On the problem of detecting linear dependence for products of abelian varieties and tori

by
Antonella Perucca (Lausanne)

1. Introduction. The problem of detecting linear dependence investigates whether the property for a rational point to belong to a subgroup obeys a local-global principle.

Question 1. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a point in $G(K)$ and let Λ be a finitely generated subgroup of $G(K)$. Suppose that for all but finitely many primes \mathfrak{p} of K the point $(R \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. Does R belong to Λ ?

We answer this question affirmatively in three cases: if Λ is cyclic; if Λ is a free left $\operatorname{End}_{K} G$-submodule of $G(K)$; if Λ has a set of generators (as a group) which is a basis of a free left $\operatorname{End}_{K} G$-submodule of $G(K)$. In general, we prove that there exists an integer m (depending only on G, K and the rank of Λ) such that $m R$ belongs to the left $\operatorname{End}_{K} G$-submodule of $G(K)$ generated by Λ.

The problem of detecting linear dependence for abelian varieties was first formulated by Gajda in 2002 in a letter to Ribet.

We now give the state of the art of the problem of detecting linear dependence for abelian varieties. Papers and preprints concerning this problem are: [16], [10], [2], [5], 1], [4], [7], 3], [6].

- Weston in 16 proved that if the abelian variety has commutative endomorphism ring then there exists a K-rational torsion point T such that $R+T$ belongs to Λ. Since the torsion of the Mordell-Weil group is finite, Weston basically solved the problem for abelian varieties with commutative endomorphism ring.

[^0]- If the endomorphism ring of the abelian variety is not commutative, we are able to prove the following: there exists a non-zero integer m (depending only on G and K) such that $m R$ belongs to the left $\operatorname{End}_{K} G$-submodule of $G(K)$ generated by Λ; see Theorem 6 .
- We solve the problem of detecting linear dependence in the case where Λ is a free left $\operatorname{End}_{K} G$-submodule of $G(K)$ or if Λ has a set of generators (as a group) which is a basis of a free left End ${ }_{K} G$-submodule of $G(K)$. With an extra assumption on the point R (that R generates a free left $\operatorname{End}_{K} G$ submodule of $G(K)$), these two results are respectively proven by Gajda and Górnisiewicz in [5, Theorem B] and by Banaszak in [1, Theorem 1.1]. We remove the assumption on R in Theorem 6 and in Theorem 8 respectively.
- If Λ is cyclic, we solve the problem of detecting linear dependence. This result was only known for elliptic curves or under a condition satisfied if $\operatorname{End} G=\mathbb{Z}$ and the dimension of G is 2,6 or odd. See [10, Theorem 3.3 and p. 120] by Kowalski.
- Gajda and Górnisiewicz in [5] use the theory of integrally semisimple Galois modules to study the problem of detecting linear dependence. This theory was completely developed by Larsen and Schoof in [11]. Gajda and Górnisiewicz prove the following result ([5, Theorem A]):

Let ℓ be a prime such that $T_{\ell}(G)$ is integrally semisimple, let $\hat{\Lambda}$ be a free $\operatorname{End}_{K} G \otimes \mathbb{Z}_{\ell}$-submodule of $G(K) \otimes \mathbb{Z}_{\ell}$ and let \hat{R} in $G(K) \otimes \mathbb{Z}_{\ell}$ generate a free $\operatorname{End}_{K} G \otimes \mathbb{Z}_{\ell}$-submodule of $G(K) \otimes \mathbb{Z}_{\ell}$. Then \hat{R} belongs to $\hat{\Lambda}$ if and only if for all but finitely many primes \mathfrak{p} of $K,(\hat{R} \bmod \mathfrak{p})$ belongs to $(\hat{\Lambda} \bmod \mathfrak{p})$. If $\operatorname{End}_{K} G \otimes \mathbb{Q}_{\ell}$ is a division algebra and $\operatorname{End}_{K} G \otimes \mathbb{Z}_{\ell}$ is a maximal order, the condition on $\hat{\Lambda}$ can be replaced by the following: $\hat{\Lambda}$ is torsion-free over $\operatorname{End}_{K} G \otimes \mathbb{Z}_{\ell}$.

Recently, new results (yet unpublished) have been proven on the problem of detecting linear dependence for abelian varieties:

- There are counterexamples. Indeed, Question 1 has a negative answer already for powers of elliptic curves. See the preprints [7] by Jossen and the author and [3] by Banaszak and Krasoń.
- Question 1 has an affirmative answer for simple abelian varieties. This is proven by Jossen in his thesis ([6, Corollary 8.0.2]). By the Poincaré Reducibility Theorem, an abelian variety is isogenous to $A_{1}^{e_{1}} \times \cdots \times A_{n}^{e_{n}}$, where the A_{i} 's are simple and non-isogenous abelian varieties. Banaszak and Krasoń [3, Theorem A] show that there exists a K-rational torsion point T such that $R+T$ belongs to Λ if the following condition is satisfied: for every $i=1, \ldots, n$ the exponent e_{i} is at most the dimension of $H_{1}\left(A_{i}(\mathbb{C}) ; \mathbb{Q}\right)$ as a vector space over $\operatorname{End}_{\bar{K}} A_{i} \otimes \mathbb{Q}$. Actually, R belongs to Λ because of the following result by Jossen.
- Let S be a subset of the primes of K of Dirichlet density 1. Consider the following subgroup of $G(K)$:

$$
\tilde{\Lambda}=\{P \in G(K):(P \bmod \mathfrak{p}) \in(\Lambda \bmod \mathfrak{p}) \forall \mathfrak{p} \in S\}
$$

This group was first studied by Kowalski in [10]. Jossen [6, Theorem 8.0.1] proves (in the generality of semiabelian varieties) that the quotient $\tilde{\Lambda} / \Lambda$ is a finitely generated free abelian group.

In view of this result, Theorem 11 below can be extended to semiabelian varieties split up to isogeny. Because of Jossen's result, Theorem 6 actually proves that for semiabelian varieties split up to isogeny the following holds: the point R belongs to the left $\operatorname{End}_{K} G$-submodule of $G(K)$ generated by Λ. Consequently, Question 1 has an affirmative answer whenever Λ is a left $\operatorname{End}_{K} G$-submodule of $G(K)$. These last results are also independently proven by Jossen in [6].

Now we list further results on the problem of detecting linear dependence for commutative algebraic groups.

Schinzel [15, Theorem 2] answered Question 1 affirmatively for the multiplicative group. A generalization of Schinzel's result (Lemma 10 below for the multiplicative group where Λ is only required to be finitely generated) was proven by Khare in [8, Proposition 3]. Question 1 has a negative answer for tori. Indeed, Schinzel [15, p. 419] gave a counterexample for the product of two copies of the multiplicative group. See Example 9 below.

Kowalski [10] studied the problem of detecting linear dependence in the case where Λ is cyclic. In particular, he showed that the problem of detecting linear dependence has a negative answer whenever the additive group is embedded into G; see [10, Proposition 3.2].

Finally, a variant of the problem of detecting linear dependence was considered by Barańczuk in [4] for the multiplicative group and abelian varieties with endomorphism ring \mathbb{Z}.
2. Preliminaries. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point of G and denote by G_{R} the smallest algebraic K-subgroup of G containing R. Write G_{R}^{0} for the connected component of the identity of G_{R} and write n_{R} for the number of connected components of G_{R}. By [13, Proposition 5], G_{R}^{0} is the product of an abelian variety and a torus defined over K.

We say that R is independent if R is non-zero and $G_{R}=G$. The point R is independent in G if and only if R is independent in $G \times_{K} \bar{K}$. Furthermore, R is independent in G if and only if R is non-zero and the left $\operatorname{End}_{K} G$ submodule of $G(K)$ generated by R is free. See [13, Section 2].

LEmma 2. Let R be a K-rational point of G and let d be a non-zero integer. We have $G_{d R}^{0}=G_{R}^{0}$. In particular, the dimension of $G_{d R}$ equals the dimension of G_{R} and $G_{n_{R} R}=G_{n_{R} R}^{0}=G_{R}^{0}$.

Proof. Since G_{R} contains $d R$ we have $G_{d R} \subseteq G_{R}$ and so $G_{d R}^{0} \subseteq G_{R}^{0}$. Hence it suffices to prove that $G_{d R}^{0}$ and G_{R}^{0} have the same dimension. Clearly, the dimension of $G_{d R}^{0}$ is less than or equal to the dimension of G_{R}^{0}. To prove the other inequality it suffices to show that multiplication by [d] maps G_{R} into $G_{d R}$. This is true because $[d]^{-1} G_{d R}$ contains R.

Denote by W the connected component of G_{R} containing R and let X be a torsion point in $G_{R}(\bar{K})$ such that $W=X+G_{R}^{0}$ (see [13, Lemma 1]). Clearly, $n_{R} X$ is the least positive multiple of X belonging to G_{R}^{0} and the connected components of G_{R} are of the form $a X+G_{R}^{0}$ for $0 \leq a<n_{R}$. We can write $R=X+Z$ where Z is in $G_{R}^{0}(\bar{K})$. Since R and Z have a common multiple, from Lemma 2 it follows that Z is independent in G_{R}^{0}.

Lemma 3. Let L be a finite extension of K where X is defined. Then for all but finitely many primes \mathfrak{q} of L the point $\left(n_{R} X \bmod \mathfrak{q}\right)$ is the least positive multiple of $(X \bmod \mathfrak{q})$ belonging to $\left(G_{R}^{0} \bmod \mathfrak{q}\right)$.

Proof. Denote by x the order of X. We may assume that the points in $G_{R}[x]$ are defined over L. Suppose that d is a positive integer smaller than n_{R} such that for infinitely many primes \mathfrak{q} of L the point $(d X \bmod \mathfrak{p})$ belongs to $\left(G_{R}^{0} \bmod \mathfrak{q}\right)$. Up to excluding finitely many primes \mathfrak{q}, we may assume that the reduction modulo \mathfrak{q} maps injectively $G_{R}[x]$ to $\left(G_{R} \bmod \mathfrak{q}\right)[x]$. By [10, Lemma 4.4] we may also assume that the reduction modulo \mathfrak{q} maps surjectively $G_{R}^{0}[x]$ onto $\left(G_{R}^{0} \bmod \mathfrak{q}\right)[x]$. Then for infinitely many primes \mathfrak{q} the point $(d X \bmod \mathfrak{q})$ belongs to the reduction modulo \mathfrak{q} of the finite group $G_{R}^{0}[x]$. We deduce that $d X$ belongs to $G_{R}^{0}[x]$. We have a contradiction since $n_{R} X$ is the least positive multiple of X which belongs to G_{R}^{0}.

Lemma 4. Let A and T be respectively an abelian variety and a torus defined over a number field K. Then $\operatorname{Hom}_{\bar{K}}(A, T)=\{0\}$ and $\operatorname{Hom}_{\bar{K}}(T, A)$ $=\{0\}$.

Proof. Since A is a complete variety and T is affine, there are no nontrivial morphisms from A to T. To prove the other equality, suppose that ϕ is a morphism from \mathbb{G}_{m} to A. On the point sets, ϕ gives a homomorphism from a non-finitely generated to a finitely generated abelian group. Then the kernel of ϕ is not finite so it must be the whole \mathbb{G}_{m}.

The following lemma in the case of abelian varieties was proven by Banaszak in [1, Step 2 of the proof of Theorem 1.1].

Lemma 5. Let G be the product of an abelian variety and a torus defined over a number field K. Let α be a \bar{K}-endomorphism of G. Suppose that there
exists a prime number ℓ such that for every $n>0$ and every torsion point T of G of order ℓ^{n} the point $\alpha(T)$ is a multiple of T. Then α is a scalar.

Proof. Let R be a commutative ring with 1 . Let F be a free finitely generated R-module. Suppose that s is an R-endomorphism of F sending every element to a multiple of itself. Then it can easily be seen that s is a scalar. Apply the previous assertion to $R=\mathbb{Z} / \ell^{n} \mathbb{Z}, F=G\left[\ell^{n}\right]$, taking for s the image of α in $\operatorname{End}_{\mathbb{Z}} G\left[\ell^{n}\right]$. We deduce that α acts as a scalar on $G\left[\ell^{n}\right]$. So for every $n>0$ there exists an integer c_{n} such that α acts as the multiplication by $c_{n}\left(\bmod \ell^{n}\right)$ on $G\left[\ell^{n}\right]$. Since α commutes with multiplication by ℓ we deduce that $c_{n+1} \equiv c_{n}\left(\bmod \ell^{n}\right)$ for every n. This means that there exists c in \mathbb{Z}_{ℓ} such that $c \equiv c_{n}\left(\bmod \ell^{n}\right)$ for every n and that α acts on $T_{\ell} G$ as the multiplication by c.

Write $G=A \times T$ where A is an abelian variety and T is a torus. By Lemma 4, α is the product $\alpha_{A} \times \alpha_{T}$ of an endomorphism of A and an endomorphism of T. It suffices to prove the following: if A (respectively T) is non-zero then c is an integer and α_{A} (respectively α_{T}) is the multiplication by c.

Suppose that A is non-zero. We know that α_{A} acts on $T_{\ell} A$ as the multiplication by c. By [12, Theorem 3, p. 176], c is an integer and α_{A} is the multiplication by c.

Suppose that T is non-zero. We reduce at once to the case where $T=\mathbb{G}_{m}^{h}$ for some $h \geq 1$. The endomorphism ring of \mathbb{G}_{m} is \mathbb{Z} hence we can identify the endomorphism ring of T with the ring of $h \times h$-matrices with integer coefficients. Since α_{T} acts on $T_{\ell} T$ as the multiplication by c, we deduce that α_{T} is a scalar matrix. Hence c is an integer and α_{T} is the multiplication by c. -
3. On a result by Gajda and Górnisiewicz. In this section we apply results on the support problem ($[14]$) to study the problem of detecting linear dependence. The second assertion of the following theorem was proven by Gajda and Górnisiewicz in [5, Theorem B] under the assumption that the point R generates a free left $\operatorname{End}_{K} G$-submodule of $G(K)$.

Theorem 6. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point of G and let Λ be a finitely generated subgroup of $G(K)$. Suppose that for all but finitely many primes \mathfrak{p} of K the point $(R \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. Then there exists a non-zero integer m (depending only on G, K and the rank of Λ) such that $m R$ belongs to the left $\operatorname{End}_{K} G$-submodule of $G(K)$ generated by Λ. Furthermore, if Λ is a free left $\operatorname{End}_{K} G$-submodule of $G(K)$ then R belongs to Λ.

Remark that if G is an abelian variety, the integer m in Theorem 6 depends only on G and K since the rank of Λ is bounded by the rank of the Mordell-Weil group.

Lemma 7. Let G be the product of an abelian variety and a torus defined over a number field K. Let R be a K-rational point of G and let Λ be a finitely generated subgroup of $G(K)$. Fix a rational prime ℓ. Suppose that for all but finitely many primes \mathfrak{p} of K there exists an integer $c_{\mathfrak{p}}$ coprime to ℓ such that $\left(c_{\mathfrak{p}} R \bmod \mathfrak{p}\right)$ belongs to $(\Lambda \bmod \mathfrak{p})$. Then there exists a non-zero integer c such that cR belongs to the left $\operatorname{End}_{K} G$-submodule of $G(K)$ generated by Λ. One can take c such that $v_{\ell}(c) \leq v_{\ell}(m)$ where m is a non-zero integer depending only on G, K and the rank of Λ (hence not depending on ℓ). If Λ is a free left $\operatorname{End}_{K} G$-submodule of $G(K)$, one can take $m=1$.

Proof. Let P_{1}, \ldots, P_{s} generate Λ as a \mathbb{Z}-module. Consider G^{s} and its K rational points $P=\left(P_{1}, \ldots, P_{s}\right)$ and $Q=(R, 0, \ldots, 0)$. We can apply [14, Main Theorem] to the points P and Q. Then there exist a K-endomorphism ϕ of G^{s} and a non-zero integer c such that $\phi(P)=c Q$. By [14, Proposition 10] one can take c such that $v_{\ell}(c) \leq v_{\ell}(m)$ where m depends only on G^{s} and K. In particular, $c R$ belongs to $\operatorname{End}_{K} G \cdot \Lambda$. Since s depends only on G, K and the rank of Λ, the first assertion is proven. For the second assertion, let P_{1}, \ldots, P_{s} be a basis of Λ as a left $\operatorname{End}_{K} G$-module. Since P is independent, by [14, Proposition 9] one can take c coprime to ℓ. Consequently, one can take $m=1$.

Proof of Theorem 6. We apply Lemma 7 to every rational prime ℓ. Then for every ℓ there exists an integer c_{ℓ} such that $c_{\ell} R$ belongs to $\operatorname{End}_{K} G \cdot \Lambda$ and $v_{\ell}\left(c_{\ell}\right) \leq v_{\ell}(m)$, where m is a non-zero integer depending only on G, K and the rank of Λ. Since m is in the ideal of \mathbb{Z} generated by the c_{ℓ} 's, we deduce that $m R$ belongs to $\operatorname{End}_{K} G \cdot \Lambda$. If Λ is a free left $\operatorname{End}_{K} G$-submodule of $G(K)$, one can take $m=1$ in Lemma 7 , hence R belongs to Λ.
4. A refinement of a result by Banaszak. In this section we extend the result by Banaszak on the problem of detecting linear dependence ([1), Theorem 1.1]) from abelian varieties to products of abelian varieties and tori. Furthermore, by adapting Banaszak's proof we are able to remove his assumption on the point R (that R generates a free left $\operatorname{End}_{K} G$-submodule of $G(K)$).

Theorem 8. Let G be the product of an abelian variety and a torus defined over a number field K. Let Λ be a finitely generated subgroup of $G(K)$ such that it has a set of generators (as a group) which is a basis of a free left $\operatorname{End}_{K} G$-submodule of $G(K)$. Let R be a point in $G(K)$. Suppose that for all but finitely many primes \mathfrak{p} of K the point $(R \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. Then R belongs to Λ.

If $\operatorname{End}_{K} G=\mathbb{Z}$, the assumption on Λ is equivalent to saying that Λ contains no torsion points. In general, the condition implies that the left
$\operatorname{End}_{K} G$-module generated by Λ is free. The following example by Schinzel shows that the latter assumption is not sufficient.

Example 9 (Schinzel, [15, p. 419]). A counterexample to Question 1 for $G=\mathbb{G}_{m}^{2}$ and $K=\mathbb{Q}$ is the following. Take the point $R=(1,4)$ and take the group Λ generated by the points $P_{1}=(2,1), P_{2}=(3,2), P_{3}=(1,3)$. For every prime number \mathfrak{p} the point $(R \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. The point R belongs to the left $\operatorname{End}_{K} G$-module generated by Λ but does not belong to Λ. Notice that the left $\operatorname{End}_{K} G$-module generated by Λ is free and it is generated by P_{2}.

Lemma 10. Let G be the product of an abelian variety and a torus defined over a number field K. Let Λ be a finitely generated subgroup of $G(K)$ such that it has a set of generators (as a group) which is a basis of a free left $\operatorname{End}_{K} G$-submodule of $G(K)$. Let R be a point in $G(K)$. Fix a prime number ℓ. Suppose that for all but finitely many primes \mathfrak{p} of K there exists an integer $c_{\mathfrak{p}}$ coprime to ℓ such that the point $\left(c_{\mathfrak{p}} R \bmod \mathfrak{p}\right)$ belongs to $(\Lambda \bmod \mathfrak{p})$. Then there exists an integer c coprime to ℓ such that $c R$ belongs to Λ.

Proof. By Lemma 7 applied to $\operatorname{End}_{K} G \cdot \Lambda$, there exists an integer c coprime to ℓ such that $c R$ belongs to $\operatorname{End}_{K} G \cdot \Lambda$. Let $\left\{P_{1}, \ldots, P_{n}\right\}$ be a set of generators for Λ which is a basis for $\operatorname{End}_{K} G \cdot \Lambda$. We can write

$$
c R=\sum_{i=1}^{n} \phi_{i} P_{i}
$$

for some ϕ_{i} in $\operatorname{End}_{K} G$. Without loss of generality it suffices to prove that ϕ_{1} is the multiplication by an integer.

Suppose that ϕ_{1} is not multiplication by an integer and apply Lemma 5 to ϕ_{1}. Then there exists a point T in $G\left[\ell^{\infty}\right]$ such that $\phi_{1}(T)$ is not a multiple of T. Let L be a finite extension of K where T is defined. The point $\left(P_{1}-T\right.$, $\left.P_{2}, \ldots, P_{n}\right)$ is independent in G^{n} hence by [13, Proposition 12] there are infinitely many primes \mathfrak{q} of L such that the following holds: $\left(P_{i} \bmod \mathfrak{q}\right)$ has order coprime to ℓ for every $i \neq 1$ and ($P_{1}-T \bmod \mathfrak{q}$) has order coprime to ℓ. By discarding finitely many primes \mathfrak{q}, we may assume the following: the order of $(T \bmod \mathfrak{q})$ equals the order of T; the point $\left(\phi_{1}(T) \bmod \mathfrak{q}\right)$ is not a multiple of $(T \bmod \mathfrak{q})$ and in particular it is non-zero; $\left(c_{\mathfrak{q}} R \bmod \mathfrak{q}\right)$ belongs to $(\Lambda \bmod \mathfrak{q})$ for some integer $c_{\mathfrak{q}}$ coprime to ℓ.

Fix \mathfrak{q} as above. We know that there exists an integer m coprime to ℓ such that $\left(m P_{i} \bmod \mathfrak{q}\right)=0$ for every $i \neq 1$ and $\left(m\left(P_{1}-T\right) \bmod \mathfrak{q}\right)=0$. Then we have

$$
\left(m c_{\mathfrak{q}} c R \bmod \mathfrak{q}\right)=\left(m c_{\mathfrak{q}} \phi_{1}\left(P_{1}\right) \bmod \mathfrak{q}\right)=\left(m c_{\mathfrak{q}} \phi_{1}(T) \bmod \mathfrak{q}\right) .
$$

Since $v_{\ell}\left(m c_{\mathfrak{q}}\right)=0$, we deduce that the point $\left(m c_{\mathfrak{q}} c R \bmod \mathfrak{q}\right)$ has order a
power of ℓ and it is not a multiple of $(T \bmod \mathfrak{q})$. Then $\left(m c_{\mathfrak{q}} c R \bmod \mathfrak{q}\right)$ does not belong to $\sum_{i=1}^{n} \mathbb{Z}\left(P_{i} \bmod \mathfrak{q}\right)$. Consequently, $\left(c_{\mathfrak{q}} R \bmod \mathfrak{q}\right)$ does not belong to $(\Lambda \bmod \mathfrak{q})$ and we have a contradiction.

Proof of Theorem 8. We can apply Lemma 10 to every rational prime ℓ. Then for every ℓ there exists an integer c_{ℓ} coprime to ℓ such that $c_{\ell} R$ belongs to Λ. Since 1 is contained in the ideal of \mathbb{Z} generated by the c_{ℓ} 's, we deduce that R belongs to Λ.
5. On a result by Kowalski. Kowalski [10] studied the problem of detecting linear dependence for commutative algebraic groups in the case where Λ is cyclic. The following theorem was proven for elliptic curves in [10, Theorem 3.3]. Kowalski also described in [10, p. 120] how to apply the results by Khare and Prasad 9 to this problem.

Theorem 11. Let G be the product of an abelian variety and a torus defined over a number field K. Let Λ be a cyclic subgroup of $G(K)$. Let R be a K-rational point of G. Suppose that for all but finitely many primes \mathfrak{p} of K the point $(R \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. Then R belongs to Λ.

Lemma 12. Let G be the product of an abelian variety and a torus defined over a number field K. Let Λ be an infinite cyclic subgroup of $G(K)$. Let T be a K-rational torsion point of G. Suppose that for all but finitely many primes \mathfrak{p} of K the point $(T \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. Then T is zero.

Proof. Suppose that T is non-zero. Then T can be uniquely written as a sum of torsion points whose orders are prime powers. These torsion points are multiples of T. Consequently, we reduce at once to the case where the order of T is the power of a prime number ℓ.

Let $\Lambda=\mathbb{Z} P$ for a point P of infinite order. The algebraic subgroup G_{P} of G generated by P has dimension at least 1 . In Section 2 we saw the following: $P=X+Z$ for some point Z in $G_{P}^{0}(\bar{K})$ and some torsion point X in $G_{P}(\bar{K})$; the point Z is independent in $G_{P}^{0} ; n_{P} X$ is the least multiple of X which belongs to $G_{P}^{0} ; G_{P}^{0}$ is the product of an abelian variety and a torus defined over K.

Let c be the ℓ-adic valuation of the order of X. Let L be a finite extension of K where $X, Z, G\left[\ell^{2 c}\right]$ are defined and such that $n_{P} X$ has n_{P}-roots in $G_{P}^{0}(L)$. Notice that for all but finitely many primes \mathfrak{q} of L the point $(T \bmod \mathfrak{q})$ belongs to $(\mathbb{Z} P \bmod \mathfrak{q})$.

By [13, Proposition 12], there exist infinitely many primes \mathfrak{q} of L such that the order of $(Z \bmod \mathfrak{q})$ is coprime to ℓ. Then for infinitely many primes \mathfrak{q} the point $(T \bmod \mathfrak{q})$ lies in the finite group generated by $(X \bmod \mathfrak{q})$. We deduce that $T=a X$ for some non-zero integer a.

Let T_{0} be a point in G_{P}^{0} of order $\ell^{2 c}$. By [13, Proposition 11], there exist infinitely many primes \mathfrak{q} of L such that the order of $\left(Z-T_{0} \bmod \mathfrak{q}\right)$ is coprime to ℓ. We deduce that for infinitely many primes \mathfrak{q} the point $(T \bmod \mathfrak{q})$ lies in the finite group generated by $\left(T_{0}+X \bmod \mathfrak{q}\right)$. Then $T=b\left(T_{0}+X\right)$ for some non-zero integer b.

Since $a X=b\left(T_{0}+X\right)$ and because the order of T_{0} is $\ell^{2 c}$ we deduce that $v_{\ell}(b) \geq c$. Consequently, T is the sum of $b T_{0}$ and a torsion point of order coprime to ℓ. Then T is a multiple of T_{0} and in particular it belongs to G_{P}^{0}.

Let T_{1} be a point in $G_{P}^{0}(L)$ such that $n_{P} T_{1}=-n_{P} X$. By [13, Proposition 11], there exist infinitely many primes \mathfrak{q} of L such that the order of $\left(Z-T_{1} \bmod \mathfrak{q}\right)$ is coprime to ℓ. Up to discarding finitely many primes \mathfrak{q}, we may assume that $(T \bmod \mathfrak{q})$ belongs to $(\mathbb{Z} P \bmod \mathfrak{q})$ and that the order of $(T \bmod \mathfrak{q})$ equals the order of T. Again up to discarding finitely many primes \mathfrak{q}, by Lemma 3 we may assume that $\left(n_{P} X \bmod \mathfrak{q}\right)$ is the least multiple of $(X \bmod \mathfrak{q})$ belonging to $\left(G_{P}^{0} \bmod \mathfrak{q}\right)$. Consequently, the intersection of $\left(G_{P}^{0} \bmod \mathfrak{q}\right)$ and $(\mathbb{Z} P \bmod \mathfrak{q})$ is $\left(\mathbb{Z} n_{P} P \bmod \mathfrak{q}\right)$. Then $(T \bmod \mathfrak{q})$ belongs to $\left(\mathbb{Z} n_{P} P \bmod \mathfrak{q}\right)$.

Fix a prime \mathfrak{q} as above and denote by r the order of $\left(Z-T_{1} \bmod \mathfrak{q}\right)$. We have

$$
\begin{aligned}
\left(r n_{P} P \bmod \mathfrak{q}\right) & =\left(r n_{P} Z+r n_{P} X \bmod \mathfrak{q}\right)=\left(r n_{P} T_{1}+r n_{P} X \bmod \mathfrak{q}\right) \\
& =(0 \bmod \mathfrak{q})
\end{aligned}
$$

Since r is coprime to ℓ, it follows that $\left(\mathbb{Z} n_{P} P \bmod \mathfrak{q}\right)$ has no ℓ-torsion and in particular it does not contain $(T \bmod \mathfrak{q})$. We have a contradiction.

Proof of Theorem 11. If Λ is finite then there exists an element P^{\prime} in Λ such that for infinitely many primes \mathfrak{p} of K we have $(R \bmod \mathfrak{p})=\left(P^{\prime} \bmod \mathfrak{p}\right)$. Hence $R=P^{\prime}$ and the statement is proven. We may then assume that $\Lambda=\mathbb{Z} P$ for a point P of infinite order.

We first prove that the statement holds in the case where the algebraic group G_{P} generated by P is connected. In this case, G_{P} is the product of an abelian variety and a torus ([13, Proposition 5]). By [10, Lemma 4.2], we may assume that $G_{P}=G$. So we may assume that P is independent in G and we conclude by applying Theorem 8 .

In general, let n_{P} be the number of connected components of G_{P}. Notice that the points $n_{P} P$ and $n_{P} R$ still satisfy the hypotheses of the theorem and that $G_{n_{P} P}$ is connected by Lemma 2. Therefore we know (by the special case above) that $n_{P} R=g n_{P} P$ for some integer g. Since R and P are rational points, we deduce that $R=g P+T$ for some rational torsion point T. Since $R-T$ belongs to Λ, for all but finitely many primes \mathfrak{p} of K the point $(T \bmod \mathfrak{p})$ belongs to $(\Lambda \bmod \mathfrak{p})$. By applying Lemma 12 we deduce that $T=0$ hence R belongs to Λ.

Acknowledgements. I thank Emmanuel Kowalski and René Schoof for helpful discussions.

References

[1] G. Banaszak, On a Hasse principle for Mordell-Weil groups, C. R. Math. Acad. Sci. Paris 347 (2009), 709-714.
[2] G. Banaszak, W. Gajda, and P. Krasoń, Detecting linear dependence by reduction maps, J. Number Theory 115 (2005), 322-342.
[3] G. Banaszak and P. Krasoń, On arithmetic in Mordell-Weil groups, preprint, arXiv: 0904.2848v2, 2009.
[4] S. Barańczuk, On a generalization of the support problem of Erdős and its analogues for abelian varieties and K-theory, J. Pure Appl. Algebra 214 (2010), 380-384.
[5] W. Gajda and K. Górnisiewicz, Linear dependence in Mordell-Weil groups, J. Reine Angew. Math. 630 (2009), 219-233.
[6] P. Jossen, On the arithmetic of 1-motives, Ph.D. thesis, Central European Univ. Budapest, 2009.
[7] P. Jossen and A. Perucca, A counterexample to the local-global principle of linear dependence for abelian varieties, C. R. Math. Acad. Sci. Paris 348 (2010), 9-10.
[8] C. Khare, Compatible systems of mod p Galois representations and Hecke characters, Math. Res. Lett. 10 (2003), 71-83.
[9] C. Khare and D. Prasad, Reduction of homomorphisms mod p and algebraicity, J. Number Theory 105 (2004), 322-332.
[10] E. Kowalski, Some local-global applications of Kummer theory, Manuscripta Math. 111 (2003), 105-139.
[11] M. Larsen and R. Schoof, Whitehead's lemma and Galois cohomology of abelian varieties, http://mlarsen.math.indiana.edu/~larsen/unpublished.html, 2004.
[12] D. Mumford, Abelian Varieties, Tata Inst. Fund. Res. Stud. Math. 5, Oxford Univ. Press, London, 1970.
[13] A. Perucca, Prescribing valuations of the order of a point in the reductions of abelian varieties and tori, J. Number Theory 129 (2009), 469-476.
[14] -, Two variants of the support problem for products of abelian varieties and tori, ibid., 1883-1892.
[15] A. Schinzel, On power residues and exponential congruences, Acta Arith. 27 (1975), 397-420.
[16] T. Weston, Kummer theory of abelian varieties and reductions of Mordell-Weil groups, ibid. 110 (2003), 77-88.

Antonella Perucca
Section de Mathématiques
École Polytechnique Fédérale de Lausanne
Station 8
CH-1015 Lausanne, Switzerland
E-mail: antonella.perucca@epfl.ch

[^0]: 2010 Mathematics Subject Classification: Primary 11G10; Secondary 14L10, 14K15.
 Key words and phrases: abelian varieties, tori, reductions, local-global principles, support problem.

