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1. Introduction. We study the classical Waring problem, but try to
keep all variables as close together as possible. When k ≥ 2 and s are fixed,
this amounts to counting the number of solutions, say rk,s(n, Y ), of the
diophantine equation

(1.1) xk1 + xk2 + · · ·+ xks = n

subject to the constraints X − Y < xj ≤ X + Y for 1 ≤ j ≤ s where

(1.2) X =
[(

n

s

)1/k]
is the largest integer below the average size of xj in (1.1) and Y is as small
as possible.

It is now more than 70 years ago that Wright [6] in an early work showed,
inter alia, that for any ε > 0 there is an s0(k, ε) such that whenever s ≥ s0
and Y ≥ X1−1/k+ε, then rk,s(n, Y ) satisfies the asymptotic formula pre-
dicted by the Hardy–Littlewood circle method. This has the shape

(1.3) rk,s(n, Y ) ∼ c∞S(n)X1−kY s−1,

in our language, where c∞ > 0 is a certain constant not depending on n and
S(n) denotes the familiar singular series associated with Waring’s problem.
One may wonder to what extent (1.3) remains valid when Y takes even
smaller values. Note that the right hand side of (1.3) is positive, whence
rk,s(n, Y ) ≥ 1 for large n. However, Wright [7] also observed that for any
fixed s there is a constant c > 0 letting rk,s(n, c

√
X) vanish on an infinite

sequence of natural numbers n. Hence, one cannot hope for (1.3) to hold
with Y = c

√
X when c is small.

In the present communication we aim to rekindle interest in this natural
variant of Waring’s problem by demonstrating that rk,s(n, Y ) is, in fact,

2010 Mathematics Subject Classification: Primary 11P05.
Key words and phrases: additive number theory, Hardy–Littlewood method, Weyl sums.

DOI: 10.4064/aa142-2-3 [129] c© Instytut Matematyczny PAN, 2010



130 D. Daemen

essentially as large as is predicted by the heuristic asymptotic formula (1.3)
once Y = c

√
X with a suitably large positive constant c.

Theorem. For j = 2, 3, . . . , 10 define sj = 9, 17, 47, 111, 241, 415, 673,
1081, 1771 respectively, and for k > 10 let

sk = 2
[

5k2

3
log k +

29k2

30
log log k +

7k2

3
log log log k + Ck2

]
+ 1

where C is a certain absolute constant so determined that the estimate (4.2)
below holds. Then there is a positive number c, independent of n, such that
for Y = c[

√
X] and all s ≥ sk, one has

(1.4) rk,s(n, Y )� X1−kY s−1.

Note that this is the best possible in terms of the constraint on Y by
appeal to Wright’s result [7]. We remark that by working a little harder, one
can replace the 9 for s2 by 7 and further that the asymptotic formula (1.3)
holds for similar ranges of s as soon as Y only grows a little faster than

√
X.

The latter will be shown elsewhere [2], since the procedure is more direct
than in this paper. Our proof is based on the circle method with the aid
of Vinogradov’s familiar mean value theorem and crucially depends on a
process that might be called “binomial descent”. The said refinement is used
both in the derivation of the minor arc estimate (4.5) and in the inductive
strategy to verify Lemma 1 in §5.

Throughout, the notation is standard in number theory and follows
Vaughan [4] for the most part.

2. A variation of the main theme. For a natural number c = c(k, s)
and 1 ≤ j ≤ c, we denote

(2.1) m =
[
n− sXk

kXk−1

]
− j.

First of all we have m � 1, since n − sXk ≤ s(X + 1)k − sXk �
Xk−1, by (1.2). But on the other hand, as long as n =

∑s
j=1(X + xj)k with

|x1|, . . . , |xs| �
√
X, we have

kXk−1
∣∣∣ s∑
j=1

xj

∣∣∣ =
∣∣∣∣n− sXk −

s∑
j=1

k∑
l=2

(
k

l

)
Xk−lxlj

∣∣∣∣
� |n− sXk|+

k∑
l=2

Xk−l+l/2 � Xk−1,

so that as well
∑s

j=1 xj � 1.
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Hence, it seems useful in the case of Y = c
√
X to let rk,s(n,m, Y ) count

the number of solutions of the diophantine equations

(2.2)
s∑
j=1

(X + xj)k = n,

s∑
j=1

xj = m

subject to −Y < xj ≤ Y for 1 ≤ j ≤ s where m is given by (2.1). Although
rk,s(n, Y ) ≥ rk,s(n,m, Y ), we may expect that rk,s(n,m, Y ) only slightly
differs from rk,s(n, Y ) if m is suitably adjusted.

3. The definition of major and minor arcs. Now the Hardy–Little-
wood method comes into play in the computation of rk,s(n,m, Y ). We pre-
pare the stage by assuming that n is a large natural number and

Y = c[
√
X],(3.1)

X = X − Y,(3.2)

Q = 2−kY 1/3(3.3)

where the integer c ≥ 4 will be specified in due course. Further, we define

(3.4) M(q, a) =
(

1
4Q

, 1 +
1

4Q

]
×
{
α : |α− a/q| ≤ Q

X k−2Y 2

}
.

Then it is easy to verify that when 1 ≤ a ≤ q ≤ Q and (a, q) = 1, the major
arcs M(q, a) are pairwise disjoint and contained in

U =
(

1
4Q

, 1 +
1

4Q

]
×
(

Q

X k−2Y 2
, 1 +

Q

X k−2Y 2

]
.

We write M for the union of the M(q, a), and m = U \M for the comple-
mentary part forming the minor arcs. For brevity, we put α = (α1, α) ∈ R2

and, as usual, e(α) = exp(2πiα), so that short Weyl sums can be denoted
by

(3.5) f(α) =
∑

−Y <x≤Y
e

(
α1x+ α

k∑
j=2

(
k

j

)
Xk−jxj

)
.

Also, for a measurable set B ⊂ U and e(α) = e(−α1m − α(n − sXk −
kXk−1m)), we introduce

(3.6) ρ(n,m, Y ;B) =
�

B
f s(α)e(α) dα.

Finally, on expanding the equation for n in (2.2), we find from the orthog-
onality that

(3.7) rk,s(n,m, Y ) = ρ(n,m, Y ; M) + ρ(n,m, Y ; m).
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4. Beyond Weyl’s inequality. Let X be given by (3.2). Then, as a
first step, we abbreviate

(4.1) αj =
(
k

j

)
X k−jα = cjα (2 ≤ j ≤ k),

so that the modulus of the featured exponential sum (3.5) can be rewritten
as

|f(α)| =
∣∣∣ ∑
1≤x≤2Y

e
(
(α1 − αk(Xk−1 −X k−1))x+ α2x

2 + · · ·+ αkx
k
)∣∣∣,

because we intend to compare various approximations to αj for 2 ≤ j ≤ k.
Some more notation is required. Let J (k)

s (Y ) count the number of solutions
of the diophantine equations

s∑
r=1

xjr =
s∑
r=1

yjr (1 ≤ j ≤ k)

subject to 1 ≤ xr, yr ≤ Y for 1 ≤ r ≤ s. Then Theorem 5.2 of Vaughan
[4] implies that, whenever there are j, aj , qj with 2 ≤ j ≤ k, (aj , qj) = 1,
qj ≤ (2Y )j and |αj − aj/qj | ≤ q−2

j , we have

f(α)�
(
J (k−1)
s (Y )Y k(k−1)/2(q−1

j + Y −1 + qjY
−j)
)1/2s log Y.

From Theorem 7.4 and the associated remark in [4] and Theorem 7 in [3]
we extract the estimates

(4.2) J
(k)
(sk−1)/2(Y )� Y sk−1−k(k−1)/2+ε,

and thus obtain

f(α)� Y 1+ε(q−1
j + Y −1 + qjY

−j)1/(sk−1−1).

For α ∈ m it is now feasible to start up the procedure by choosing aj , qj
for j = 2, . . . , k with (aj , qj) = 1, 1 ≤ qj ≤ Y j/Q and |αjqj − aj | ≤ QY −j .
Next, suppose that

(4.3) |αjqj − aj | ≤ QY −j , 1 ≤ qj ≤ Q for j = 2, . . . , k.

Then, as we shall see below, we would have as well

(4.4) |α− ak/qk| ≤ Q(X k−2Y 2)−1.

Since α ∈ m ⊂ U , it follows that 1 ≤ ak ≤ qk ≤ Q, whence, by (3.4),
α lies in M. But this contradicts the definition of the minor arcs. Hence,
(4.3) is impossible for α ∈ m, and there is always some j such that Q < qj ≤
Y j/Q. By appeal to the aforementioned bounds and (3.3), therefore, we may
provide satisfactory minor arc estimates for f , which, at least for k > 2, are
superior to those coming from Weyl’s inequality, namely, we obtain

(4.5) f(α)� Y 1−1/3sk−1 for α ∈ m.
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To confirm (4.4), we prove by induction on l ∈ {0, . . . , k − 2} that

(4.6) |α− ak/qk| ≤ Q(X lY k−l)−1.

The statement is trivially true for l = 0, because of (4.3) for j = k and
αk = α. We assume that (4.6) holds for a certain value of l with 0 ≤ l ≤ k−3
and have to show that it also holds for l + 1. We derive from (4.1) that∣∣∣∣ck−(l+1)

ak
qk
−
ak−(l+1)

qk−(l+1)

∣∣∣∣ ≤ ( k

l + 1

)
X l+1

∣∣∣∣α− ak
qk

∣∣∣∣+
∣∣∣∣αk−(l+1) −

ak−(l+1)

qk−(l+1)

∣∣∣∣.
Then on multiplying the inequality with qkqk−(l+1), and making use of (4.3),
it follows from the inductive hypothesis and the definition of X that

qkqk−(l+1)

∣∣∣∣ck−(l+1)
ak
qk
−
ak−(l+1)

qk−(l+1)

∣∣∣∣ ≤
(
k
l+1

)
X l+1Q3

X lY k−l +
Q2

Y k−(l+1)

≤ 2kXQ3

Y 3
+
Q2

Y 2
.

In view of (3.1) and (3.3), however, the right hand side is less than 1/2,
whence ck−(l+1)akqk−(l+1) = ak−(l+1)qk. This inserted into (4.3) for j =
k − (l + 1) furnishes proof of (4.6) in the case l + 1, on noting (4.1).

5. A mean value theorem. We realize that there is an interplay be-
tween mean value estimates for f and the number of solutions reflected in
J

(k)
s (Y ).

Lemma 1. For every natural number s and any Y satisfying (3.1), we
have �

U

|f(α)|2s dα� X2−kY k(k+1)/2−3J (k)
s (Y ).

Proof. In preparation, we consider the integral in terms of its underlying
diophantine equation in order to produce an alignment with J (k)

s (Y ); we are
then led to intrinsically more efficient counting functions, say I(h)

s (Y ), that
for h ∈ {1, . . . , k − 1} determine the number of solutions of

s∑
r=1

(X + xr)k =
s∑
r=1

(X + yr)k,(5.1)

s∑
r=1

xjr =
s∑
r=1

yjr (1 ≤ j ≤ h)(5.2)

subject to the constraints −Y < xr, yr ≤ Y for 1 ≤ r ≤ s. With the plausible
estimate I(k−1)

s (Y ) � J
(k)
s (Y ) resulting from some minor calculations, it is

now apparent that Theorem 3 will follow once the bound

I(1)
s (Y )� X2−kY k(k+1)/2−3I(k−1)

s (Y )
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is established. For this it suffices to show by induction on h ∈ {1, . . . , k− 1}
that

(5.3) I(1)
s (Y )� Z(h)I(h)

s (Y )

where

Z(1) = 1 and Z(h) =
Y 3

X
· · · Y

h+1

X
for h ≥ 2.

The case h = 1 is evident. Suppose that (5.3) is true for a particular
index h with 1 ≤ h ≤ k − 2 and verify the same for h+ 1.

To have at hand a simple notation, whenever h ≤ k − 2, we write
I

(h)
s (Y ; c) for the number of solutions captured by I

(h)
s (Y ) under the ad-

ditional condition
∑s

r=1(xh+1
r − yh+1

r ) = c and remark, for ease of later
conclusions, that this is counted by the integral

�

[0,1]h+2

∣∣∣ Y∑
x=1−Y

e(αk(X+x)k+αh+1x
h+1+· · ·+α1x)

∣∣∣2se(αh+1c) dαkαh+1 . . . α1.

Now extracting from (5.1) and (5.2) for j = 1, . . . , h the identity(
k

h+ 1

)
Xk−(h+1)

s∑
r=1

(yh+1
r − xh+1

r ) =
k∑

m=h+2

(
k

m

)
Xk−m

s∑
r=1

(xmr − ymr ),

and on recalling −Y < xr, yr ≤ Y for 1 ≤ r ≤ s, we may deduce that∣∣∣ s∑
r=1

(xh+1
r − yh+1

r )
∣∣∣� Y h+2

X
.

In particular, the right hand side is greater than 1 for h ≥ 1, by assumption
(3.1). Then it follows in sequence from the inductive hypothesis, the triangle
inequality and the definition of Z(h) that for some C � Y h+2/X,

I(0)
s (Y )� Z(h)I(h)

s (Y ) ≤ Z(h)
∑
|c|≤C

I(h)
s (Y ; c)� Z(h+ 1)I(h)

s (Y ; 0),

as claimed in (5.3) for the case h + 1, since I(h)
s (Y ; 0) = I

(h+1)
s (Y ). This

completes the proof.

We apply (4.2) to restate Lemma 1 at once in a more condensed form.

Lemma 2. For s ≥ sk and any Y satisfying (3.1), we have
�

U

|f(α)|s−1 dα� X1−kY s−2+ε.
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6. Auxiliary investigations on the generating function. At this
point, the generating function (3.5) is expressed in the more fitting form as

(6.1) f(α) =
∑

−Y <x≤Y
e(α1x+ αF (x))

where

(6.2) F (r) =
k∑
j=2

(
k

j

)
Xk−jrj ,

so that an asymptotic expansion to f which is necessary for the evaluation
of the major arc contribution may be derived by means of the auxiliary
functions

(6.3) S(q,a) = S(q, a1, ak) =
q∑
r=1

e((a1r + akF (r))/q)

and

(6.4) I(β) = I(β1, βk) =
Y�

−Y
e(β1γ + βkF (γ)) dγ.

Rather than follow the familiar trail arranging the summation in (6.1)
into residue classes to recover by partial summation Theorem 7.1 of Vaughan
[4], we produce better error terms by using the Poisson summation formula
as given by Vaughan’s Lemma 4.2 in [4].

Suppose that M < N , ψ′′ exists, is continuous on [M,N ] and ψ′ is
monotonic on [M,N ]. Let H1, H2 denote integers such that H1 ≤ ψ′(α) ≤
H2 for any α ∈ [M,N ]. Then, for H = max(|H1|, |H2|),

(6.5)
∑

M<x≤N
e(ψ(x)) =

H2∑
h=H1

N�

M

e(ψ(α)− αh) dα+O(log(2 +H)).

This will pave the way for the announced result which is of some inde-
pendent interest.

Lemma 3. Suppose that α1 = a1/q1+β1, α = ak/qk+βk and q = [q1, qk].
Define Aj = ajq

−1
j q for j = 1 or k and A = (A1, Ak). Further, assume that

(6.6)
∣∣∣∣α1 −

a1

q1

∣∣∣∣ ≤ 1
4q

and
∣∣∣∣α− ak

qk

∣∣∣∣ ≤ 1
4k2qXk−2Y

.

Then we have the approximation

f(α) = q−1S(q,A)I(β) +O(q1+ε).

Proof. For convenience, we write

G(γ) = β1γ + βkF (γ)
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as well as

S(q, A1, Ak, b) =
q∑

m=1

e
(
q−1((A1q + b)m+AkF (m))

)
and note the orthogonality q−1

∑
−q/2<b≤q/2 e(b(m − x)/q) = 1 for m ≡

x mod q and = 0 else to find the equations

f(α) =
q∑

m=1

∑
−Y <x≤Y
x≡mmod q

e(G(x))e(a1x/q1 + akF (x)/qk)

= q−1
∑

−q/2<b≤q/2

∑
−Y <x≤Y

e(G(x)− bx/q)S(q, A1, Ak, b).

Hence, the trivial bound |S(q,A1, Ak, b)| ≤ q together with (6.3) reveals that

(6.7)
∣∣∣f(α)− q−1S(q,A)

∑
−Y <x≤Y

e(G(x))
∣∣∣ ≤ ∑

−q/2<b≤q/2
b6=0

|H(b)|

where
H(b) =

∑
−Y <x≤Y

e(G(x)− bx/q).

Now let −q/2 < b ≤ q/2 and split [−Y, Y ] into finitely many intervals I
where G(γ)− bγ/q is monotonic. Next, (6.6) ensures that

|β1 + βkF
′(γ)| ≤ 1

4q
+ (4qk2Xk−2Y )−1

k∑
j=2

(
k

j

)
Xk−jjY j−1

≤ 1
4q

+
2
(
k
2

)
Xk−2Y +O(Xk−3Y 2)

4qk2Xk−2Y

≤ 1
4q

+
(k(k − 1) + o(1))Xk−2Y

4qk2Xk−2Y
≤ 1

2q
.

Thus the expression (G(γ) − bγ/q)′ = β1 + βkF
′(γ) − b/q lies between

−(b+ 1/2)/q and −(b− 1/2)/q, whence (6.5) can be applied with H1 = −1
and H2 = 1 to yield∑

x∈I
e(G(x)− bx/q) =

1∑
h=−1

�

I

e(G(γ)− bγ/q − γh) dγ +O(1).

Consequently, on summing over I,

(6.8) H(b) =
1∑

h=−1

Y�

−Y
e(G(γ)− bγ/q − γh) dγ +O(1).
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Since |G′(γ)− b/q− h| ≥ ‖G′(γ)− b/q‖ ≥ 1
2‖b/q‖ ≥

1
2 |b/q| for b 6= 0 and

|γ| ≤ Y , integration by parts yields
Y�

−Y
e(G(γ)− bγ/q − γh) dγ � |q/b|.

Hence, by (6.8), H(b)� |q/b| and, on inserting into (6.7), we obtain

(6.9) f(α)− q−1S(q,A)
∑

−Y <x≤Y
e(G(x))�

∑
−q/2<b≤q/2

b 6=0

|q/b| � q1+ε.

Also |G′(γ)± 1| ≥ 1/2 for all |γ| ≤ Y and, by integration by parts, this
shows

Y�

−Y
e(G(γ)± γ) dγ = O(1).

With b = 0 in (6.8), we finally achieve that∑
−Y <x≤Y

e(G(x)) =
Y�

−Y
e(G(γ)) dγ +O(1),

and, in view of (6.9), the desired conclusion follows.

For the sake of completeness, we extract from Theorem 7.3 of Vaughan
[4] the bound

(6.10) I(β)� Y (1 + |β1|Y + |βk|Xk−2Y 2)−1/k

and we learn from his Theorem 7.1 that for (q, a1, ak) = 1, one equally has

(6.11) S(q, a1, ak)� q1−1/k+ε.

7. The major arc contribution. Here we profit from our preceding
analysis. Indeed, the major arcs are small enough to be treated in a nearly
routine way. We define

(7.1) V(α) =
{
q−1S(q,A)I(α1 − a1/q1, α− ak/qk) (α ∈M),
0 (α ∈ m).

Let α ∈ M, suppose that s ≥ sk and observe the obvious inequality s ≥
3k + 2. Further we choose a1, q1 subject to (a1, q1) = 1, q1 ≤ 4Q and
|α1q1 − a1| ≤ 1/(4Q). Then, by (3.3) and (3.4) in combination with q =
[q1, qk] ≤ q1qk, one has |α1 − a1/q1| ≤ 1/(4q) and∣∣∣∣α− ak

qk

∣∣∣∣ ≤ 16k2Q3

4k2q1qkX k−2Y 2
≤ 1

4k2qXk−2Y
.

We now apply (3.4) and Lemma 3 to readily confirm that

f(α)−V(α)� Q2+ε (α ∈M)
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and then detect from (7.1) the crude estimate

(7.2)
�

M

|fs(α)−Vs(α)| dα� Q2+ε
�

U2

(|f(α)|s−1 + |V(α)|s−1) dα.

The definition of q, A1, Ak implies that (q, A1, Ak) = 1 and consequently
S(q,A) � q1−1/k+ε, by (6.11). With (6.10), this is used, in view of (7.1),
for the integral of |V(α)|s−1 to see that

(7.3)
�

U2

|V(α)|s−1 dα� Y s−1WZ

where

W =
∞∑
q1=1

∞∑
qk=1

q1qkq
(s−1)(ε−1/k),

Z =
∞�

0

∞�

0

dβ1 dβk
(1 + β1Y + βkXk−2Y 2)(s−1)/k

.

We proceed to estimate W and Z. First invoke the definition of q to verify
that

W �
∞∑
q1=1

∞∑
qk=1

q1qk

(
q1qk

(q1, qk)

)ε−3−1/k

=
∞∑
d=1

∞∑
r1,rk=1

(r1,rk)=1

r1rkd
2(r1rkd)ε−3−1/k

�
( ∞∑
d=1

dε−1−1/k
)( ∞∑

r=1

r−2
)2
� 1.

Next, observe that for u, v ≥ 0 one has (1+u+v)−1 ≤ (1+u)−1/2(1+v)−1/2,
whence, by (3.1), we obtain

Z �
∞�

0

dβ1

(1 + β1Y )
s−1
2k

∞�

0

dβk

(1 + βkXk−2Y 2)
s−1
2k

�
∞�

0

dβ1

(1 + β1Y )3/2

∞�

0

dβk
(1 + βkXk−2Y 2)3/2

� Y −1(Xk−2Y 2)−1 � X1−kY −1.

Inserted into (7.3), in conjunction with (3.3), (7.2) and Lemma 2, this en-
sures the provisional bound�

M

|fs(α)−Vs(α)| dα� X1−kY s−1−δ

where δ is a suitable positive constant, here and later. Furthermore, by (3.6),
we have

ρ(n,m, Y ; M) = ρ∗(n,m, Y ; M) +O(X1−kY s−1−δ)
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where

ρ∗(n,m, Y ; M) =
∑
q1≤4Q

∑
qk≤Q

q1∑
a1=1

(a1,q1)=1

qk∑
ak=1

(ak,qk)=1

�

M(q,a)

Vs(α)e(α) dα

and

M(q,a) =
{
α1 : |α1 − a1/q1| ≤

1
4q1Q

}
×
{
α : |α− ak/qk| ≤

Q

X k−2Y 2

}
.

Now we define

S(q1, qk) =
q1∑

a1=1
(a1,q1)=1

qk∑
ak=1

(ak,qk)=1

(q−1S(q,A))se(a1/q1, ak/qk)

to rewrite ρ∗(n,m, Y ; M), with reference to (3.4) and (7.1), in the form of

ρ∗(n,m, Y ; M) = S∗(n,m)J∗(n,m)

where

S∗(n,m) =
∑
q1≤4Q

∑
qk≤Q

S(q1, qk),

J∗(n,m) =
Q/(Xk−2Y 2)�

−Q/(Xk−2Y 2)

1/(4q1Q)�

−1/(4q1Q)

I(β)se(β1, βk) dβ1 dβk.

For the completion of S∗(n,m), we introduce the singular series

(7.4) S(n,m) =
∞∑
q1=1

∞∑
qk=1

S(q1, qk)

and infer, as before, from (6.11) that

S(n,m) =
∞∑
d=1

∞∑
r1,rk=1

(r1,rk)=1

r1rkd
2

(r1rkd)3+2/k−ε(7.5)

�
( ∞∑
d=1

dε−1−2/k
)( ∞∑

r=1

r−2
)2
� 1.

Hence, S(n,m) is absolutely convergent, uniformly in n, m, and thus we
have

S(n,m)−S∗(n,m)�
∑
q1≥1

∑
qk≥Q

q1qkq
ε−s/k +

∑
q1≥4Q

∑
qk≥1

q1qkq
ε−s/k

�
∞∑
d=1

dε−1−2/k

(
d

Q

)1/k( ∞∑
r=1

r1/k−2
)2
� Q−1/k.
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In just the same manner, we complete J∗(n,m) and write the singular
integral

(7.6) J(n,m) =
� �

R2

I(β)se(β1, βk) dβ1 dβk.

By (6.10), we then reach the auxiliary bounds

J(n,m)� Y s
∞�

0

dβ1

(1 + β1Y )3/2

∞�

0

dβk
(1 + βkXk−2Y 2)3/2

� Y s−1X1−k

and

J(n,m)− J∗(n,m)� Y s
∞�

(16Q2)−1

dβ1

(1 + β1Y )3/2

∞�

0

dβk
(1 + βkXk−2Y 2)3/2

+ Y s
∞�

0

dβ1

(1 + β1Y )3/2

∞�

Q/Xk−2Y 2

dβk
(1 + βkXk−2Y 2)3/2

� Y s−1−1/6X2−kY −2 � X1−kY s−1−1/6.

Finally, on collecting together, we may conclude that

(7.7) ρ(n,m, Y ; M) = S(n,m)J(n,m) +O(X1−kY s−1−δ).

8. The singular integral. Here, the expression in (7.6) is calculated;
it turns out that this will produce the bulk of the main term on the right
hand side of (1.4). As a first step, we derive from (6.4) that

J(n,m) = Y s
� �

R2

( 1�

−1

e(β1Y γ + βkF (Y γ)) dγ
)s
e(β1, βk) dβ1 dβk,

whence the substitution β1  Y β1, βk  Xk−2Y 2βk reveals that

(8.1) J(n,m) = X2−kY s−3
� �

R2

�

[−1,1]s

e(β1u(γ) + βkv(γ)) dγ dβ1 dβk

where

u(γ) =
s∑
i=1

γi −
m

Y
and v(γ) =

s∑
i=1

F (Y γi)
Xk−2Y 2

− n− sXk − kXk−1m

Xk−2Y 2
.

Now, for γ = (γ1, . . . , γs) ∈ [−1, 1]s, we shall examine the equations

(8.2) u(γ) = v(γ) = 0,

which, by the definition of F , can also be read as
s∑
i=1

(X + Y γi) = sX +m,

s∑
i=1

(X + Y γi)k = n.
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From these we extract the relation(
k

2

)
Xk−2Y 2

s∑
i=1

γ2
i = n− sXk − kXk−1m−

s∑
i=1

k∑
j=3

(
k

j

)
Xk−jY jγji

and thus the asymptotics
s∑
i=1

γ2
i =

n− sXk − kXk−1m(
k
2

)
Xk−2Y 2

±O
(
Y

X

)
.

But (2.1) implies kXk−1 ≤ n− sXk− kXk−1m ≤ k(c+ 1)Xk−1 and ensures
the inequalities

X

kY 2
− 1

4
≤

s∑
i=1

γ2
i ≤

2(c+ 1)X
Y 2

+
1
4

for all large n. Since c ≥ 4, this shows with (3.1) that |
∑s

i=1 γ
2
i | ≤ 1 for

sufficiently large n, whence γ ∈ [−1, 1]s. (Observe that this is not necessarily
the case if Y = o(

√
X) and that, indeed, only here is the strong restriction on

Y needed.) Hence, (8.2) defines an s− 2-dimensional subspace L ⊂ [−1, 1]s

with positive volume. Then applying Fourier’s formula

lim
R→∞

R�

−R
V (t)e(tλ) dλ = V (0)

twice to the integral in (8.1), and recalling (3.1), we obtain

(8.3) J(n,m) = X2−kY s−3
�

L

dL� X1−kY s−1.

9. The singular series. To examine the singular series (7.4) it is useful
to study its close connection to Mn,m(q) that counts the number of solutions
of the congruences

F (x1) + · · ·+ F (xn) ≡ n− sXk − kXk−1m mod q,
x1 + · · ·+ xn ≡ m mod q,

subject to 1 ≤ xj ≤ q for 1 ≤ j ≤ s. In fact, if we note that q−1S(q, A1, Ak) =
(q1, qk)−1S(q1qk, a1, ak) for q = [q1, qk], then, by the proof of Lemma 8 of
Arkhipov [1] with minor changes, one may readily confirm that for s >
k(k + 1)/2 + 1, this yields

S(n,m) = lim
t→∞

Mn,m(t!)(t!)2−s.

Moreover, by his Lemma 9, we have

(9.1) S(n,m) =
∏
p

ϕp with ϕp = lim
t→∞

Mn,m(pt)pt(2−s).
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Since S(n,m) converges absolutely, we now deduce from (9.1), in the same
manner as in the proof of Theorem 2.4 of Vaughan [4], that there is a positive
number p0 = p0(k) with

(9.2)
1
2
<
∏
p>p0

ϕp <
3
2
.

To check that S(n,m) > 0, it suffices therefore to establish that there
are a constant c together with an integer m as in (2.1) and for any prime
number p ≤ p0 some u = u(p) < ∞ such that for all t ≥ u and s ≥ sk, one
has

(9.3) Mn,m(pt) ≥ p(t−u)(s−2).

To see this, we apply the definition of Mn,m(q) and (6.2) to find by a simple
transformation that Mn,m(q) counts the number of solutions of the system

yk1 + · · ·+ yks ≡ n mod q,(9.4)

y1 + · · ·+ ys ≡ m+ sX mod q,(9.5)

subject to 1 ≤ yj ≤ q for 1 ≤ j ≤ s. By Lemmas 2.13 and 2.15 of Vaughan [4],
we may find for any prime number p some u = u(p) <∞ such that (9.4) has
at least p(t−u)(s−1) solutions modulo pt for all t ≥ u and s ≥ sk. Hence, on
rearranging the variables if necessary, there is also a solution a = (a1, . . . , as)
for which (as a p-adic number) ak−1

1 6= ak−1
2 . But the Chinese remainder

theorem provides an integer m of the form (2.1) such that a is a solution of
both (9.4) and (9.5) for all p ≤ p0. From this the assertion now follows in
the same manner as in the proof of Lemma 6.7, case (a) of Wooley [5].

Finally, by (7.5), (9.1), (9.2) and (9.3), there are integers c and m as in
(2.1) such that for all s ≥ sk, we have

(9.6) 1� S(n,m)� 1.

10. Proof of the Theorem: Conclusion. Let s ≥ sk. Then, on com-
bining (4.5) and Lemma 2, we may infer from (3.6) that

ρ(n,m, Y ; m)� sup
α∈m
|f(α)|

�

U2

|f(α)|s−1 dα� X1−kY s−1−1/(3sk−1)+ε.

Together with (3.7), (7.7), (8.3) and (9.6), this ensures the desired lower
bound for rk,s(n, Y ).
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