≤ s− 1}) ≥ w(xmi),

as w(xmi+1) > w(xmi). Thus we get w(xl) = w(xmi), and mi -mi+1 would
imply l < mi, a contradiction. A similar argument shows that each mi

divides m.

Lemma 4.6. Let Φ be a polynomial mapping in several variables (with
coefficients from R), Φ(0) = x,w(x) = d, Φ′(0) = A. Then

xs = Φs(0) ≡ (As−1 +As−2 + . . .+ A+ I)x (modP 2d) for all s ≥ 0.

Proof. By induction. Note that for y such that w(y) ≥ d one has (from
Taylor’s expansion) Φ(y) ≡ Φ(0) + Φ′(0)y (modP 2d).

Lemma 4.7. Let 0 = x0, x1, . . . , xm−1 be a (∗)-cycle for Φ, mi as in
Lemma 4.5, and put (Φmi)′(0) = Ai. Then

mi+1

mi
= min{M : (AM−1

i + . . .+Ai + I)π−dixmi ≡ 0 (modP )}.

A similar relation holds for m/mr.

Proof. The previous lemma gives xMmi ≡ (AM−1
i + . . . + Ai + I)xmi

(modP 2di). Since di > 0, the number min{M : (AM−1
i +. . .+Ai+I)π−dixmi

≡ 0 (modP )} is therefore the minimal M such that w(xMmi) > di. By
definition we have mi+1 = min{j : w(xj) = di+1} = min{j : w(xj) > di}.
Owing to mi |mi+1 we get the result. A similar argument works for the case
i = r.

5. (∗)-cycles of length not divisible by p

Proposition 5.1. Let m be the length of a (∗)-cycle in RN not divisible
by p. Then we can write m = h1 . . . hr, where hi ∈ H(R/P, li), l1 + . . .+ lr
≤ N .

Proof. Let x0, x1, . . . , xm−1 be a (∗)-cycle for a polynomial mapping Φ
of RN . By Lemma 4.1(i), we can assume that x0 = 0. Let di,mi be as in
Lemma 4.5, i.e.

{w(x1), . . . , w(xm−1)} = {d1 < . . . < dr}, mi = min{j : w(xj) = di}.
Lemma 4.3 shows that π−dixkmi

, k = 1, 2, . . . , are well defined elements of
RN . Define auxiliary linear spaces over the field R/P :

Li = Lin({π−dixkmi
+ PRN : k = 0, 1, 2, . . .}).

Here, Lin means the linear span over R/P . We consider Li in a natural way
as a linear subspace of (R/P )N .
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For s = 1, . . . , r define As = (Φms)′(0), which is an N ×N matrix with
coefficients from R. It could be considered in a natural way as a linear
transformation of (R/P )N .

Lemma 5.1. For i < s and natural j we have Asπ−dixjmi ≡ π−dixjmi
(modP ). Equivalently As|Li = idLi .

Proof. We have xjmi+ms = Φms(xjmi) = xms +Asxjmi plus terms of de-
gree ≥ 2 in xjmi . By Lemma 4.3 we have w(xjmi) ≥ di. So xjmi+ms ≡ xms +
Asxjmi (modP 2di). From Lemma 4.1 we get xjmi+ms ≡ xjmi (modP ds).
Finally, since ds > di, we get Asxjmi ≡ xjmi (modP di+1) and by division
by πdi, we get the statement.

Lemma 5.2. We have Li ∩ (L1 + . . . + Li−1) = {0} for i ≤ r. In other
words the sum L1 + . . . + Lr is direct. Moreover Li 6= {0} and dimLi =
min{s : π−dix(s+1)mi

+ PRN ∈ Lin(π−dixsmi + PRN , π−dix(s−1)mi
+ PRN ,

. . . , π−dixmi + PRN )}.
Proof. Notice that Lemma 4.6 gives

0 = xm = x(m/mi)mi ≡ (Am/mi−1
i + . . .+ Ai + I)xmi (modP 2di)

and
(Am/mi−1

i + . . .+ Ai + I)(π−dixmi + PRN ) = 0.

As for t ≥ 0 the operators Am/mi−1
i + . . .+ Ai + I and At−1

i + . . .+ Ai + I
commute we then have

(Am/mi−1
i + . . .+ Ai + I)(At−1

i + . . .+ Ai + I)(π−dixmi + PRN ) = 0

and again using Lemma 4.6,

(Am/mi−1
i + . . .+ Ai + I)(π−dixtmi + PRN ) = 0.

So finally (Am/mi−1
i + . . .+ Ai + I)|Li = 0.

For y ∈ Li ∩ (L1 + . . .+ Li−1) we thus have, owing to Lemma 5.1,

0 = (Am/mi−1
i + . . .+ Ai + I)y =

m

mi
y.

As m/mi is not 0 in R/P we thus obtain y = 0.
Let s be the minimal natural such that π−dix(s+1)mi

+ PRN ∈
Lin(π−dixjmi + PRN : 1 ≤ j ≤ s). To obtain the asserted formula for
dimLi it suffices to show for t ≥ s+ 1 that

π−dixtmi + PRN ∈ Lin(π−dix(t−1)mi
+ PRN , . . . , π−dixmi + PRN ).

From the very definition of s this holds for t = s+ 1. Assume that it holds
for some t ≥ s+ 1. This gives

Aiπ
−dixtmi + PRN ∈ Lin(Aiπ−dix(t−1)mi

+ PRN , . . . , Aiπ
−dixmi + PRN ).
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As for l ≥ 0 we have x(l+1)mi
≡ xmi + Aixlmi (modP 2di) we get

π−dix(l+1)mi
+ PRN = π−dixmi + Aiπ

−dixlmi + PRN(1)

and

Aiπ
−dixlmi + PRN ∈ Lin(π−dix(l+1)mi

+ PRN , π−dixmi + PRN ).(2)

Hence we obtain

π−dix(t+1)mi
+ PRN = π−dixmi + Aiπ

−dixtmi + PRN

∈ Lin(π−dixmi + PRN , Aiπ
−dix(t−1)mi

+ PRN , . . . , Aiπ
−dixmi + PRN ).

From this and (2) we get the statement of the lemma.

Lemma 5.3. Ai − I is invertible on Li and
mi+1

mi
= min{M : AMi = I on Li}

= min{M : AM−1
i + . . .+ Ai + I = 0 on Li}.

A similar relation holds for m/mr.

Proof. From the proof of Lemma 5.2 we have Am/mi−1
i + . . .+Ai+I = 0

on Li and (Am/mi−1
i − I) + . . .+ (Ai− I) = −(m/mi)I on Li. As m/mi 6∈ P

it follows that Ai − I is invertible on Li. So AM−1
i + . . . + Ai + I|Li = 0 if

and only if (AMi − I)|Li = 0.
For M ≥ 1 we have AM−1

i + . . .+ Ai + I|Li = 0 if and only if

(AM−1
i + . . .+ Ai + I)π−dixmi ∈ PRN .

The statement now follows from Lemma 4.7.

From (1) it follows that

Li = Lin(π−dixmi + PRN , Aiπ
−dixmi + PRN , A2

i π
−dixmi + PRN , . . .).

To finish the proof of Proposition 5.1 notice that

m =
m2

m1
· m3

m2
· . . . · m

mr

with, according to Lemma 5.3, m2/m1∈H(R/P, l1), . . . ,m/mr∈H(R/P, lr),
where dimLi = li (clearly Li is isomorphic to (R/P )li). The statement of
the proposition now follows from Lemma 5.2.

6. (∗)-cycles of length pα

Proposition 6.1. Let 0 = x0, x1, . . . , xpα−1 be a (∗)-cycle for a polyno-
mial mapping Φ. Then

α < dlogp(p
Z(dlog2 ee) +N)e+ 1 + logp

N(e+ 1)
p− 1

,

where Z(k) is defined in Section 3.
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Proof. Put w(xpr) = dr, Ar = (Φp
r
)′(0). In particular dr =∞ for r ≥ α.

Lemma 6.1. For any k > l ≥ 0, we have

xpk ≡
pk−l−1∑

v=0

Avl xpl ≡
pk−l−1∑

v=0

(
pk−l

v

)
(Al − I)p

k−l−1−vxpl (modP 2dl),

dk ≥ min{2dl, dl + e, w((Al − I)p
k−l−1xpl)},

w((Al − I)p
k−l−1xpl) ≥ min{dk, 2dl, dl + e}.

Proof. The congruences follow from Lemma 4.6 and from the identity∑n−1
v=0 X

v =
∑n−1

v=0

(
n
v

)
(X−1)n−1−v. The inequalities follow from the second

congruence upon observing that w(p) = e.

Lemma 6.2. Let A be an N × N matrix with coefficients from R. Let
x ∈ RN with w(x) = d and r be a natural number. Assume that AMx ≡ 0
(modP d+r) for some natural M . Then ANrx ≡ 0 (modP d+r).

Proof. Induction on r. For r = 0 this clearly holds. Now assume that
it holds for all r ≤ s and all possible A, x, d. So for some M we have
AMx ≡ 0 (modP d+s+1). Then A acts on L = Lin(π−dx + PRN , A(π−dx+
PRN ), A2(π−dx+ PRN ), . . .), which is a subspace of (R/P )N . We see that
A is nilpotent on L, the dimension of L is ≤ N , so we get AN |L = 0. This
means AN (π−dx+ PRN ) = 0 or equivalently ANx ≡ 0 (modP d+1).

Put w(ANx) = d+m. So m ≥ 1.
If m ≥ s + 1 then ANx ≡ 0 (modP d+s+1) and clearly AN(s+1)x ≡ 0

(modP d+s+1).
If m ≤ s then we use the inductive assumption for ANx instead of x and

s+ 1−m instead of r. Hence AN(s+1−m)ANx ≡ 0 (modP d+m+s+1−m) and,
as N(s+ 1) ≥ N(s+ 1−m) +N , we get AN(s+1)x ≡ 0 (modP d+s+1).

Lemma 6.3. We have dZ(k) ≥ 2k for k ≤ dlog2 ee.
Proof. Recall that dxe and Z(k) were defined in Section 3. For k = 0

we have Z(0) = 0; d0 = w(x1) ≥ 1 (as we consider (∗)-cycles). Assume
that for some k ≤ log2 e we have dZ(k) ≥ 2k and consider dZ(k+1) with
k + 1 ≤ dlog2 ee. For r > Z(k), Lemma 6.1 yields

dr ≥ min{2dZ(k), dZ(k) + e, w((AZ(k) − I)p
r−Z(k)−1xpZ(k))}.(3)

For β > max{Z(k), α}, Lemma 6.1 implies

w((AZ(k) − I)p
β−Z(k)−1xpZ(k)) ≥ dZ(k) + 2k,

whence by Lemma 6.2,

w((AZ(k) − I)2kNxpZ(k)) ≥ dZ(k) + 2k.
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Since pZ(k+1)−Z(k) − 1 ≥ 2kN we have

w((AZ(k) − I)p
Z(k+1)−Z(k)−1xpZ(k)) ≥ dZ(k) + 2k.

Now taking r = Z(k + 1) in (3) we arrive at

dZ(k+1) ≥ min{2dZ(k), dZ(k) + e, dZ(k) + 2k} ≥ 2k+1.

Lemma 6.4. Ak ≡ Ap
k−l
l (modP dl) for 0 ≤ l ≤ k, which means that all

entries of Ak are congruent (modP dl) to the corresponding entries of Ap
k−l
l .

Proof. We have

Ak = (Φp
k
)′(0) =

pk−l−1∏

j=0

(Φp
l
)′(xjpl) ≡ ((Φp

l
)′(0))p

k−l ≡ Apk−ll (modP dl),

as from Lemma 4.3, xjpl ≡ 0 (modP dl) and therefore (Φp
l
)′(xjpl) ≡ (Φp

l
)′(0)

(modP dl).

Lemma 6.5. Let m be such that dm ≥ e. Then ddlogp(pm+N)e ≥ e+ 1.

Proof. For m ≥ α this is obvious. So let m < α. Lemma 6.1 gives

w((Am − I)p
α−m−1xpm) ≥ min{dα, 2dm, dm + e} = min{∞, 2dm, dm + e}

≥ dm + 1.

By Lemma 6.4 we have Am ≡ Ap
m

0 (modP ). Hence

0 ≡ (Am − I)p
α−m−1xpm ≡ (Ap

m

0 − I)p
α−m−1xpm

≡ (A0 − I)(pα−m−1)pmxpm (modP dm+1).

Now we use Lemma 6.2 to obtain (A0 − I)Nxpm ≡ 0 (modP dm+1). Note
that β = dlogp(p

m +N)e is bigger than m and (pβ−m − 1)pm ≥ N . Hence

(Am − I)p
β−m−1xpm ≡ (A0 − I)(pβ−m−1)pmxpm ≡ 0 (modP dm+1).

Having this we apply Lemma 6.1 to obtain dβ ≥ min{2dm, dm+e, dm+1} ≥
e+ 1.

Lemma 6.6. Let m ≥ logpN be such that dm ≥ e+ 1. Then

α < m+ 1 + logp
N(e+ 1)
p− 1

.

Proof. We may assume that α > m. Applying Lemma 6.1 (with k = α,
l = α− 1), we obtain

0 = xpα ≡
p−1∑

v=0

(
p

v

)
(Aα−1 − I)p−v−1xpα−1 (modP 2dα−1);(4)

in particular
0 ≡ (Aα−1 − I)p−1xpα−1 (modP dα−1+1).
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Since (Aα−1−I)p−1 ≡ (Ap
α−1

0 −I)p−1 ≡ (A0−I)p
α−1(p−1) (modP ), we obtain

0 ≡ (A0 − I)p
α−1(p−1)xpα−1 (modP dα−1+1)

and therefore, by Lemma 6.2, (A0 − I)Nxpα−1 ≡ 0 (modP dα−1+1). Since
pα−1 ≥ pm ≥ N , we get

(Aα−1 − I)xpα−1 ≡ (A0 − I)p
α−1

xpα−1 ≡ (A0 − I)p
m
xpα−1(5)

≡ (Am − I)xpα−1 ≡ 0 (modP dα−1+1).

Applying Aα−1 − I to (4) yields

(Aα−1 − I)pxpα−1 ≡ −
p−1∑

v=1

(
p

v

)
(Aα−1 − I)p−vxpα−1 ≡ 0 (modP dα−1+e+1).

Since dm ≥ e + 1, Lemma 6.4 implies Ap
α−m−1

m ≡ Aα−1 (modP e+1), and
therefore using (5) we get

0 ≡ (Ap
α−1−m
m − I)pxpα−1

≡
( pα−1−m−1∑

v=0

(
pα−1−m

v

)
(Am − I)p

α−1−m−v
)p
xpα−1

≡ (Am − I)p
α−m

xpα−1 (modP dα−1+e+1).

Suppose now that pα−m−1(p− 1) ≥ (e+ 1)N . Then Lemma 6.2 implies

0 ≡ (Am − I)p
α−m−1(p−1)xpα−1 (modP dα−1+e+1)

and therefore, by Lemma 6.4 and (5),

(Aα−1 − I)p−1xpα−1 ≡ (Ap
α−1−m
m − I)p−1xpα−1

=
( pα−1−m−1∑

v=0

(
pα−1−m

v

)
(Am − I)p

α−1−m−v
)p−1

xpα−1

≡ (Am − I)p
α−1−m(p−1)xpα−1 ≡ 0 (modP dα−1+e+1).

By (4) and (5) we then obtain

0 ≡ (Aα−1 − I)p−1xpα−1 ≡ −
p−1∑

v=1

(
p

v

)
(Aα−1 − I)p−v−1xpα−1

≡ −pxpα−1 (modP dα−1+e+1),

contradicting w(pxpα−1) = dα−1 +e. Hence (e+1)N > pα−m−1(p−1), which
is equivalent to the assertion.

To finish the proof of the proposition notice that Lemma 6.3 leads to
dZ(dlog2 ee) ≥ e and, by Lemma 6.5, ddlogp(pZ(dlog2 ee)+N)e ≥ e+1. As of course

dlogp(p
Z(dlog2 ee) +N)e ≥ logpN , Lemma 6.6 finally yields the statement.
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7. Proof of Theorem 3.1

7.1. Proof of Theorem 3.1(i). Theorem 3.1(i) follows directly from Pro-
positions 5.1 and 6.1 because if we have a (∗)-cycle of length mpα then there
is a (∗)-cycle of length m and there is a (∗)-cycle of length pα (this follows
directly from Lemma 4.1(ii)).

7.2. Proof of Theorem 3.1(ii). Note that the numbers hi ∈ H(R/P, li)
satisfy hi ≤ pfli − 1 and

∏r
i=1 hi ≤ (pfl1 − 1) . . . (pflr − 1) < pf(l1+...+lr) ≤

pfN . The rest follows from Theorem 3.1(i) and Lemma 4.4.

7.3. Proof of Theorem 3.1(iii). Note that in the passage from R to R̂
the number f is preserved. Having a (∗)-cycle of a given length in Rr by
extending by zeros we obtain a (∗)-cycle of the same length in RN . So in
view of Lemma 4.4 and Proposition 4.1 it suffices to find a (∗)-cycle of length
pfN − 1 in RN for a complete R. As the statement of this point is clear for
pfN − 1 = 1, we assume that pfN − 1 > 1.

Let a field S be a finite extension of R/P of degree N . Let ξ0 be a gener-
ator of the multiplicative group S\{0}. Then the minimal monic polynomial
f ∈ (R/P )[X] of ξ0 over R/P is of degree N . Write XpfN−1−1 = f(X)g(X)
with relatively prime polynomials f, g. From the Hensel lemma there are
F,G ∈ R[X] such that XpfN−1 − 1 = F (X)G(X) where F (modP ) = f,
G (modP ) = g,degF = N,F monic. Clearly F is irreducible.

Let ξ be such that F (ξ) = 0. We have a bijection j : RN → R[ξ] given
by

j(x1, . . . , xN ) = x1 + x2ξ + . . .+ xNξ
N−1.

Let Λ : R[ξ]→ R[ξ] be multiplication by ξ. It is easy to check that j−1Λj :
RN → RN is a polynomial mapping (even linear).

Let r be the smallest natural such that ξr = 1. So F (X) |Xr − 1 and
f(X) |Xr − 1. Hence ξr0 = 1 and this gives pfN − 1 ≤ r. So 1, ξ, . . . , ξp

fN−2

are pairwise different elements of R[ξ]. The tuple j−1(p), j−1(ξp), . . . ,
j−1(ξp

fN−2p) is a cycle of length pfN − 1 for j−1Λj. It is a (∗)-cycle as
j−1(ξp) − j−1(p) = (0, p, 0, . . . , 0) − (p, 0, 0, . . . , 0) for N ≥ 2 and (ξ − 1)p
for N = 1. Notice that for N = 1 the number ξ lies in R.

8. Proof of Corollary 3.1. The first estimate in the corollary follows
from Theorem 3.1(ii), as we can embed ZK into (ZK)p. We have 2ZK =
Pe1

1 . . .Pet
t . Set f1 = [ZK/P1 : Z/2Z]. We consider ZK as a subring of

(ZK)P1 , which satisfies the assumptions of Theorem 3.1 with p = 2, e =
e1, f = f1, ef ≤ n. So Theorem 3.1(ii) gives

B(ZK , N) ≤ 2fN (2fN − 1)2dlog2(2Z(dlog2 ee)+N)e+1+log2(N(e+1)).
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Taking into account the definition of Z(k) we easily arrive at the statement
of the corollary, considering separately the cases f = n, e = 1 and f ≤
n/2, e ≤ n.

9. Proof of Theorem 3.2. The equality CYCL(Rp, N) = CYCL(R̂p, N)
follows from Proposition 4.1, as Rp is a discrete valuation ring. Clearly,
CYCL(R,N) ⊂ CYCL(Rp, N) for all p ∈ P(R).

Suppose now that k ∈ CYCL(Rp, N) for all p ∈ P(R), and let B ⊂ P(R)
be a finite non-empty set such that #(R/p) ≥ k for all p ∈ P(R) \ B and
for some positive α(p) the ideal

∏
p∈B pα(p) is principal. For each p ∈ B,

let xp,0, . . . , xp,k−1 be a cycle of some polynomial mapping Φp : RNp → RNp .

We set Φp = (Φ(1)
p , . . . , Φ

(N)
p ), where Φ

(r)
p ∈ Rp[X1, . . . ,XN ] and xp,i =

(x(1)
p,i , . . . , x

(N)
p,i ) with x(r)

p,i ∈ Rp. According to Lemma 4.1(v), we may assume

that x(r)
p,i 6= x

(s)
p,v whenever (i, r) 6= (v, s).

For p ∈ P(R), let wp : Rp → Z ∪ {∞} be the (surjective) exponent of
Rp, i.e. wp(Rp) = {∞, 0, 1, 2, . . .}. Let M ∈ R be such that

wp(M) > wp

( ∏

(i,r)6=(v,s)

(x(r)
p,i − x

(s)
p,v)
)

for all p ∈ B

and wp(M) = 0 for all p ∈ P(R) \ B (the existence of such an M clearly
follows from the properties of B). Our construction depends on a suitable
approximation of the elements x(r)

p,i by elements from R which is supplied by
the following lemma.

Lemma 9.1. There exist elements x(r)
i of R such that wp(x(r)

p,i − x
(r)
i ) ≥

kwp(M) for all (i, r) and p ∈ B and

min
{
wp(x(1)

i − x(1)
v ), wp

(∏

r 6=s
(x(2)
r − x(2)

s )
)}

= 0

for 0 ≤ v < i ≤ k − 1 and all p ∈ P(R) \ B.

Proof. Let z(r)
i ∈ R be such that wp(x(r)

p,i − z
(r)
i ) ≥ kwp(M) for all (i, r)

and p ∈ B. We shall construct elements a0, a1, . . . , ak−1 ∈ R such that

min
{
wp((z(1)

i +Mkai)− (z(1)
v +Mkav)), wp

(∏

r 6=s
(z(2)
r − z(2)

s )
)}

= 0(6)

for all i 6= v and p ∈ P(R) \ B. Once this is done, we set x(1)
i = z

(1)
i +Mkai

and x
(r)
i = z

(r)
i for r ≥ 2, and the lemma follows.

We set a0 = 0 and suppose that for some 1 ≤ l ≤ k − 1 we have already
constructed a0, a1, . . . , al−1 such that (6) holds for 0 ≤ v < i ≤ l− 1 and all
p ∈ P(R) \ B. Since the elements z(r)

i are pairwise distinct by construction,
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the set B′ of all p ∈ P(R) \ B satisfying

wp

(∏

r 6=s
(z(2)
r − z(2)

s )
)
> 0

is finite. Hence it suffices to determine al such that, for all p ∈ B′,

wp(z(1)
l − z(1)

v +Mk(al − av)) = 0 for 0 ≤ v < l.

For each p ∈ B′, we have Mk 6∈ p and #(R/p) ≥ k > l, and therefore there
exists al,p ∈ Rp such that wp(z(1)

l − z
(1)
v +Mk(al,p − av)) = 0 for 0 ≤ v < l.

Choosing al ∈ R such that al ≡ al,p (modpRp) for all p ∈ B′ yields the
assertion.

Let now x
(r)
i ∈ R be as in Lemma 9.1, set xi = (x(1)

i , . . . , x
(N)
i ) ∈ RN and

construct a polynomial mapping Φ = (Φ(1), . . . , Φ(N)) : RN → RN such that

x0, . . . , xk−1 is a cycle of Φ. Let Φ
(r) ∈ R[X1, . . . ,XN ] be any polynomials

satisfying Φ
(r) ≡ Φ(r)

p (modMkRp[X1, . . . ,XN ]) for p ∈ B. Put

Φ(r)(X1, . . . ,XN ) = Mkb
(r)
0 +

k−1∑

j=1

Mk−j
[
b
(r)
j

j−1∏

v=0

(X1 − x(1)
v )

+B
(r)
j

j−1∏

v=0

(X2 − x(2)
v )
]

+ Φ
(r)

(X1, . . . ,XN )

with suitable coefficients b(r)
j , B

(r)
j ∈ R. We must determine these coefficients

in such a way that

(7) x
(r)
i+1 = Φ(r)(x(1)

i , . . . , x
(N)
i )

= Mkb
(r)
0 +

i∑

j=1

Mk−j
[
b
(r)
j

j−1∏

v=0

(x(1)
i −x(1)

v ) +B
(r)
j

j−1∏

v=0

(x(2)
i −x(2)

v )
]

+ Φ(r)(x(1)
i , . . . , x

(N)
i )

for all 0 ≤ i ≤ k−1 and 1 ≤ r ≤ N (where x(r)
k = x

(r)
0 ). For i = 0, (7) reduces

to x(r)
1 = Mkb

(r)
0 + Φ

(r)
(x(1)

0 , . . . , x
(N)
0 ), which has a solution b

(r)
0 ∈ R since

by construction wp(x(r)
1 − Φ

(r)
(x(1)

0 , . . . , x
(N)
0 )) ≥ wp(Mk) for all p ∈ P(R).

Suppose now that, for some l ≤ k−1, the coefficients b(r)
j , B

(r)
j ∈ R have

been determined for j ≤ l − 1 such that (7) holds for i ≤ l − 1. We must
find b

(r)
l , B

(r)
l such that

A1b
(r)
l + A2B

(r)
l = A,
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where for s ∈ {1, 2},

As = Mk−l
l−1∏

v=0

(x(s)
l − x(s)

v ),

A = x
(r)
l+1 −

l−1∑

j=0

Mk−j
[
b
(r)
j

j−1∏

v=0

(x(1)
l − x(1)

v ) +B
(r)
j

j−1∏

v=0

(x(2)
l − x(2)

v )
]

− Φ(r)
(x(1)
l , . . . , x

(N)
l ).

Hence it is sufficient to prove that, for all p ∈ P(R),

wp(A) ≥ wp(A1R+ A2R) = min{wp(A1), wp(A2)}.
If p 6∈ B, then min{wp(A1), wp(A2)} = 0 by Lemma 9.1 and we are done. If
p ∈ B, then wp(A) ≥ (k − l + 1)wp(M) by construction, and we shall prove
that, for s ∈ {1, 2}, wp(As) < (k − l + 1)wp(M). Indeed, for 0 ≤ v ≤ l − 1
and p ∈ B, we have x(s)

l − x
(s)
v ≡ x(s)

p,l − x
(s)
p,v (mod pkwp(M)Rp) and therefore,

for p ∈ B, we have

As ≡Mk−l
l−1∏

v=0

(x(s)
p,l − x

(s)
p,v) (modp(2k−l)wp(M)Rp).

By the definition of M , we have wp(
∏l−1
v=0(x(s)

p,l − x
(s)
p,v)) < wp(M), and

since k − l + 1 ≤ 2k − l, the assertion follows.

10. Proof of Theorem 3.3. Let m be the middle term appearing in
Theorem 3.3(i). Note that m < 4nN . Let K be a fixed field of degree n over
Q such that pZK are prime ideals for all natural primes p < 4n. Such a
field exists owing to a much more general theorem due to Hasse. Lemma 4.4
guarantees that (for #ZK/p = pf )

{1, 2, . . . , pfN} ⊂ CYCL((ZK)p, N).

Owing to Theorem 3.2, to prove Theorem 3.3(i) it suffices to show that
for every non-zero prime ideal p of ZK we have m ∈ CYCL((ZK)p, N).

Case 1: p lies above some pZK with p > 4n. We then have pfN ≥ pN >
4nN > m, so m ∈ CYCL((ZK)p, N).

Case 2: p = pZK with some p such that 5 ≤ p ≤ 4n. In this case
pfN = pnN ≥ 5nN > m and again we are done.

Case 3: p = 3ZK . Note that N −
⌈
N log3

3
2

⌉
≥ 1 (as N ≥ 2). Now

Theorem 3.1(iii) shows that there is a (∗)-cycle of length 3n(N−dN log3
3
2 e)−1

in (ZK)Np .
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Note that for N ≥ 2, (n,N) 6= (1, 3) one has

(2nN − 1)
⌊

2nN

3n(N−dN log3
3
2 e) − 1

⌋
≤ 3nN ,

so Lemma 4.4 guarantees that for such (n,N) we get m ∈ CYCL((ZK)p, N).
For (n,N) = (1, 3) we have m = 56 = 14 · 4, so by Lemma 4.4 we

should find a (∗)-cycle of length 4 in Z3
3 . A tuple (3, 0, 0), (0, 3, 0), (−3, 0, 0),

(0,−3, 0) is such a cycle for the mapping (X,Y,Z) 7→ (−Y,X,Z).

Case 4: p = 2ZK . This case clearly follows from Lemma 4.4 and Theo-
rem 3.1(iii).

The last estimate follows from the consideration of two cases, namely
3n(N−dN log3

3
2 e) − 1 ≤ 1

22nN and 2nN ≥ 3n(N−dN log3
3
2 e) − 1 > 1

22nN .
Theorem 3.3(ii) follows from Theorem 3.3(i) and Corollary 3.1; so does

Theorem 3.3(iii), as Q is the only field of degree 1 over Q.

11. Proof of Theorem 3.4

11.1. Proof of Theorem 3.4(i). Let [K : Q] = n and put

q1 = pf1
1 , . . . , qk = pfkk (pi prime).(8)

Notice that for y1 < . . . < yk we have

y1 < M(y1, . . . , yk) ≤ 2y1

(the left inequality follows from (y1, ε, 0, 0, . . . , 0)∈∆(y1, . . . , yk) for small ε).
Hence q1 < exp(M(ln q1, . . . , ln qk)). The right inequality in Theorem 3.4(i)
follows directly from Corollary 3.1.

So we turn to the inequality

exp(M(ln q1, . . . , ln qk)) ≤ lim inf
N

(B(ZK , N))1/N .

Let (m,m1, . . . ,mk) be a fixed element in ∆(ln q1, . . . , ln qk) such that

m+m1 + . . .+mk = M(ln q1, . . . , ln qk).

Fix ε > 0. Let N be sufficiently large. Fix r, r1, . . . , rk such that

r ∈ [exp((1− ε)mN), exp(mN)], ri ∈ [exp((1− ε)miN), exp(miN)],

and additionally assume that for mi > 0 the number ri is of the shape
pn!Ti
i −1, where Ti is natural. Note that as m,m1, . . . ,mk, p1, . . . , pk, n, ε are

fixed such a choice of r, r1, . . . , rk is possible for sufficiently large N . Put
s = rr1 . . . rk. Notice that

s ≤ exp(N(m+m1 + . . .+mk)) ≤ exp(N · 2 ln q1) = q2N
1 .(9)

Lemma 11.1. s ∈ CYCL(ZK , N).

Proof. According to Theorem 3.2 it suffices to show s ∈ CYCL((ZK)p, N)
for all non-zero prime ideals p of ZK .
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Case 1: #ZK/p > q2
1. In this case Lemma 4.4 and (9) give the state-

ment.

Case 2: #ZK/p ≤ q2
1. From (8) we infer that p lies above pjZ for some

j ≤ k. Write #ZK/p = p
Fj
j . By the very definition of q1, . . . , qk and (8) we

have
n ≥ Fj ≥ fj .(10)

To get the statement it suffices, by Lemma 4.4, to prove that
s

rj
= rr1 . . . rj−1rj+1 . . . rk ≤ (pFjj )N(11)

and that rj is the length of a (∗)-cycle in (ZK)Np .
Now (11) follows from
s

rj
≤ exp(mN) exp(m1N) . . . exp(mj−1N) exp(mj+1N) . . . exp(mkN)

= exp((m+m1 + . . .+mj−1 +mj+1 + . . .+mk)N) ≤ exp(N ln qj)

= qNj = (pfjj )N ≤ (pFjj )N .

If mj = 0 then rj = 1 and clearly there is a (∗)-cycle of length rj
in (ZK)Np . So let mj > 0. By Theorem 3.1(iii) it suffices to prove Uj =
n!Tj/Fj ≤ N , which follows from

Uj =
n!Tj
Fj
≤ ln(exp(mjN) + 1)

Fj ln pj
≤ ln(exp(N ln qj) + 1)

fj ln pj

=
ln(exp(N ln qj) + 1)

ln qj
≤ N +

1
2

for large N.

Now, as Uj is natural by (10), the lemma follows.

To finish the proof note that for large N we have

B(ZK , N) ≥ s ≥ exp((1− ε)(m+m1 + . . .+mk)N)

= exp((1− ε)M(ln q1, . . . , ln qk)N).

11.2. Proof of Theorem 3.4(ii). It suffices to note that by the simplex
method for y1 < y2 < y3 we have

M(y1, y2, y3) = min
{

2y1,
y1 + y2 + y3

2

}
and M(y1, y2) = M(y1) = 2y1.

11.3. Proof of Theorem 3.4(iii). Here we have q1 = 2 and q3 ≥ 5 ≥ 22.
So the statement follows from (ii).
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