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Improved upper bounds for the
star discrepancy of digital nets in dimension 3

by
FRIEDRICH PILLICHSHAMMER (Linz)

1. Introduction. The concept of digital nets provides at the moment
the most efficient method to generate point sets with small star discrep-

ancy Dy. The star discrepancy of a set of points xg,...,xy_1 in [0, 1)? is
defined by
B
Dy, = sup| 2B ()|,
B

where the supremum is taken over all subintervals B of [0,1)? of the form
B = Hle[O, bi), 0 < b; <1, Ax(B) denotes the number of ¢ with x; € B
and A is the Lebesgue measure.

A digital (0, s,3)-net in base 2 is a set of N = 2° points Xg,...,Xy_1 in
[0,1)3 which is generated as follows: Choose three s x s-matrices C, Cy and
Cs over Zs with the following property: For all integers dy, ds,ds > 0 with
dy +ds +ds = s, the system of the first d; rows of C together with the first
ds rows of Cs and the first d3 rows of (5 is linearly independent over Z.
Then to construct x,, := (:c;”, :cﬁf), :cﬁf’)) for 0 < n < 2% —1, represent n in
base 2:

n=ng+ni2+...+ng_12°°!

with n; € {0,1}. Now multiply C; with the vector of digits:
Ci(no, R ,ns_l)T =: (ygz), e ygl))T S ZS

and set
s y(z)
(1) .— .
)=y
j=1
Further let us recall the definition of digital (0, 2)-sequences in base 2:
A digital (0,2)-sequence in base 2 is a sequence Xg, X1, . . . in [0, 1)? which is
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168 F. Pillichshammer

generated as follows: Choose two N x N-matrices C7 and Cy over Zs such
that for every integer s > 1 the upper left s x s-matrices C1(s) and Ca(s)
generate a digital (0,s,2)-net in base 2 (a digital (0, s,2)-net in base 2 is
defined analogously as a digital (0, s, 3)-net in base 2—see Section 3). Then

to construct x,, := (%(11)7 .CC,(IQ)) for n > 0, represent n in base 2:

n:no+n12—|—n222+...
with n; € {0,1}. Now multiply C; with the vector of digits:

C’i(no,nl, no, .. .)T = (y%l),ygz), .. .)T

N >
j=1

It was shown by H. Niederreiter in [6] that for the star discrepancy of
any digital (0, s, 3)-net in base 2 we have

and set

52 s 9
NDW < —+ - 4+ =
NS oy
and hence
D 1
li N =0.5203. ..
ljifn_?;lopmax (log N)2 — 4(log2)? 0.5208...,

where the maximum is taken over all digital (0, s, 3)-nets in base 2 with
N = 2% elements.

Again in [6] Niederreiter proved that for the star discrepancy of the first
N elements of a digital (0, 2)-sequence in base 2 we have

1 11 9
ND3% < ———— (log N)? log N + =
N S Slloga)z (BN gog e N+ g
and hence
D 1
li ol = 0.26017 ...
1]{[nj;10pmax oz N)Z = S(log2)? 0.26017...,

where the maximum is taken over all digital (0, 2)-sequences in base 2. From
this result he concluded for every integer s > 1 the existence of a digital
(0, s,3)-net in base 2 such that

NDy < 32/8 + O(s),
where N = 2°.
In [1] H. Faure constructed a digital (0, 2)-sequence in base 2 such that
D 1
li N
WSUP Tlog N2 = 24(log 2)2
In this paper we study the star discrepancy of digital (0, s, 3)-nets in
base 2 and of digital (0,2)-sequences in base 2. With the help of Walsh

= 0.0867. ..
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series analysis we improve the general bound for the star discrepancy of
digital (0, s,3)-nets in base 2 given by Niederreiter (Theorem 1). Further
we give an improved upper bound for the star discrepancy of digital (0, 2)-
sequences in base 2 (Theorem 3) from which we conclude—in the same way
as Niederreiter did in [6]—the existence of digital (0, s, 3)-nets in base 2 with
an essentially smaller bound for the star discrepancy than the general bound
given in Theorem 1 (Theorem 2).

2. The results. We have the following general upper bound for the
star discrepancy of digital (0, s, 3)-nets in base 2. This bound improves the
discrepancy bound given in [6].

THEOREM 1. For all digital (0, s,3)-nets in base 2 we have
NDy < 52/6+ O(s),
where N = 2°.

The proof will be given in Section 4. From Theorem 1 we immediately
get the following corollary:

COROLLARY 1. We have

y D 1
1m sup max
N—»oop (lOg N)2 N 6(10g 2)2

where the mazimum is taken over all digital (0, s,3)-nets in base 2.

= 0.34689 ...,

Actually we can prove the existence of digital (0, s, 3)-nets in base 2 with
an essentially smaller constant at the leading term in the discrepancy bound
as given in Theorem 1. We have

THEOREM 2. For every s > 1 there exists a digital (0, s, 3)-net in base 2
such that
NDy < s*/124 O(s),
where N = 2°.

The proof of this theorem will be given in Section 5. The digital (0, s, 3)-
nets in base 2 for which the discrepancy bound in Theorem 2 holds are
obtained by setting x,, = (n/2%,y,), n =0,...,2° — 1, where y,, is the nth
element of a digital (0,2)-sequence in base 2. We shall see that the above
Theorem 2 is a consequence of the following theorem:

THEOREM 3. For the star discrepancy Dy, of the first N elements of a
digital (0,2)-sequence in base 2 we have

1
ND3 < ———— (log N)? log N + —.

N = T5liogayz 108 N+ gg10g3 108 NV +

The proof of this theorem will be given in Section 5. Combining the result
from Theorem 3 with the result of Faure [1] mentioned in Section 1 we obtain

33




170 F. Pillichshammer

COROLLARY 2. We have
1 NDx 1
5 < lim sup max N _ <

24(log 2) N — 00 (log N)2 — 12(log2)?’

where the mazimum is taken over all digital (0,2)-sequences in base 2.

3. Notation and auxiliary results. For 0 < o, 3,7 < 1 we consider
the discrepancy function

A, 8,7) := An([0, @) x [0, 8) x [0,7)) = Napy

for digital (0, s,3)-nets xq,...,X2s_1 in base 2 (i.e. N = 2%).

Since the generating matrices Cy, Co and C3 of a (0, s,3)-net must be
regular, and since multiplying C7, Co and C3 by a regular matrix A does
not change the point set (only its order) we may always assume that

~2
C
1 0 ... 00 2 2 2 _,1
Cf1 Cla -+ Cig a2
0 1 0 0 2
DY 02 C2 C .
Cl = ] e e s CQ = 2,1 2,2 e 2,8 =: . 5
0 0 1 0 P 2 - :
0O 0 0 1 s,1 5,2 S,8 -9
CS
=3
3 1
Ci1 Cip € s c3
3 3 3
Cy3=1] %1 C2 - Cs5 | = :
3 3 3 :
Cs1 03,2 Cs,s '3
CS
Assume that «, § and  are “s-bit”, i.e.
Qi Qs B1 Bs 7 Vs
oz—?—l——i—?, ﬁ—?—F—{-?, '}’—74“";,

and let o/, B’ and +' be arbitrary with

1 1
<d < — <p < — ! )
a<a a+25, B<pB ﬂ+287 < 5

Then (since all coordinates of the points of a digital net are s-bit) we have
A(O/a /8/7 7,) = A(Oé, /87’7) - 25(0/5/7/ - Oéﬁ’)’),

and hence for the star-discrepancy D7y of the net we have

1 3 3 1
1 D% — — A S
s-bit

(note that N = 2°).
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We will call

1
¥ max [A(a, 8,9)] = Dy
s-bit
the discrete discrepancy of the net. D%, differs from D% at most by the
almost negligible quantity 3/N and seems for nets to be the more natural
measure for the irregularities of distribution.
We need some further notation: For any s-bit number § = §1/2+ ... +
0s/2° we write
o1
02

Sl
I

ds
and for a non-negative integer k = ks_12°71 + ... 4+ k12 + ko we write

ko
k1

k3,1
For the proof of Theorem 1 we need two auxiliary results.
LEMMA 1. Let z be of the form z = p/2% p € {0,...,2° — 1} (i.e. z is

s-bit). Then for the characteristic function xo.) of the interval [0,z) we

have
251

Xio,2) (@) = ) cx(z)walg(x),

k=0

where waly, denotes the kth Walsh function in base 2 (see Remark 1),

z if k=0,
= 1
c(2) walg (2) o] P(2°® ) if k#0,
where (x) is periodic with period 1 and
x if 0<x<1/2,
o ={7
r—1 if 1/2<z <1,
and v(k) =7 if 2" <k < 2" (for k =0 define v(0) := —1).

REMARK 1. Recall that Walsh functions in base 2 can be defined as
follows: For a non-negative integer k with base 2 representation k = k2" +
...+ k12 + ko and a real x with (canonical) base 2 representation x =
r1/2 4 12/2% + ... we have

Walk(l‘) = (_1)x1ko+m2k1+...+xm+1km — (_1)(1_5\56)'



172 F. Pillichshammer

Proof of Lemma 1. This is a simple calculation, to be found for example
in [3, Lemma 2|. m

LEMMA 2. Let ¢ be as in Lemma 1. Then

P27 B) — Zw 2'8) = {8} — Brea,

where {f} = 3 — [A].
Proof. See [4, Lemma 2]. =

For the proof of Theorem 3 we need some further notation and auxiliary
results:

The concept of shifted digital (0, s,2)-nets in base 2 is a slight general-
ization of the well known concept of digital (0, s,2)-nets in base 2. A shifted
digital (0, s,2)-net in base 2 is a set of N = 2° points X, ..., xx_1 in [0,1)?
which is generated as follows: Choose two s x s-matrices C, Cy over Zo with
the following property: For every integer k£, 0 < k < s, the system of the
first k rows of C] together with the first s — k rows of Cs is linearly indepen-
dent over Z,. Further choose two fixed vectors k; = (k‘g), ceey S))T € 73,
1 = 1,2. Then to construct x, := (xﬁf), :1:512)) for 0 < n < 2% —1, represent n
in base 2:

n=ng+ni2+...+ng_12°°!
with n; € {0,1}. Now multiply C; with the vector of digits and add the
vector k;, i.e.:

Ci(n07"'ans—1)T+Ei = (y(Z)vayS)) EZS

and set
s (i)

(8) . Yi
=YL
j=1
REMARK 2. In the definition of usual digital (0, s,2)-nets in base 2 the
vectors k;, 1 = 1,2, are omitted.

For the star discrepancy of shifted digital (0, s,2)-nets in base 2 we have
the following result:

LEMMA 3. For the star discrepancy Dy of a shifted digital (0, s,2)-net
in base 2 we have

S 19
ND% < -4+ —
N—3+ 97
where N = 25,
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Proof. In [4, Theorem 5] this lemma was proved for digital (0, s, 2)-nets
in base 2. It easily follows from the proof that the assertion is also true for
shifted digital nets. =m

Finally we need the following general result which is well known in the
theory of uniform distribution modulo one:

LEMMA 4. Let Xq,...,Xy_1 be a point set in [0,1)? with star discrep-
ancy Dy. Let x, = (x%l),.. (d)) 0<n<N-—1, and let 5%)’ 0 <

n < N-1,1< 14 < d, be non-negative reals with 5() < 1/a, such that

5:) —l—a(@) <1, forall0 <n < N-1,1<14<d Then for the star dis-
crepancy ]_N)}*V of the point set Xgq,...,Xn_1, With 7D = gl 4 el for all
0<n<N-1,1<1<d, we have

|D% — D] < d/a.

4. Proof of Theorem 1. Due to formula (1) it suffices to show that
NDY < s%/6 4+ O(s)
for all digital (0, s, 3)-nets in base 2.

Let I := [0,c) x [0,8) x [0,7) with «, and v s-bit. Then for y =
(yW,y? y3)) € [0,1)? by Lemma 1 we have

2°5—1
xi(y) = M) = > al@)a(B)em(y)walk(y™)wal,(y®)wal,, (y)
k,l,m=0
(k,1,m)#(0,0,0)
251
=a Y alB)en(y)wal(y®)wal, (y?)
I,m=0
(L;m)#(0,0)
251
+6 ) erla)en(y)waly(y™M)wal, (y©®)
k,m=0
(k;m)#(0,0)
2°5—1
+v Y al@a(Bwal,(y™)wali(y®)
k,1=0
(k,1)#(0,0)
2°5—1
$(2° M)y (20D )y (2v (™))
+ k lz_lwalk(a)wall(ﬁ)walm('y) AT

X Walk(y(l))wall (y(2))walm(y(3))
Let now x;,7=0,...,2°—1, with x; := (x(l) (2) (3)) be a digital (0, s, 3)-

z’z’z
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net in base 2. Then we have

2%—-1 251
Ala,By)=a > alBem(r) Y wali(zi?)waly, (@)
1,m=0 i=0
(1,m)#(0,0)
251 2°—-1
+8 Y ale)em(n) Y wali(at))waly, (z1V)
k,m=0 i=0
(k,m)#(0,0)
2°—-1 2°—-1
9 Y ala)a@) Y wal(a)wal (x)
k,1=0 i=0
(k,1)#(0,0)
2°—-1
p(2"Ma)p(2°0 By (27™)y)
+ ) lzjl walg (a)wal; () wal,, () 5o 3050 (m)

X Z waly, (:L’z(l) )Wall (37,(2) )Walm ($§3))

=: a21 + ﬂzg + ’}/23 + 24.

From [4, Theorem 5] together with the proof of [4, Theorem 1] it follows

that

s 19
P 2427
| ’_3+9

for i = 1,2, 3, and hence it suffices to show that
124] < 52/6 + O(s)
for all digital (0, s, 3)-nets in base 2.
We now consider 2125 waly (x; 1 ))wall( (2 ))walm(xgg)) with x(l) =
(1)/2 +...+ x§12/25 (2) = :1:521)/2 +...+ xi?/?s and xgg) : (3)/2 +
-+ :EE?’S)/QS. We 1dent1fy ( i (2) :1753)) with

1 1) (2 2) (3 3 s
RO Ef,---, el € (Zo)?
and we define
(@2 e o @V.77 7)== @) + 77,2l + 3D,
Further waly, ; , (z (), 52), (3)) = walg (z ())wall( ())walm(mg?’)),hence
walg i ((2)), 27, 2) @ @0, 57, 7))
= Walk,l,m (xgl) ) x§2) ) xgg))walk,l,m(:fgl)v 552)7 553))7

i.e. waly;, is a character on ((Z2)3*,®).
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The digital net X, ...,X2s_1 is a subgroup of ((Zz2)3¢,®), hence

251 2% it Walk,l,m($§1)> 52)7 53))
2 3
Z waly (z Walz( ( ))walm(:cg )) = foralli=0,...,25 -1,

0  otherwise.
(For more details see [2] or [5].)
(1

22 (3)) (-1 )(k|f(1))+(l|(2))+(m|f(3))_1

) ’L ) Z

Now we have waly ; ., (z;
for all s = 0, . 25—111('f

(k:|*(1)) @22 + (m)#?)  foralli=0,...,2° —1
(by the definition of the net); this means
(k[i) = (I|Coi) + (m|Csi) foralli=0,...,2°—1,
and this is satisfied if and only if
k=CFl+CTm = k(l,m).
Further
walg(1,m).1,m(a, 3,7) = wal;(6)waly, ()

with § := Cod + § and & := C3d@ + 7 (note that §; = (¢2|@) + B and
ei = (71d) + ).
Therefore we have

251
s P(2v kM) )y (200 B)g (20 (™))
Yy=2 121 wal; (8)wal,, (€) TG ETOE=Te)
k(l, m_)¢0
s Y2 B)Y(2Yy)
=2 Z 2u+v
u,v=0

2u+1 -1 2v+171

17/} 2U(k(l7m))a
YOy Wah(a)walm(s)(me»)'

[=2u m=2?

k(l,m)#£0

For 2 <[ <2utl 1, 2Y <m <2°F! — 1 we have
wall(é)walm(e) — (_1)1051+---+lu—15u+5u+1(_1)m0€1+---+mu—1€v+€u+1

— (_1)1051+-..+lu_1(5u+m051+...+mv_lgv

% (_1)(53+1|&)+(35’+1\&)+ﬁu+1+%+17
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by the definition of 4 and €. Hence

s—1
1248l - [12°7| &2 4+ |a
Yy = Suto—s (_1)( DR AT [2))
u,v=0
2u+1_1 2v+1_1
v(k(l,m))
V0811 Bu oy e, P2 a)
< >, > D ok (m))

[=2u m=2?

k(1,m)#0
Here l:=1lp+ 112+ ... + 12", m=mo+m12+ ...+ m,2" and || - || is the
distance to the nearest integer function, i.e. ||z| := min(z —[z],1— (z —[z])).

Note that 1(248)(~1)%+ = 24| and $(2°7)(~1)7+ = [|124])
For 0 < u,v <s—1 we have

2u+1_1 2v+1_1

v(k(l,m))
o }: Z L1+t 16utmoet . tme_1e0 V(2 @)
25(’&, 'U) = Z ) (_1) 001 1 moey My—1€ SR T)

k(l,m)#0
s—1 qu outl_q vt
— w( a) E § (_1)l051+-~~+lu716u+m051+--~+mv71€v.
w
w=0 2 =2 m=2v

v(k(l,m))=w

For 0 < u,v,w < s — 1 define

2u+171 2'u+171

26(u,v,w) = Z Z (_1)l051+---+lu—15u+mo€1+---+mv—1€u

[=2v m=2Y

v(k(l,m))=w
2u—12v—1

= Z Z wal;(§)wal,, ().

=0 m=0
—_———
v(k(l42%,m+2?))=w
For0 <1 <2*—1and 0 <m < 2"—1, the condition v(k(l+ 2%, m+2"))
= w means that there are ko, ...,ky_1 € Zy such that

-2 2 -2 = - -
Cilo+...+Cilu—1+ ¢ +Emo+ ...+ E3my_q —l—c{?’_H
+ €1ko + ...+ epky_1 + €w+1 =0,

where € is the ith canonical vector in Z§ and 0 is the zero vector in Z3.

Since ¢7,...,C2 4,0, ..., €2 1,€1,...,Euq1 by the (0,s,3)-net property
are linearly independent as long as (u+ 1)+ (v+1) + (w + 1) < s we must
have u +v +w > s — 2.
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For0<I<2¥—1and 0 <m <2Y —1, let

—

T
n:= (lo,...,lu_l,mo,...,mv_l) EZg—H]

and define

—

C = ((51, e 751“517 . ,EU)T (= ZIQH_U.
Further let C(“%) be the s x (u + v)-matrix over Zy given by
clww) . (¢%,...,c% ¢, ...,c%,

and define
d=d(u,v) =, +¢ €L

Now (with this notation) v(k(l + 2%, m + 2")) = w means

(2) ceig=| 1 |+d

for some k; € Zy (therefore in the following we sometimes write v(k(n))=w).
Now we have to consider three cases:

1. u+v+w = s — 2. Then the matrix (C(“),&\,...,&,) has rank s — 2
and therefore the system (2) has one or no solution.

2. u+v+w = s — 1. Then the matrix (C(*¥),&,,...,&,) has rank s — 1
and therefore the system (2) has one or no solution.

3. u+v+w > s. Then the matrix (C(*%),é,,...,&,) has rank s and
therefore the system (2) has exactly 2“TV+%=5 golutions.

In the following we give the solutions of the system (2) in the above three
cases and calculate the values of ¥g(u, v, w).

1. u+v+w = s— 2. Since 51,...,€w+1,512,...,5'5+1,51?’,...,5§+1 are
: 1 1 2 2 3 3
linearly dependent we can find some Ay,..., Ay 1, AL, AL 1 AT, -, Apy
€ Zs not all zero such that
w—+1 u+1 v+1
Z 1> Z 222 Z 323 _
)\iei—i_ )\ici + )\ici :0
i=1 i=1 i=1
Assume that A}, = 0. Then éi,...,€,,¢7,...,62,1,¢7,...,Copq are lin-

early dependent. But this is a contradiction to the (0, s, 3)-net property and
hence A, ,; = 1. In the same way one can show that A2, =T and A3, =1
and hence the system (2) has exactly one solution.
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Now let D = D(u,v) be the following (u + v) X (u + v)-matrix over Zs:

2 2 3 3 -
1,s—(u+v)+1 u,s—(utv)+1 1,s—(u+v)+1 v,s—(u+v)+1
2 2 3 3
Cl,s Cu,s Cl,s Cv,s

(note that D = D(u,v) exists due to the (0, s, 3)-net property). We have

2u+v71 . 2u+v71 B
e (u, v, w) = Z (—1){0) = Z (—1)(PAl),
n=0 Dn=0
v(k(n))=w v(k(Dn))=w

Now v(k(Dn)) = w means that

ko
ku}—l .
c) D = 1 | +4a
0
0
for some k; € Zs. This is equivalent to
kO dl
E :
kw1
1 0 0 0 o w
n= 1 +
0 1 0 0
0
0 0 10 ;
0 0 0 1 0 ds
with ) s
C11 Cu1
E=| . D,
2 3
Cl7sf(u+'u) Cv,sf(u+v)

ie. an (s — (u + v)) X (u + v)-matrix. Therefore the unique solution 7 is
given by
7= (ds—(utvys1s---»ds)" € ZET
and hence for u +v 4+ w = s — 2 we have
So(ut,v,) = (~1) (G- wrord 1IDTO)

2. u+v+w=s—1. Let the (u+v) x (u+ v)-matrix D = D(u,v) be
as in case 1. We consider two subcases:
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(a) u+v < s—2. Assume that D17 is a solution of the system (2). Then
we find as in case 1 that

i = (ds—(utv) 1y -- - ds) T € LT,
Let 7€ Z41" be the last row of the (s — (u + v)) x (u + v)-matrix
C11 02,1
E=| oo D
C%,sf(u+v) T Ci,sf(u+v)

Then (7[1) = 1 + dy_(u+v); but that contradicts case 1 from which we have
(7|7) = ds—(u4v)- Hence system (2) has no solution in this case.
(b) u+v =15—1 (hence w = 0). From (u+ 1)+ (v+1) = s+ 1 we

deduce that ¢Z,...,&2 1 ép,....cl 1 are linearly dependent. Hence we can
find some A1, ..., Aut1, 1, .-, lot1 € Zo not all zero such that
u+1 v+1
Y NG+ et =0
(2t} M’L . Y
i=1 i=1
Assume Ayqq = 0. Then &7,...,¢2,¢7,...,Cp, are linearly dependent,

which contradicts the (0, s, 3)-net property. So A,4+1 = 1 and analogously
i1 = 1. Hence there exists a vector 7ip € Z4T" such that

(3) cV)i, =d.
Now consider the following linear equation system:
2 2 3 3
Clog «ov Cig Clg .. Cyo da
.............................. -n=
2 2 3 3
cl,s cu,s Cl,s e Cv,s ds

This system has a unique solution and this solution is 775. From this together
with (3) it follows that the system

cVi =& +d
cannot have a solution.
Altogether for u +v + w = s — 1 we have
Ye(u,v,w) = 0.

3. u+v+w > s. We know that system (2) has exactly 24TV T% =5 golutions.
Again we consider two subcases.

(a) u+ v < s. Let the (u+ v) X (u + v)-matrix D = D(u,v) be like in
case 1. Proceeding as in case 1 we find that the solutions of system (2) are
given by D7 where

(4) it = (10, -+ s Nutopw—(s+1)s Gwt1 + 1, duwro, ..., ds)T € Z5,
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with arbitrary no, ..., Myqotw—(s+1) € Z2. From this we get
gutv_1 B .
Y6 (u,v,w) = Z (—1)P7le) = Z (=)@ IO
Dn=0 N0y Mypotw—(s+1) EL2
v(k(Dn))=w 7 asin (4)

2u+v+w—s_1

— (~1) (@ 0dusi g d) TIDTO ST gy (D)
n=0

— 2u+v+w—s(_1)((0,...,0,dw+1+1,dw+2,.‘.,dS)T|DTE)
1 if (DTC|E) =0
X foralli=1,...,u+v+w—s,

0 otherwise.
Let (DTC|&)=0foralli=1,...,u+v-+w—s. Then
(DTC)(0,...,0,dwi1 4+ 1, duia, ..., ds)")
= (DT5|(dS—(u+v)+lv e ds) ")+ (DTNt otio—st1)-
Hence for u +v+w > s, u+v < s we have
So(u, v, w) = 2u+0+w=3 ()P CNeuruy410d) )
x (—1) P Cloutvsw—ss1) g (4, v, 0, 5)
where
ko (0, 0, 1w, 5) — {1 if (DT5|€i) =0foralli=1,...,u4+v+w-—s,
0 otherwise.
(b) u+v > s. Let F' = F(u,v) be the following s x s-matrix over Zs:
F = (&2 22 23 73 )1

Clye o 3CyyClyeeyCary

(note that F' exists due to the (0, s, 3)-net property) and let G = G(u,v) be
the following (u + v) X (u + v)-matrix over Zs:

0...0
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We have
2u+/u71 ~ 2“+U,1
(5) Se(wv,w)y= Y (-0 = 3 (—p)@o)
n=0 Gn=0
v(k(n))=w v(k(Gn))=w

Now v(k(Gn)) = w means that

cIGii=1 1 |[+d

for some k; € Zs. Since

CG = (1,83, 4,...,3)

)

where I is the s x s unit matrix, we get the following solutions for our
equation system:

ko
d : .
Ciuﬂ‘
kwfl utv—s
S R B o
0 i=1 €;
0 0

for arbitrary k; € Zs and arbitrary r; € Zs and where €; is the ith unit
vector in Z;‘“’_s.

Let H = H(u,v) be the (u+ v) x (u + v)-matrix over Zsy given by

ci’_u_HJ 0371 0...0

ca_ .‘03 0 0
H— s—u+1,s v,S

1 0 0...0

0 1 0...0
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Then we can write 77 as

ko r1
d : :
,ﬁ: _ é" + + kwfl + H . T’LLJr’Ufs
— Cw+1 0 0 0
0 0 0

where €, is the (w -+ 1)th unit vector in Z4". Inserting in (5) yields
D6, v, w) = (—1)((@de0 O TIGTE (1) (@i |GTE)

x( S (— o kw-ho,---,O)ﬂGT@)

ko, kw—1€2Z2

(0 ()0 0TI

T17~-'7Tu+vfs€ZZ

— (_1)((d1,.,d5,0,....0)T|GTE) 1Y (Euwt11GTO)
(-1) (-1)

2% 1 utv=s_q

x ( 3 walk(GTC))( 3 walr(HTGTQ)
k=0 r=0

= (—1)((@1ds 0, 0 TIGTE) (_1)(Euwia|GTE)
X 2u+v+w7$/€2 (u7 v, w, 8)“3(“7 v, 8)7
where
. — T A _ C
o (1, 0,0, 5) = 1 if (g;|G'¢)=0foralli=1,...,w,
0 else,

1 if (G HTGT) =0foralli=1,...,u4v—s,
/{3(u7 v, 8) =
0 else.
Now we can evaluate X5 (u,v): We consider three cases.
1. u+v > s. Then
25(u’ 'U) _ 2u+v75(_1)((d1 ..... ds,0,..., O)T\GTE)HB(U’ v, 8)

s—1

X Z Y(2¥a)(—1) 170k, (u,v,w,s).

w=0

For 0 <wu,v<s—1let
m=m(u,v) :=max{l <j<u+4v: (GG =0,i=1,...,5}

(if u+ v = 0 or if (8,|GTE) = 1 set m = m(u,v) := 0). By the definition of
m = m(u,v) we have (&,|GTC) = ... = (€,|GT¢) = 0 and (€,,11|GTC) = 1.
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Hence ka(u,v,w,s) =1 iff w < m(u,v). So we have

S5, 0) = 2 (1) (oo 00 OFIGT0) )

(3 ata) - wira)
w=0

= 200 (1) (s 0 OTICTO o (4,0, 5) (1 — ),

where we used Lemma 2. Hence

|35 (u, v)| < 24Fv7s,

2. u+v <s—2. We have
s—1

s (u,v) = Z ¥(2%a) Yo (u, v, w)

2w

w=s—2—(u+v)

B w(2s—2—(u+v)a)

Ye(u,v,8 —2— (u+0))

95—2—(u+v)
s—1
Qw
Y YY)
w=s—(u+v)

— 2u+v_s(_1)((ds—(u+v)+l7-~~:dS)T‘DTE)

s—1

x[41/)(2s’2’(“+”)a)+ > w(2¥a)

w=s—(utv)
X (—1)(6“”*1”*3“‘DTE)/ﬂ(u,v,w,s)}.
For 0 <wu,v<s—1let
p=plu,v):=max{l <j<u+v:(&GDC)=0,i=1,...,5}
(if w4 v = 0 or if (€1|DT() = 1 set p = p(u,v) := 0). By the definition of
p = p(u,v) we have
(EGT) =... = (&|GT) =0 and (&41|GTC) =1.
Hence k1 (u,v,w,s) =1iff u+v+w —s < p(u,v). So we have
S5 (1, v) = 2075 (= 1) (emuroy1,d) TIDTO)

s—(utv)+p—1

% [4w(25727(u+v)a) _ ¢<28*(u+v)+17a) + Z w(Qsz)]

w=s—(u+v)
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Now with Lemma 2 we get

s—(utv)+p—1

Z ¢(2w04) _ ,¢<257(u+v)+pa)

w=s—(u+v)
s—(utv)+p—1 s—(u+v)—1
=Y v g - S g(2va)
w=0 w=0

= Qs—(utv)+p+1 — As—(utv)+1 — ¢(25—(u+v)a)‘

Moreover we have

4¢(25—(u+v)—2a):4<a5—(u+1’)_i_” L _as—<u+v>—1>

22 : Qutv+2 2
= as—(u+v) + {25—(u+v)a} — 2as—(u+v)—l'
Hence

s—(u+tv)+p—1

(25727 k) (et 1 ST y(2va)

w=s—(u+v)
= Qs (utv) + {25—(u+v)a} - 2as—(u+’u)—1
+ As— (utv)+p+1 — Xs—(utv)+1 — ¢(257(u+v)a)
= Qs (utv)+p+1 + Os—(utv) — 2as—(u+v)—1-
Therefore we have
S5 (u, v) = 2005 (—1)(do—quroy1,d) TIDTO)
X [asf(u+v)+p+1 + As—(utv) — 2asf(u+v)71]'
Hence
|25 (u,v)] < 2-24F075,
3.s—1<u+wv<s. Then we get, as in case 2,
S5 (u, v) = 20075 (—1)(emroy1,d) TIDTO)
X [as—(u+v)+p+1 — Qs—(utv)+1 ¢(2$_(U+U)O‘)]-
From
Qs (utv)+2 Qs Qs —(utv)+1

53 tot S 5

1 S—(u+7v
= 5({2 (T} — (g 11)

Y2 a) =

we get
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25—(u+v)a) |

1 S—(uT7v
Fs—(uto)tptt ~ 5 (Xs—(uro) 1+ {2 (wrotla})l <1

|as—(u+v)+p+1 - as—(u-‘rv)-‘rl - 1/}(

and hence
|25 (u,v)| < 2uFv~s,

Summing up we have

2.2utv=s  foru+ov<s—2,
et < {22
Qutv—s foru+ov>s—1.
Therefore
1128l - 1125l
’Z4,§ Z 2u+v s ‘E )‘
u,v=0
s—1 s—1
< ol 2o+ YD 1248l 1241
u,v=0 u,v=0
utv<s—2

From [4, Theorem 3] we get

u v 1 s 1 2
S pal < (3 d -0l )

u,v=0

Further, by [4, Theorem 2|, we have

s—1 s—u—2
> 124l 1120y = Z 2“8 Z [12°]]
u,v=0
utv<s—2
_ i ] e 11 (=1)s—u1
- = 3 9 9.2s—u-1l
and
s—1 s—2s—k—
wonS—u—1 1 1 w
Sl —— < =+ = Hz il
3 6 3
u=0 k=1 u=0
s—2
11 s—k 1 (=1)7F
< 4= S Sy A
_6+3;( 3 +9 9.2s5—k
s2 s 4 (—1)°

18 54 162 * 162 - 252"
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Together we have

(2ol ap ) o e 4

» T S A
[24] 18 54 162 ' 162.252

2+8‘<7 M>+i 2(—1)* 1

S
6 54  27.2s 81 81-25 ' 81.22s

and the result follows. m

5. Proof of Theorems 2 and 3

Proof of Theorem 3. We use the technique of Niederreiter introduced in
[6, Proof of Lemma 4.1] (or see [7, Proof of Lemma 4.11]) and an idea of
G. Larcher.

Let N =bg+b124...4+b:2", with b. =1 and by, € {0,1},0 < k < r, be
the base 2 representation of N and let the integer p be maximal such that
2P is a divisor of N.

Let the digital (0,2)-sequence in base 2 be generated by the N x N-
matrices C; and C5. Divide the sequence xg,...,Xy_1 into subsequences
wmp for b=0,...,b,, —1 and m =0, ...,r, where w,, ; is the subsequence
Xy with Y00 0p2F 02 <n < Y 028 4 (b + 1)2™. For fixed m
divide the matrices C;, ¢ = 1, 2, into the following parts:

where C;(m) is the upper left m x m-submatrix of C;. If

r m—1
n= > b2 02"+ a2k,

k=m+1 k=0
then

~ T
= (ag, a1, Gm—1,0,bmy1,-..,0-,0,0,...)

and
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ap b 8
a1 bm+1 .
Ci(m)- | Di(m)- |, ;
Cyil = M 0 + :
Am—1 0
0 0
0 0 Ei(m)ii

Hence wy, p, is a modulo Zs shifted digital (0, m, 2)-net in base 2 generated
by C1(m) and C2(m), which finally is translated by a vector with positive
coordinates less than 27™. Let Wy, be the shifted digital net without the

final translation. Let D}, , (resp. ﬁ;,b) be the star discrepancy of wy, 1, (resp.
Wm.p)- Then by Lemma 4 we have

| Dy — Dol < om

Therefore we get, by Lemma 3,

r by,—1 by, —1
m m . m m 2 .
NDy < ) > 2"D;,, < 2 (2—m+Dm7b>
m=0 b=0 m=0 b=0

§22bm+2bm<% %)
_226 +Zb< §9>,

where p is the maximal integer such that 2P is a divisor of N.
Now apply the same method to the set consisting of the x,, with N <
n < 2"+t! — 1. This set consists of 2"+! — N points. Let

2rtl _ N = Z cm2™,

m=0

with ¢, € {0,1}. Again we can split up this set into a union of subsequences.
Let wy,c forc=0,...,¢,, —1 and m = 0,...,7 be the subsequence x,, with
or+l —ZZ:mH 2k —2m < p < 2rtl —Z’,;:m_H cp2F — 2™+ 2™ As above
one can see that wy, . is a modulo Zy shifted digital (0, m,2)-net in base 2
generated by C1(m) and Cy(m), which finally is translated by a vector with
positive coordinates less than 27", As above, for the star discrepancy of our
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set we get
: : m 19
(27'+1_N) ;r+1_N§220m+Zcm<§—l—§>.
The first 2"+ points of the (0, 2)-sequence build a digital (0,7 +1,2)-net.

Our initial set is the difference between this (0,7 + 1,2)-net and the set of
x, with N <n < 2"+! — 1. Hence

" : m 19 r+1 19
ND% <2 " | — + — = .
5 < mz::oc +§::Oc <3+9)+(3 +9>

Now
2r+1 — 27"-1—1 — N+ N = Z(Cm "f‘bm)Qm.
m=0
Hence we have ¢cg = ... = ¢p,—1 = 0, b, + ¢, = 2 and b, + ¢, = 1 for

m=p+1,...,r. Therefore

NDy <2(2b, + Z (1—bm))+(2—bp)<§+1—99)

m=p-+1

+ Zr: (1—bm)<%+%)+<rgl+%9>.

m=p+1

Hence
ND% < min 2231» +2T:b my o
N = = m —= m 3 9 ’

2(1+ i(l—bm)>+ (§+g>

m=p

+ i(l—bm)<%+%9>+<r§1+l—;>}.

m=p

Now, since min(A, B) < (A + B)/2, the result follows. m

Finally we give the proof of Theorem 2, which is an easy consequence of
Theorem 3.

Proof of Theorem 2. Let X¢,X1, ... be a digital (0, 2)-sequence in base 2
(such a sequence exists by [6, Corollary 6.19]) and let s > 1 be an integer.
Then the set of

Yo = <2%,Xn), n=0,...,2° -1,
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is a digital (0, s, 3)-net in base 2. For the star discrepancy of this net, by [6,
Lemma 8.9] and by Theorem 3 we have

1
ND%, < —— (log N)? + O(log N

where N = 2% and the result follows. m
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