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Extremely non-normal continued fractions
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L. OLSEN (St. Andrews)

1. Introduction and statement of results. Let PP denote the irra-
tional numbers in the closed unit interval, i.e.

P:=10,1]\ Q.
For z € P, let
(1.1) x = ! T
a1($> + 1
CLQ(%‘) +
ag(x) + ...

where a,(z) € N for all n, denote the simple (infinite) continued fraction
expansion of x. For a positive integer n and a digit ¢ € N, we write

{1<j<nlaj(z) =i}

II(z,i;n) =

for the frequency of the digit ¢ among the first n digits in the continued
fraction expansion of x. A classical result due to Lévy [Lé] says that for
Lebesgue almost all z € P we have

1 (i +1)*
0g —
log2 ~i(i+2)
for all ¢ € N; the reader is referred to the textbook [Bi, p. 45] for a contem-
porary proof of this based on the ergodic theorem. In analogy with normal
numbers (cf. [KN]), we will say that a number z € P is continued fraction

normal (c-f-normal) if it satisfies (1.2). Hence, using this terminology, Lévy’s
result says that Lebesgue almost all € P are c-f-normal.

(1.2) II(z,i;n) —
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In this paper we will prove that from a topological viewpoint, most num-
bers fail to be c-f-normal in a very spectacular way. We will show that (in the
Baire sense) most numbers are as far away from being c-f-normal as possible.
Similar results for sets of numbers whose N-adic expansion/Liiroth expan-
sion deviates significantly from the N-adic expansion/Liiroth expansion of
Lebesgue almost all numbers have been obtained by Olsen [012] and Salat
[Sal].

We first introduce some notation. For a positive integer n and a finite
string i =41 ...4, € N¥ of length k with entries 1; € N, we write
H(z,isn) = {1<j<nl|ai=) = Z;a”-aajJrkl(m) = i }|
for the frequency of the string i among the first n digits in the simple con-
tinued fraction expansion of x, and let

i (z;n) = (I (z,i;n))ienn

denote the vector of frequencies I1(z,i;n) of all strings i € N* of length k.
We define the subset Ay of ¢! by
bi > Oa Zpl = 1})
i

Ay = {(Pi)ieNk

i.e. A denotes the simplex of probability vectors indexed by strings i =
i1...1 of length k with entries ¢; € N. We will always equip A with
the 1-norm || - [|;. The vector ITy(z;n) of frequencies of strings of length
k among the first n digits in the simple continued fraction expansion of z
clearly belongs to Ay. We will quantify the non-normality of x by considering
the extent to which the sequence (II(x;n))y fills up the simplex Ay. Of
course, in general, it is not true that the sequence (I1y(z;n)), fills up a
substantial part of Ay for any x. For example, consider strings of length 3.
By considering all possible ways a string of length 2, such as 37 € N2 (i.e. 37
represents the string of length 2 whose first digit equals 3 and whose second
digit equals 7), can arise it is easily seen that

‘Z (x,i3Tin) = 3 (. 37i; n)’ <

i€N €N

SRS

for all x. This implies that for each x, all but finitely many points in the
sequence (II3(x;n)), will be very close to the subsimplex

(1.3) Az N {(l“i)ieN3 el ‘ > @iz = szn}-
i€N ieN
Hence, in general the sequence (II;(z;n)), will not fill up a significant part

of the simplex Ay, and the full simplex Ay is not the “correct” object to
consider. Rather we need to consider the subsimplex defined by slicing Ay,
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by various planes corresponding to the subsimplex in (1.3). Motivated by
this, we define the subsimplex Sy of shift invariant probability vectors in

RN by
pi 2 O,Zpi = 1721%& = Zpii

(14) S = { e
forallie Nkil}.

Observe that A; = S;. We will now prove that the subsimplex Sy is the
“correct” object. Let Ag(x) denote the set of accumulation points of the
sequence (ITy(x;n)), with respect to || -1, i.e.
(1.5)  Ax(z) = {p € Ak | there exists a subsequence (IT(x;nm,))m

such that || ITx(z;nm,) — plli — 0}.

The next result says that the subsimplex S, is, indeed, the “correct” simplex
to consider: all accumulation points of (IIx(x;n)), belong to Sk.

THEOREM 0. Let x € [0,1]. Then

Proof. Let p = (pi)jen+ be an accumulation point of the sequence
(i (z;n)), with respect to || - ||1. We can thus find a strictly increasing
sequence (7, ), of positive integers such that
(1.6) | Tk (x; 7)) — p|l1 — 0.

By considering all possible ways a string i € N*~! of length k& — 1 can arise
it follows that

(1.7) S M (aiin) — ZU(m,iz’;n)‘ <1/n.

ieN ieN
It follows from (1.6) and (1.7) that if i € N*~!, then

‘ > pi— Y pu| < ’ > pis— Y I (x,ii; nm)‘

ieN ieN ieN ieN
+ ‘ Zﬂ(x,ii;nm) - Zﬂ(x,ii;nm)’
ieN ieN
+ ( > H(x,iinm) = Y pu
ieN ieN

< |k (z;nm) = Pl + 1/nm + [ k(25 7m) — Pl — 0.
This implies that ), ypi = D _;cnpii for all i € N1,

We will say that the number z is extremely non-k-continued fraction
normal (extremely non-k-c-f-normal) if the set of accumulation points of
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the sequence (IIy(z;n)), (with respect to || - ||1) equals Sk, and we will
denote the set of extremely non-k-c-f-normal numbers by Ey, i.e.

E, = {.CC epP ‘ Ak(a:) = Sk}

We will say that a number is extremely non-continued fraction normal (ex-
tremely non-c-f-normal) if it is extremely non-k-c-f-normal for all k. We let
E denote the set of extremely non-c-f-normal numbers, i.e.

E:ﬂEk.
k

Hence, the numbers in E are as far away from being c-f-normal as possible.
Our main result (Theorem 1 below) states, somewhat surprisingly, that the
set E is extremely big from a topological viewpoint.

THEOREM 1. (1) The set E is comeager in P, i.e. P\ E is of the first
category (in P). In particular, E is of the second category (in P).

(2) The set E is comeager in [0,1], i.e. [0,1] \ E is of the first category
(in [0,1]). In particular, E is of the second category (in [0, 1]).

Theorem 1 shows that from a topological point of view, a typical num-
ber in [0, 1] is as far away from being c-f-normal as possible. The proof of
Theorem 1 is given in Section 2.

Define the set S by

S = {x € P | the sequence (II(x,i;n))y, is dense in [0, 1] for all 7 € N}.

Salét [Sa2] proved that S is comeager. Since clearly E C E; C S it follows
immediately from Theorem 1 that S is comeager.

As an immediate corollary to Theorem 1, we obtain the packing dimen-
sion Dim E of E; the reader is referred to [Fa] for the definition of Dim.

COROLLARY 2. DImE = 1.

Proof. 1t follows from [Ed, Exercise (1.8.4)] that if E is a subset of R
with Dim E < 1, then F is of the first category. This and Theorem 1 imply
that DimE =1. =

Let dim denote the Hausdorff dimension; the reader is referred to [Fa]
for the definition. We have not considered the problem of computing the
Hausdorff dimension of the set E. However, it follows from [O11, O12] that the
Hausdorff dimension of the set of numbers whose N-adic expansion satisfies
a similar condition of extreme non-normality equals 0, and we therefore
make the following conjecture.

CONJECTURE 3. dimE = 0. In fact, for each positive integer k, we have
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2. Proof of Theorem 1. We start by introducing some notation. Let
N* =J, N, and define 7 : N¥ — P by

W(w) = 1
e
wa +
w3+ ...
for w = wiws... € NN If w = wiwsy ... € NY and m is a positive integer
or if w=w;...w, € N* and m is a positive integer with m < n, then we
will write w|m = w;y ... wy,. For w € N", we write |w| = n and we define the
cylinder [w] generated by w by

W] ={oc e NV | g|n = w}.
Fori=iy...ip € NF and w = w; .. .Wntk—1 € Nnte=1 write

P(w,i): \{1§z’§n!wi:il,...,wi+k_1:ik}]

n
for the frequency of the string i among the digits of the string w. Let

Pr(w) = (P(w,1))iens
denote the vector of all frequencies of strings i of length £ among the digits
of w.
We now turn towards the proof of Theorem 1. Let

Sy = U{(pi)ieNk‘ Di = O,Zpi = 1,Zpii = Zpii for all i € NF—1,

N
pi:()forieNk\{L...,N}k}.

The set Sy, is clearly a dense and separable subset of (Sg, | - ||1). We can
therefore find a sequence (qxm)m in Sj that is dense in (Sg,| - ||1). For
positive integers k and m write

Ekm = {x € P| qi,m is an accumulation point of (IIy(z;n))n}.

E = () Etm,
k,m

and it therefore suffices to prove that Ej ,, is comeager for all £ and m.
Therefore, fix positive integers k and m. Since the set P of irrationals is a
Baire space, in order to prove that Ej, ., is a comeager subset of P, it suffices
to construct a set E C P satisfying the following three conditions:

(1> E g Ek,m;
(2) E is dense in P;
(3) E is a Gy set.

We clearly have
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We will now proceed to construct a set E with the desired properties.
Write

qe,m = 4 = (Qi)ieNk-

Since q belongs to Sy, there exists a positive integer N such that ¢; = 0 for
ie NF\{1,...,N}* Put

Zn:{we U {....nY

I>knNk

Zn:{we U ...~}

I>knNk

IPx(w) — allx

IA
SRS
>

Wuw—qm§§}

Furthermore, for subsets W, W1, ..., W, of N* and w € N* we will write
Wl...Wn:{wl...wn |w7; EWi},
wW ={wo|ceW}, [W]={[o]|oce W}
LEMMA 2.1. Let n be a positive integer and w € N*. Then there exists
an integer (Q > n such that
W2 ... Zn C Zy.
N—_——
Q times
Proof. Let
O=woi...090 €WZy...2, Wwitho; € Z,.
N——
Q times
Write w = w; ...ws and M = max; w;. For each i € N¥ we clearly have

SilolPud) _ oo o lol+ S loilPlon ) + k-

o] o]

Since no i € N*¥\ {1,..., N}* is a substring of any o; (because o; € Z,),
this implies that
IPuo -

(21) [IPe(o) —al

IN

o1 o
X:JP Hzﬂd ~d
-
(0.1 E:m

@)=
iENF\{1,...,N}k |O|

Z 7 Pr(oi) —a

1

o]

1
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| + Qk ]
S D = ek D DR

ic{1,...,N}k ieNF\{1,...,N}*
P(w,i)5£0
g;
+ H Z ||J’| Pr(oi) —q

glwl + Qk kWl |oi]
SN omENE T M oenE T Z o] Pklo) —a

= — — P i
n“Q+HZ: o] ()
where we have used the fact that |o]| > 252:1 los| > QnkN* and written
_ el M*
14—
BETANRN
|oi o
)
HZ o] ZZ |G]|
+| Z 2 7] PH(8) = Gk
< Sl - 5
Z ’UJ‘
+ HPk Uz) - Qk,m”l
Z S0
|oi] M il 1
ZZ o5 To] ZZ |oj| n

o 1.l
lo|  n — QnkNFk

1

1

1

Also
Uz
Z ’ Pk U'L — qk,m

1

It follows from (2.1) and (2.2) that

1 1 |w]
Pr(w)—ali < —+c=
[Pr(w) —alls < - +e 5+ 5 0N

Hence, by choosing () large enough we can ensure that ¢ > n and
IPx(w) —qfs <5/n. =

LEMMA 2.2. There exist functions u, : N* — N* Q, : N* — N, with the
following properties: for all w € N* we have

(2.3) m(lun(@))™ C w([w])®,

+_
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(2.4) Un(W) Zy ... Zy C Zn,
———
Qn(w) times

(2.5) Qn(w) > n.

In (2.3), the closure and interior are with respect to the space P.

Proof. Let w € N*. Now choose o € 7~ !(m([w22])). Hence w(o) €
7([w22]), and we can thus choose a positive integer m such that = ([o|m]) C
m([w2])” € 7(jw])°. We now define u, (w) by u,(w) = o|m. Also, by Lemma
2.1 we can find an integer @, (w) such that (2.4) and (2.5) are satisfied. m

Let u,, : N* — N* and Q,, : N* — N be as in Lemma 2.2. Now we define
I, € N* by

FOZN*,
I = u(w) Z1...27,
1 wg 1( ) 1 1
0 Q1 (w) times
I, = Zo...Z
2 U Uz(w) 2 2
wel Q2(w) times

and

E,= |J w(w):

Finally, let
E=()En.

We will now prove that E has the properties (1)—(3) listed before Lemma 2.1.

We first prove that Z,, is non-empty for all n. In order to prove this we
will need the following result from [Ol1]. For = € [0, 1], let

0o c (x>
N,n
r=2 ~Nn
n=1

where ey, (z) € {0,1,...,N — 1} for all n, denote the unique non-termin-
ating IN-adic expansion of x. For a positive integer n and a finite string
i=iy...ix € {0,1,..., N — 1}* we write

1<i< ) i e () = g
AN(.T,i;TL): |{ _Z_n|5N,z(l') 2711, yEN itk 1(;(:) lk}|

for the frequency of the string i among the first n digits in the N-adic
expansion of x, and let

Alf\r(ff;n) = (An (2, n))ie{o,l ..... N—1}*



Ezxtremely non-normal continued fractions 199

denote the vector of frequencies Ay (z, i;n) of all strings i € {0,1,..., N—1}*

of length k. Let
bi > Oa Zpl = 1})
i

Aﬂ“\, = {(Pi)ie{o,1,...,1v-1}k

and

S?v = {(pi)ie{o,l,..‘,N—l}k

pi > 0, Zpi =1, Zpii = Zpii
ﬂnzﬂlie{O,L..WZV——l}k_l},

ie. Ak (Sk;) denotes the simplex of (shift invariant) probability vectors
indexed by strings i = i; .. .14 of length k with entries i; € {0,1,..., N —1}.
Define HY, : A% — R by

H]I%(p):_loglN Z ZPnlOg &

ie{0,1,...,.N—1}k=1 3 J

i7
Dij
for p = (pi)icfo,1,....n—1}» (as usual, we put 0log 0 = 0). The following result
is proved in [Ol1, Theorem 1].
THEOREM 2.3. Let p € Ak,
(1) If p & Sk, then
{o € [0.1] | im | A () — plls = 0} = .

(2) If p € S, then

dim{z € [0,1] | lim [ AR (2;n) — pll» = 0} = HX(p).
We can now prove that Z,, is non-empty.
LEMMA 2.4. Z, # 0 for all n.

Proof. Recall that q = (ql)leNk where ¢; = 0 for i € NFA\ {1,..., N}~
Fori=iy...ip €{0,1,...,N —1}*, writei=1i;. zke{l...,N} where
ij = 1; + 1. Define q by

q= (qiv)ie{o,l,..wal}’“-
Also, define P(w) for w € U, N#Hr=1 by

ﬁ(w) = (P("%B)ie{o,l ..... N—1}k-
Finally, let

X:{we U QWWNFHQM—th%}

I>knNk
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It is clear that X C Z,,. We now claim that X # (). Since q = (¢i)ijen+ € Sk
and ¢; = 0 fori € N*\{1,..., N}* we conclude that q € S?V, and it therefore
follows immediately from Theorem 2.3 that

dim{z € [0,1] | lim | AR (23n) — gl = 0} = H{(q) > 0,

whence {x € [0,1] | lim,, | A% (z;n) —q]l1 = 0} # 0. We can thus choose = €
[0, 1] such that lim, ||A% (z;n) — q|l1 = 0. Put w = wjws ... € {1,..., N}N
where w; = en;(x) + 1. Then w|m lies in X for m large enough. =

PROPOSITION 2.5. E C Ei .

Proof. Let x € E. We must now find a sequence (n;); of integers with
lim; n; = oo such that |[[1x(x;n;) —q|[1 — 0. Since x € E = (), E,, we
conclude that for each positive integer n, we can find ~,, € I3, such that x €
7([vn]). We now define the sequence (n;); by n; = |y|—(k—1) and claim that
n; — oo and |[IIx(z;n;) — q||1 — 0. We first prove that n; — co. However,
this is obvious since ; € I}. Next, we prove that ||II;(z;n;) —qli — 0.
It follows from (2.4) and the definition of I',, that I, C Z, for all n. In
particular, we conclude that v; € I} C Z;. Using this and the fact that
I (z;n;) = Pr(v1), we conclude that

[T (z;7u) — ally = [Pr(v) —alt <5/l —0. =

PRrROPOSITION 2.6. F is dense in P.

Proof. Let x € P and r > 0. We must now find ¢t € EN B(x,r). We first
observe that there exists w € N* such that
(2.6) 7([w]) C B(z,r).

Next, since Z,, # ) for all n (cf. Lemma 2.4), we can choose strings w,, € N*
inductively as follows. Let
wo =w € I,
w1 Eul(wg) Z1... 21 C I,
———
Q1(wp) times
wo € Ug(wl) Zo... 0y C Iy,
—
Q2(w1) times

For each n we have

2.7 7w(lwna])” S w(fun(wn)])” € w([wa])® € m(wn]) € 7([wn]) ™

In (2.7), the closure and interior are with respect to the space PP. It follows
from (2.7) that

(2.8) N (lwal)™ = (7 ([wal).

n n
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It also follows from (2.7) that (7([wn])”)n is a decreasing sequence of non-
empty compact subsets of [0, 1], and the intersection (), 7([wy]) ™ is therefore
non-empty. Now pick any t € (), 7([wy])”. We claim that ¢t € £ N B(x,r).
We first prove that ¢ € E. Using (2.8) we see that t € (), 7([wn])” =
N, 7([wn]) €N, En = E. Next we prove that ¢t € B(x,r). We clearly have
(using (2.6)) t € m([wo]) = 7([w]) C B(x,r). m

PROPOSITION 2.7. E is a Gs set.

Proof. For a positive integer n we define the set G,, by
Gn=|J m(w)°
wely,

where there interior is with respect to the space P. The set G,, is clearly
open (in P). We now have

29)  Eun= |J ) S U m(wns1(0) Zusi .. Zuir))

weln41 ol Qni1 (o) times
n

¢ U m(uanio))) € U n(lo])° = G,

oel, oel,
and
(2.10) Gn= | n(w)° c | n(w]) = En.

It follows immediately from (2.9) and (2.10) that £ = (), E, = (),, Gn-
Since each G,, is open, this shows that F is G5. =

Proof of Theorem 1. (1) Since P is a Baire space, it follows immediately
from Propositions 2.5-2.7 that the set E is comeager.
(2) This statement easily follows from Theorem 1(1). m
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