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Extremely non-normal continued fractions
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1. Introduction and statement of results. Let P denote the irra-
tional numbers in the closed unit interval, i.e.

P := [0, 1] \Q.
For x ∈ P, let

(1.1) x =
1

a1(x) +
1

a2(x) +
1

a3(x) + . . .

where an(x) ∈ N for all n, denote the simple (infinite) continued fraction
expansion of x. For a positive integer n and a digit i ∈ N, we write

Π(x, i;n) =
|{1 ≤ j ≤ n | aj(x) = i}|

n

for the frequency of the digit i among the first n digits in the continued
fraction expansion of x. A classical result due to Lévy [Lé] says that for
Lebesgue almost all x ∈ P we have

(1.2) Π(x, i;n)→ 1
log 2

log
(i+ 1)2

i(i+ 2)

for all i ∈ N; the reader is referred to the textbook [Bi, p. 45] for a contem-
porary proof of this based on the ergodic theorem. In analogy with normal
numbers (cf. [KN]), we will say that a number x ∈ P is continued fraction
normal (c-f-normal) if it satisfies (1.2). Hence, using this terminology, Lévy’s
result says that Lebesgue almost all x ∈ P are c-f-normal.

2000 Mathematics Subject Classification: Primary 11K50; Secondary 11K16, 30B70,
28A80.

Key words and phrases: continued fractions, divergence points, Baire category, Haus-
dorff dimension, packing dimension.

[191]



192 L. Olsen

In this paper we will prove that from a topological viewpoint, most num-
bers fail to be c-f-normal in a very spectacular way. We will show that (in the
Baire sense) most numbers are as far away from being c-f-normal as possible.
Similar results for sets of numbers whose N -adic expansion/Lüroth expan-
sion deviates significantly from the N -adic expansion/Lüroth expansion of
Lebesgue almost all numbers have been obtained by Olsen [Ol2] and Šalát
[Ša1].

We first introduce some notation. For a positive integer n and a finite
string i = i1 . . . ik ∈ Nk of length k with entries ij ∈ N, we write

Π(x, i;n) =
|{1 ≤ j ≤ n | aj(x) = i1, . . . , aj+k−1(x) = ik}|

n

for the frequency of the string i among the first n digits in the simple con-
tinued fraction expansion of x, and let

Πk(x;n) = (Π(x, i;n))i∈Nk

denote the vector of frequencies Π(x, i;n) of all strings i ∈ Nk of length k.
We define the subset ∆k of `1 by

∆k =
{

(pi)i∈Nk
∣∣∣ pi ≥ 0,

∑

i

pi = 1
}
,

i.e. ∆k denotes the simplex of probability vectors indexed by strings i =
i1 . . . ik of length k with entries ij ∈ N. We will always equip ∆k with
the 1-norm ‖ · ‖1. The vector Πk(x;n) of frequencies of strings of length
k among the first n digits in the simple continued fraction expansion of x
clearly belongs to∆k. We will quantify the non-normality of x by considering
the extent to which the sequence (Πk(x;n))n fills up the simplex ∆k. Of
course, in general, it is not true that the sequence (Πk(x;n))n fills up a
substantial part of ∆k for any x. For example, consider strings of length 3.
By considering all possible ways a string of length 2, such as 37 ∈ N2 (i.e. 37
represents the string of length 2 whose first digit equals 3 and whose second
digit equals 7), can arise it is easily seen that

∣∣∣
∑

i∈N
Π(x, i37;n)−

∑

i∈N
Π(x, 37i;n)

∣∣∣ ≤ 1
n

for all x. This implies that for each x, all but finitely many points in the
sequence (Π3(x;n))n will be very close to the subsimplex

(1.3) ∆3 ∩
{

(xi)i∈N3 ∈ `1
∣∣∣
∑

i∈N
xi37 =

∑

i∈N
x37i

}
.

Hence, in general the sequence (Πk(x;n))n will not fill up a significant part
of the simplex ∆k, and the full simplex ∆k is not the “correct” object to
consider. Rather we need to consider the subsimplex defined by slicing ∆k
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by various planes corresponding to the subsimplex in (1.3). Motivated by
this, we define the subsimplex Sk of shift invariant probability vectors in
RNk by

(1.4) Sk =
{

(pi)i∈Nk
∣∣∣ pi ≥ 0,

∑

i

pi = 1,
∑

i

pii =
∑

i

pii

for all i ∈ Nk−1
}
.

Observe that ∆1 = S1. We will now prove that the subsimplex Sk is the
“correct” object. Let Ak(x) denote the set of accumulation points of the
sequence (Πk(x;n))n with respect to ‖ · ‖1, i.e.

(1.5) Ak(x) = {p ∈ ∆k | there exists a subsequence (Πk(x;nm))m
such that ‖Πk(x;nm)− p‖1 → 0}.

The next result says that the subsimplex Sk is, indeed, the “correct” simplex
to consider: all accumulation points of (Πk(x;n))n belong to Sk.

Theorem 0. Let x ∈ [0, 1]. Then

Ak(x) ⊆ Sk.

Proof. Let p = (pi)i∈Nk be an accumulation point of the sequence
(Πk(x;n))n with respect to ‖ · ‖1. We can thus find a strictly increasing
sequence (nm)m of positive integers such that

(1.6) ‖Πk(x;nm)− p‖1 → 0.

By considering all possible ways a string i ∈ Nk−1 of length k − 1 can arise
it follows that

(1.7)
∣∣∣
∑

i∈N
Π(x, ii;n)−

∑

i∈N
Π(x, ii;n)

∣∣∣ ≤ 1/n.

It follows from (1.6) and (1.7) that if i ∈ Nk−1, then
∣∣∣
∑

i∈N
pii −

∑

i∈N
pii

∣∣∣ ≤
∣∣∣
∑

i∈N
pii −

∑

i∈N
Π(x, ii;nm)

∣∣∣

+
∣∣∣
∑

i∈N
Π(x, ii;nm)−

∑

i∈N
Π(x, ii;nm)

∣∣∣

+
∣∣∣
∑

i∈N
Π(x, ii;nm)−

∑

i∈N
pii

∣∣∣

≤ ‖Πk(x;nm)− p‖1 + 1/nm + ‖Πk(x;nm)− p‖1 → 0.

This implies that
∑
i∈N pii =

∑
i∈N pii for all i ∈ Nk−1.

We will say that the number x is extremely non-k-continued fraction
normal (extremely non-k-c-f-normal) if the set of accumulation points of
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the sequence (Πk(x;n))n (with respect to ‖ · ‖1) equals Sk, and we will
denote the set of extremely non-k-c-f-normal numbers by Ek, i.e.

Ek = {x ∈ P | Ak(x) = Sk}.
We will say that a number is extremely non-continued fraction normal (ex-
tremely non-c-f-normal) if it is extremely non-k-c-f-normal for all k. We let
E denote the set of extremely non-c-f-normal numbers, i.e.

E =
⋂

k

Ek.

Hence, the numbers in E are as far away from being c-f-normal as possible.
Our main result (Theorem 1 below) states, somewhat surprisingly, that the
set E is extremely big from a topological viewpoint.

Theorem 1. (1) The set E is comeager in P, i.e. P \ E is of the first
category (in P). In particular , E is of the second category (in P).

(2) The set E is comeager in [0, 1], i.e. [0, 1] \ E is of the first category
(in [0, 1]). In particular , E is of the second category (in [0, 1]).

Theorem 1 shows that from a topological point of view, a typical num-
ber in [0, 1] is as far away from being c-f-normal as possible. The proof of
Theorem 1 is given in Section 2.

Define the set S by

S = {x ∈ P | the sequence (Π(x, i;n))n is dense in [0, 1] for all i ∈ N}.
Šalát [Ša2] proved that S is comeager. Since clearly E ⊆ E1 ⊆ S it follows
immediately from Theorem 1 that S is comeager.

As an immediate corollary to Theorem 1, we obtain the packing dimen-
sion DimE of E; the reader is referred to [Fa] for the definition of Dim.

Corollary 2. DimE = 1.

Proof. It follows from [Ed, Exercise (1.8.4)] that if E is a subset of R
with DimE < 1, then E is of the first category. This and Theorem 1 imply
that DimE = 1.

Let dim denote the Hausdorff dimension; the reader is referred to [Fa]
for the definition. We have not considered the problem of computing the
Hausdorff dimension of the set E. However, it follows from [Ol1, Ol2] that the
Hausdorff dimension of the set of numbers whose N -adic expansion satisfies
a similar condition of extreme non-normality equals 0, and we therefore
make the following conjecture.

Conjecture 3. dimE = 0. In fact , for each positive integer k, we have
dimEk = 0.
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2. Proof of Theorem 1. We start by introducing some notation. Let
N∗ =

⋃
nNn, and define π : NN → P by

π(ω) =
1

ω1 +
1

ω2 +
1

ω3 + . . .

for ω = ω1ω2 . . . ∈ NN. If ω = ω1ω2 . . . ∈ NN and m is a positive integer
or if ω = ω1 . . . ωn ∈ Nn and m is a positive integer with m ≤ n, then we
will write ω|m = ω1 . . . ωm. For ω ∈ Nn, we write |ω| = n and we define the
cylinder [ω] generated by ω by

[ω] = {σ ∈ NN | σ|n = ω}.
For i = i1 . . . ik ∈ Nk and ω = ω1 . . . ωn+k−1 ∈ Nn+k−1 write

P(ω, i) =
|{1 ≤ i ≤ n | ωi = i1, . . . , ωi+k−1 = ik}|

n
for the frequency of the string i among the digits of the string ω. Let

Pk(ω) = (P(ω, i))i∈Nk

denote the vector of all frequencies of strings i of length k among the digits
of ω.

We now turn towards the proof of Theorem 1. Let

S∗k =
⋃

N

{
(pi)i∈Nk

∣∣∣ pi ≥ 0,
∑

i

pi = 1,
∑

i

pii =
∑

i

pii for all i ∈ Nk−1,

pi = 0 for i ∈ Nk \ {1, . . . , N}k
}
.

The set S∗k is clearly a dense and separable subset of (Sk, ‖ · ‖1). We can
therefore find a sequence (qk,m)m in S∗k that is dense in (Sk, ‖ · ‖1). For
positive integers k and m write

Ek,m = {x ∈ P | qk,m is an accumulation point of (Πk(x;n))n}.
We clearly have

E =
⋂

k,m

Ek,m,

and it therefore suffices to prove that Ek,m is comeager for all k and m.
Therefore, fix positive integers k and m. Since the set P of irrationals is a
Baire space, in order to prove that Ek,m is a comeager subset of P, it suffices
to construct a set E ⊆ P satisfying the following three conditions:

(1) E ⊆ Ek,m;
(2) E is dense in P;
(3) E is a Gδ set.
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We will now proceed to construct a set E with the desired properties.
Write

qk,m = q = (qi)i∈Nk .

Since q belongs to S∗k, there exists a positive integer N such that qi = 0 for
i ∈ Nk \ {1, . . . , N}k. Put

Zn =
{
ω ∈

⋃

l≥knNk
{1, . . . , N}l

∣∣∣∣ ‖Pk(ω)− q‖1 ≤
1
n

}
,

Ẑn =
{
ω ∈

⋃

l≥knNk
{1, . . . , N}l

∣∣∣∣ ‖Pk(ω)− q‖1 ≤
5
n

}
.

Furthermore, for subsets W,W1, . . . ,Wn of N∗ and ω ∈ N∗ we will write

W1 . . .Wn = {ω1 . . . ωn | ωi ∈Wi},
ωW = {ωσ | σ ∈W}, [W ] = {[σ] | σ ∈W}.

Lemma 2.1. Let n be a positive integer and ω ∈ N∗. Then there exists
an integer Q ≥ n such that

ω Zn . . . Zn︸ ︷︷ ︸
Q times

⊆ Ẑn.

Proof. Let

σ = ωσ1 . . . σQ ∈ ω Zn . . . Zn︸ ︷︷ ︸
Q times

with σi ∈ Zn.

Write ω = ω1 . . . ωs and M = maxi ωi. For each i ∈ Nk we clearly have
∑
i |σi|P(σi, i)
|σ| ≤ P(σ, i) ≤ |ω|+

∑
i |σi|P(σi, i) +Qk

|σ| .

Since no i ∈ Nk \ {1, . . . , N}k is a substring of any σi (because σi ∈ Zn),
this implies that

‖Pk(σ)− q‖1 ≤
∥∥∥∥Pk(σ)−

∑

i

|σi|
|σ| Pk(σi)

∥∥∥∥
1

+
∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)− q

∥∥∥∥
1

(2.1)

=
∑

i∈{1,...,N}k

∣∣∣∣P(σ, i)−
∑

i

|σi|
|σ| Pk(σi)

∣∣∣∣

+
∑

i∈Nk\{1,...,N}k

∣∣∣∣P(σ, i)−
∑

i

|σi|
|σ| Pk(σi)

∣∣∣∣

+
∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)− q

∥∥∥∥
1
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≤
∑

i∈{1,...,N}k

|ω|+Qk

|σ| +
∑

i∈Nk\{1,...,N}k
P(ω,i)6=0

|ω|
|σ|

+
∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)− q

∥∥∥∥
1

≤ Nk |ω|+Qk

QnkNk
+Mk |ω|

QnkNk
+
∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)− q

∥∥∥∥
1

=
1
n

+ c
1
Q

+
∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)− q

∥∥∥∥
1

where we have used the fact that |σ| ≥∑Q
i=1 |σi| ≥ QnkNk and written

c =
|ω|
nk

(
1 +

Mk

Nk

)
.

Also ∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)− qk,m

∥∥∥∥
1
≤
∥∥∥∥
∑

i

|σi|
|σ| Pk(σi)−

∑

i

|σi|∑
j |σj |

Pk(σi)
∥∥∥∥

1
(2.2)

+
∥∥∥∥
∑

i

|σi|∑
j |σj |

Pk(σi)− qk,m

∥∥∥∥
1

≤
∑

i

|σi|
∣∣∣∣

1
|σ| −

1∑
j |σj |

∣∣∣∣

+
∑

i

|σi|∑
j |σj |

‖Pk(σi)− qk,m‖1

≤
∑

i

|σi|∑
j |σj |

|ω|
|σ| +

∑

i

|σi|∑
j |σj |

1
n

=
|ω|
|σ| +

1
n
≤ |ω|
QnkNk

+
1
n
.

It follows from (2.1) and (2.2) that

‖Pk(ω)− q‖1 ≤
1
n

+ c
1
Q

+
|ω|

QnkNk
+

1
n
.

Hence, by choosing Q large enough we can ensure that Q ≥ n and
‖Pk(ω)− q‖1 ≤ 5/n.

Lemma 2.2. There exist functions un : N∗ → N∗, Qn : N∗ → N, with the
following properties: for all ω ∈ N∗ we have

π([un(ω)])− ⊆ π([ω])◦,(2.3)



198 L. Olsen

un(ω) Zn . . . Zn︸ ︷︷ ︸
Qn(ω) times

⊆ Ẑn,(2.4)

Qn(ω) ≥ n.(2.5)

In (2.3), the closure and interior are with respect to the space P.

Proof. Let ω ∈ N∗. Now choose σ ∈ π−1(π([ω22])). Hence π(σ) ∈
π([ω22]), and we can thus choose a positive integer m such that π([σ|m]) ⊆
π([ω2])− ⊆ π([ω])◦. We now define un(ω) by un(ω) = σ|m. Also, by Lemma
2.1 we can find an integer Qn(ω) such that (2.4) and (2.5) are satisfied.

Let un : N∗ → N∗ and Qn : N∗ → N be as in Lemma 2.2. Now we define
Γn ⊆ N∗ by

Γ0 = N∗,

Γ1 =
⋃

ω∈Γ0

u1(ω) Z1 . . . Z1︸ ︷︷ ︸
Q1(ω) times

,

Γ2 =
⋃

ω∈Γ1

u2(ω) Z2 . . . Z2︸ ︷︷ ︸
Q2(ω) times

, . . .

and
En =

⋃

ω∈Γn
π([ω]).

Finally, let

E =
⋂

n

En.

We will now prove that E has the properties (1)–(3) listed before Lemma 2.1.
We first prove that Zn is non-empty for all n. In order to prove this we

will need the following result from [Ol1]. For x ∈ [0, 1], let

x =
∞∑

n=1

εN,n(x)
Nn

,

where εN,n(x) ∈ {0, 1, . . . , N − 1} for all n, denote the unique non-termin-
ating N -adic expansion of x. For a positive integer n and a finite string
i = i1 . . . ik ∈ {0, 1, . . . , N − 1}k we write

ΛN (x, i;n) =
|{1 ≤ i ≤ n | εN,i(x) = i1, . . . , εN,i+k−1(x) = ik}|

n

for the frequency of the string i among the first n digits in the N -adic
expansion of x, and let

ΛkN (x;n) = (ΛN (x, i;n))i∈{0,1,...,N−1}k
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denote the vector of frequencies ΛN (x, i;n) of all strings i ∈ {0, 1, . . . , N−1}k
of length k. Let

∆k
N =

{
(pi)i∈{0,1,...,N−1}k

∣∣∣ pi ≥ 0,
∑

i

pi = 1
}
,

and

SkN =
{

(pi)i∈{0,1,...,N−1}k
∣∣∣ pi ≥ 0,

∑

i

pi = 1,
∑

i

pii =
∑

i

pii

for all i ∈ {0, 1, . . . , N − 1}k−1
}
,

i.e. ∆k
N (SkN ) denotes the simplex of (shift invariant) probability vectors

indexed by strings i = i1 . . . ik of length k with entries ij ∈ {0, 1, . . . , N−1}.
Define Hk

N : ∆k
N → R by

Hk
N (p) = − 1

logN

∑

i∈{0,1,...,N−1}k−1

∑

i

pii log
pii∑
j pij

for p = (pi)i∈{0,1,...,N−1}k (as usual, we put 0 log 0 = 0). The following result
is proved in [Ol1, Theorem 1].

Theorem 2.3. Let p ∈ ∆k
N .

(1) If p 6∈ SkN , then

{x ∈ [0, 1] | lim
n
‖ΛkN (x;n)− p‖1 = 0} = ∅.

(2) If p ∈ SkN , then

dim{x ∈ [0, 1] | lim
n
‖ΛkN (x;n)− p‖1 = 0} = Hk

N (p).

We can now prove that Zn is non-empty.

Lemma 2.4. Zn 6= ∅ for all n.

Proof. Recall that q = (qi)i∈Nk where qi = 0 for i ∈ Nk \ {1, . . . , N}k.
For i = i1 . . . ik ∈ {0, 1, . . . , N − 1}k, write ĩ = ĩ1 . . . ĩk ∈ {1, . . . , N}k where
ĩj = ij + 1. Define q̃ by

q̃ = (qĩ)i∈{0,1,...,N−1}k .

Also, define P̃(ω) for ω ∈ ⋃nNn+k−1 by

P̃(ω) = (P(ω, ĩ))i∈{0,1,...,N−1}k .

Finally, let

X =
{
ω ∈

⋃

l≥knNk
{1, . . . , N}l

∣∣∣∣ ‖P̃(ω)− q̃‖1 ≤
1
n

}
.
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It is clear that X ⊆ Zn. We now claim that X 6= ∅. Since q = (qi)i∈Nk ∈ Sk
and qi = 0 for i ∈ Nk\{1, . . . , N}k, we conclude that q̃ ∈ SkN , and it therefore
follows immediately from Theorem 2.3 that

dim{x ∈ [0, 1] | lim
n
‖ΛkN (x;n)− q̃‖1 = 0} = Hk

N (q̃) > 0,

whence {x ∈ [0, 1] | limn ‖ΛkN (x;n)− q̃‖1 = 0} 6= ∅. We can thus choose x ∈
[0, 1] such that limn ‖ΛkN (x;n) − q̃‖1 = 0. Put ω = ω1ω2 . . . ∈ {1, . . . , N}N
where ωi = εN,i(x) + 1. Then ω|m lies in X for m large enough.

Proposition 2.5. E ⊆ Ek,m.

Proof. Let x ∈ E. We must now find a sequence (nl)l of integers with
liml nl = ∞ such that ‖Πk(x;nl) − q‖1 → 0. Since x ∈ E =

⋂
nEn, we

conclude that for each positive integer n, we can find γn ∈ Γn such that x ∈
π([γn]). We now define the sequence (nl)l by nl = |γl|−(k−1) and claim that
nl → ∞ and ‖Πk(x;nl) − q‖1 → 0. We first prove that nl → ∞. However,
this is obvious since γl ∈ Γl. Next, we prove that ‖Πk(x;nl) − q‖1 → 0.
It follows from (2.4) and the definition of Γn that Γn ⊆ Ẑn for all n. In
particular, we conclude that γl ∈ Γl ⊆ Ẑl. Using this and the fact that
Πk(x;nl) = Pk(γl), we conclude that

‖Πk(x;nl)− q‖1 = ‖Pk(γl)− q‖1 ≤ 5/l→ 0.

Proposition 2.6. E is dense in P.

Proof. Let x ∈ P and r > 0. We must now find t ∈ E ∩B(x, r). We first
observe that there exists ω ∈ N∗ such that

(2.6) π([ω]) ⊆ B(x, r).

Next, since Zn 6= ∅ for all n (cf. Lemma 2.4), we can choose strings ωn ∈ N∗
inductively as follows. Let

ω0 = ω ∈ Γ0,

ω1 ∈ u1(ω0) Z1 . . . Z1︸ ︷︷ ︸
Q1(ω0) times

⊆ Γ1,

ω2 ∈ u2(ω1) Z2 . . . Z2︸ ︷︷ ︸
Q2(ω1) times

⊆ Γ2, . . .

For each n we have

(2.7) π([ωn+1])− ⊆ π([un(ωn)])− ⊆ π([ωn])◦ ⊆ π([ωn]) ⊆ π([ωn])−.

In (2.7), the closure and interior are with respect to the space P. It follows
from (2.7) that

(2.8)
⋂

n

π([ωn])− =
⋂

n

π([ωn]).
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It also follows from (2.7) that (π([ωn])−)n is a decreasing sequence of non-
empty compact subsets of [0, 1], and the intersection

⋂
n π([ωn])− is therefore

non-empty. Now pick any t ∈ ⋂n π([ωn])−. We claim that t ∈ E ∩ B(x, r).
We first prove that t ∈ E. Using (2.8) we see that t ∈ ⋂n π([ωn])− =⋂
n π([ωn]) ⊆ ⋂nEn = E. Next we prove that t ∈ B(x, r). We clearly have

(using (2.6)) t ∈ π([ω0]) = π([ω]) ⊆ B(x, r).

Proposition 2.7. E is a Gδ set.

Proof. For a positive integer n we define the set Gn by

Gn =
⋃

ω∈Γn
π([ω])◦

where there interior is with respect to the space P. The set Gn is clearly
open (in P). We now have

En+1 =
⋃

ω∈Γn+1

π([ω]) ⊆
⋃

σ∈Γn
π([un+1(σ)Zn+1 . . . Zn+1︸ ︷︷ ︸

Qn+1(σ) times

])(2.9)

⊆
⋃

σ∈Γn
π([un+1(σ)]) ⊆

⋃

σ∈Γn
π([σ])◦ = Gn,

and

(2.10) Gn =
⋃

ω∈Γn
π([ω])◦ ⊆

⋃

ω∈Γn
π([ω]) = En.

It follows immediately from (2.9) and (2.10) that E =
⋂
nEn =

⋂
nGn.

Since each Gn is open, this shows that E is Gδ.
Proof of Theorem 1. (1) Since P is a Baire space, it follows immediately

from Propositions 2.5–2.7 that the set E is comeager.
(2) This statement easily follows from Theorem 1(1).
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