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1. Introduction. Let S = {p1, . . . , pm,∞} be a finite set of places of Q,
including the archimedean one. The ring of S-integers is given by

OS = {y ∈ Q : |y|p ≤ 1 ∀p 6∈ S}.
Its multiplicative subgroup O∗S consists of the S-units, i.e. those elements
of OS whose p-adic absolute value equals 1 for all p 6∈ S. Given a smooth
projective algebraic variety X over Q, and a smooth hypersurface D ⊂ X
defined by a form F ∈ Z[x1, . . . , xn], we say that x = (x1, . . . , xn) ∈ X is a
(D,S)-integral point, or an S-integral point with respect to D, if F (x) 6≡ 0
(mod p) for all p 6∈ S. We are interested in the asymptotic behaviour of the
counting function

N (P ) = #{(x, Y ) ∈ (Znprim ∩ PB)×O∗S : F (x) = Y }

for (D,S)-integral points of bounded height in the case where X = Pn−1

and F is a quadratic form. Here P is a real parameter that tends to infinity,
points in projective space are represented by primitive integral tuples, and
B is some n-dimensional hyperrectangle in Rn centred at the origin. In this
form the problem corresponds to the degree two case of a question raised
by Tschinkel [5, Problem 5.6].

Before we can give a precise statement of our main result, it is neces-
sary to introduce some notation. We write F for the matrix of F given by
F (x) = 1

2x
TFx, and letM be a real orthogonal matrix that diagonalises F .

Accordingly, we choose B such that the edges of MTB are parallel to the
coordinate axes. The set Λ shall consist of all primes p such that p | 2 detF
but p 6∈ S. We let ∆ be the set of all m + 1-tuples δ with entries in {0, 1},
and write pδ = (−1)δ0pδ11 · · · pδmm for short. For a given prime p ∈ Λ∪ S and
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δ ∈ ∆ we define t by pt ‖ 2pδ. Finally, recall that for fixed F a place is called
(an)isotropic if F does (not) represent zero non-trivially over the induced
completion of Q.

Theorem 1.1. Let F , B and S be given. Assume that F is indefinite
and n ≥ 4. Then N (P ) = 0 if for all δ ∈ ∆ there exists p ∈ Λ such that

(1) F (x) ≡ pδ (mod p2t+1)

has no solution. If there exists δ ∈ ∆ such that the congruence is soluble for
all p ∈ Λ, then

(2) N (P ) ∼ cPn−2(logP )l as P →∞,
where c is some positive constant and l is the number of non-archimedean
isotropic places in S.

We attack the problem of counting the zeros of Q(x, Y ) = F (x) − Y
via the Hardy–Littlewood circle method. For non-zero integers N , it is a
classical problem to find the number RB(P ;N) of zeros x ∈ PB of Q(x, N).
Indeed, the theorem below can be proved using Kloosterman’s refinement
of the circle method (see e.g. [4]).

Theorem 1.2. For any C > 0 one has

RB(P ;N) = IB(P ;N)S(N) +O(Pn−2(logP )−C),

where

(3) IB(P ;N) = Pn−2
∞�

−∞

�

B

e(zQ(x, N/P 2)) dx dz

and

S(N) =
∞∑
q=1

q−n
q∑

a=1
(a,q)=1

∑
x (mod q)

eq(aQ(x, N))

are the usual singular integral and singular series, respectively. The singu-
lar integral is convergent for all N ∈ Z, and the singular series converges
absolutely.

Since numbers representable by F (x) with x ∈ PB have size O(P 2) and
there are � (logP )m such S-units (by the integrality of F we may assume
henceforth that Y is restricted to values in O∗S ∩ Z), we obtain

(4) N (P ) =
∑
Y�P 2

IB(P ;Y )S(Y ) +O(Pn−2(logP )−1).

This leads us to analyse the behaviour of the singular integral and series
with respect to changing Y . The key observation is that if p ∈ S and F is
anisotropic over Qp, then the local density for p tends to zero as the power pr

dividing Y increases. Conversely, if F is isotropic, i.e. represents 0, over Qp,
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then the corresponding local density converges to a positive constant as r
grows. This is not surprising since as the power of p dividing Y increases,
the p-adic size of Y approaches zero.

The proof of Theorem 1.1 is completed in Section 4. By summing over
the S-units as indicated above, the factors of logP in (2) are generated. It
should be noted that l = m if n ≥ 5 since any quadratic form in at least
five variables is isotropic over all Qp. If n = 4 this is no longer true, and
due to vanishing local densities any number of factors of logP may fail to
occur. The exact shape of c will become apparent and we obtain an error
O(Pn−2(logP )l−1 log logP ) in the asymptotic formula.

One should contrast Theorem 1.1 with the case of (positive) definite F
(and k < 0). It is well-known that the total number of integral representa-
tions of a positive integer N by F is given by

(5)
(2π)n/2

Γ (n/2)
√

detF
S(N)Nn/2−1 +O(N (n−1)/4+ε)

as N → ∞. On using this formula in Section 4, the reader can convince
themselves that now N (P ) � Pn−2(logP )l−1 if (1) has a solution for all
p ∈ Λ and l ≥ 1. If l = 0 however, the singular series tends to zero. In fact,
it dwindles rapidly enough to neutralise the growth of the singular integral,
leaving us with an error term only for N (P ). Indeed, since for anisotropic p
the form F does not represent the integer N if the greatest power of p
dividing N is � 1, one easily sees that N (P ) is constant for all sufficiently
large P . Curiously, this constant may be zero as is illustrated by the example

3(x2
1 + x2

2) + 14(x2
3 + x2

4)− 7r = 0.

There are no integral solutions to this equation although (1) is soluble for
p = 2, 3 when r = 0.

Lastly, we should note that almost everything done below goes through
as soon as n ≥ 3. Furthermore, at least since the work by Duke [2] and
Iwaniec [3] on modular forms of half-integral weight it has been conjectured
that Theorem 1.2 also holds when n = 3. We will see in Section 3 that in
this case the singular series is essentially a Dirichlet L-function evaluated
at s = 1, which diverges if and only if the character involved is principal.
However, the singular series is originally a finite sum truncated at P , so that
a simple pole at s = 1 would lead to an extra factor of logP in (2).

Conjecture 1.3. Let F , B and S be given. Assume that F is indefinite
and n = 3. Then N (P ) = 0 if for all δ ∈ ∆ there exists p ∈ Λ ∪ S such
that (1) has no solution. If there exists δ ∈ ∆ such that (1) is soluble for all
p ∈ Λ ∪ S, then

N (P ) ∼ cPn−2(logP )l, c > 0,
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if −2pδ detF is not a perfect square for all such δ, and

N (P ) ∼ cPn−2(logP )m+1, c > 0,

otherwise.

Subject to the circle method succeeding, what we have said above in
principle also applies to higher degree forms. Our observations highlight the
dependence of the asymptotic behaviour of N (P ) on the arithmetic of F .

Throughout we shall use ε to represent any positive real number. No
importance is attached to its exact size. Indeed, we allow different instances
of ε to take different values. Implicit constants in big-O and � notation
may depend upon F , B, S and ε.

2. The singular integral. Our first result shows that IB(P ;Y ) is well-
approximated by IB(P ; 0) whenever Y = o(P ), and allows us to infer that
the singular integral is of order of magnitude O(Pn−2) for all Y � P 2.

Lemma 2.1. We have

IB(P ;Y ) = IB(P ; 0) +O(Pn−2((|Y |/P 2)(n−2)/5 + (|Y |/P 2)1/5)).

Proof. On writing

IB(P ;Y )− IB(P ; 0) = Pn−2
∞�

−∞

�

B

e(zF (x))(e(zY )− 1) dx dz

we see that the part of the integration for which |z| < R := (|Y |/P 2)−2/5 is

�
�

|z|<R

|e(z(Y/P 2))− 1| dz � |Y |
P 2

�

|z|<R

|z| dz � (|Y |/P 2)1/5.

Next we note that
b�

a

e(zv2) dv � |z|−1/2

uniformly in a, b ∈ R. This follows from observing that the integral over the
range [−|z|−1/2, |z|−1/2]∩ [a, b] is trivially� |z|−1/2, whence we may assume
without loss of generality that |z|−1/2 ≤ a < b. We then have

b�

a

e(zv2) dv =
b�

a

4πizv e(zv2)
1

4πizv
dv � |z|−1/2

by partial integration. Therefore the contribution from |z| > R to IB(P ;Y )
is, after diagonalising F via the substitution x 7→ Mx,

� (|Y |/P 2)(n−2)/5.

The same applies for IB(P ; 0).
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The lemma above is complemented by the one below. Together they show
that the singular integral is positive if Y = o(P ) and P is sufficiently large.

Lemma 2.2. Let B be centred at a non-singular zero of F and sufficiently
small. Then

IB(P ; 0) = HBP
n−2

for some positive constant HB.

Proof. This can be proved by an application of the implicit function
theorem followed by an instance of Fourier inversion (compare for example
Chapter 16 of [1]). In this context one only needs to note that any non-trivial
zero x ∈ B of F is necessarily non-singular.

3. The singular series. We begin our investigation of the singular
series by performing the usual analysis which shows that it has an Euler
product whose factors, the local densities

σ̂p(Y ) =
∞∑
h=0

p−hn
ph∑
a=1

(a,p)=1

∑
x (mod ph)

eph(aQ(x, Y )),

can be expressed via the number of solutions to certain congruences. Sub-
sequently we will see when the singular series vanishes and how it behaves
with respect to changing Y .

Lemma 3.1. We have

S(Y ) =
∏
p

σ̂p(Y ).

Proof. For coprime integers r and s it is elementary to verify the multi-
plicative property

S0(rs,0) = S0(r,0)S0(s,0).

Together with the absolute convergence of the σ̂p(Y ) this proves that the
Euler product representation of S(Y ) is valid.

A standard argument shows that the local densities satisfy

σ̂p(Y ) = lim
l→∞

p(1−n)l#M̂(Y, pl),

where
M̂(Y, pl) = {x (mod pl) : F (x) ≡ Y (mod pl)}.

This implies that the arithmetic functions σ̂p, and thus S, map into the
non-negative real numbers.

Any S-unit is of the form Y = pr11 · · · prmm . Thus we shall say that Y is of
type δ if

((sign(Y )− 1)/2, r1, . . . , rm) ≡ δ (mod 2).
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For a given prime p we define τ to be the integer that satisfies pτ ‖ 2Y . Since
there is a bijection from M̂(Y, pl) to M̂(pδp2k, pl), where k = bτ/2c if p is
odd and k = b(τ − 1)/2c if p = 2, the cardinality of M̂(Y, pl) depends only
on δ, k and l. We shall make this explicit in our notation by setting

Mp(δ, k, l) = M̂(pδp2k, pl) and σp(δ, k) = σ̂p(pδp2k).

Now Euler’s identity F (x) = 1
2x.∇F (x) shows that for any x ∈ Mp(δ, k, l)

with l > τ we have ph ‖∇F (x) for some h ∈ {0, . . . , τ}. Therefore each
x ∈ Mp(δ, k, l) falls into one of min(τ + 1, l + 1) disjoint sets Mh

p (δ, k, l)
according to which

h ∈
{ {0, . . . , l − 1,∞} if l ≤ τ ,
{0, . . . , τ} if l > τ ,

satisfies ph ‖∇F (x).

Lemma 3.2. If h 6=∞ and l ≥ 2h+ 1, then

#Mh
p (δ, k, l + 1) = pn−1#Mh

p (δ, k, l).

Proof. It is clear that the two sets Mh
p (δ, k, l + i), i ∈ {0, 1}, can be

partitioned into equivalence classes Eia according to the reduction a of their
elements mod pl−h. More precisely, as a disjoint union we have

Mh
p (δ, k, l + i) =

⋃
a∈Ai

Eia

where

Eia = {x ∈Mh
p (δ, k, l + i) : x ≡ a (mod pl−h)},

Ai = {a (mod pl−h) : ∃x ∈Mh
p (δ, k, l + i) such that a ≡ x (mod pl−h)}.

First we shall show that

(6) #E0
a = phn ∀a ∈ A0.

To see this fix an a ∈ A0 and choose an element x ∈ E0
a. Now let y be

any element (mod pl) with y ≡ a (mod pl−h). We can uniquely write y =
x + pl−hz with z ∈ {0, . . . , ph − 1}n. By linearity we have

∇F (y) = ∇F (x) + pl−h∇F (z),

so that ph ‖∇F (x) implies

(7) ph ‖∇F (y).

Hence by Taylor-expanding we also have

F (y) ≡ F (x) + plz
∇F (x)
ph

+ p2(l−h)F (z) (mod pl)(8)

≡ F (x) ≡ pδp2k (mod pl),
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which together with (7) shows that y ∈ E0
a. Since there are phn possible y,

equation (6) holds.
Next we note that A1 ⊆ A0. To see this, let a ∈ A1. Then there exists an

x ∈Mh
p (δ, k, l+ 1) such that x ≡ a (mod pl−h). If we define y = x (mod pl)

we have x = y + plz for some z ∈ {0, . . . , p − 1}, whence the linearity of
∇F (x) gives ph ‖∇F (y). It is now easily seen that y ∈Mh

p (δ, k, l) and that
y ≡ a (mod pl−h). Therefore a ∈ A0.

Finally we prove that

(9) #E1
a = phn+n−1 ∀a ∈ A0.

Fix an a ∈ A0 and consider any element y (mod pl+1) with y ≡ a (mod pl−h).
We uniquely write y = a + pl−hz with z ∈ {0, . . . , ph+1 − 1}n. From (6) it
follows that a ∈ E0

a, which combined with the linearity of ∇F (y) shows that
ph ‖∇F (y). Moreover, we can expand

F (y) ≡ F (a) + plz
∇F (a)
ph

+ p2(l−h)F (z) (mod pl+1).

Now F (a) = pδp2k + tpl for some t ∈ Z since a ∈Mh
p (δ, k, l), so that

F (y) ≡ pδp2k (mod pl+1)

if and only if

t+ z
∇F (a)
ph

≡ 0 (mod p).

In the last congruence above, z is a solution if and only if z (mod p) takes one
of exactly pn−1 values since ph ‖∇F (a), giving a total of phn+n−1 possible
solutions z.

Now equation (9) implicitly gives the inclusion A0 ⊆ A1, so that

#Mh
p (δ, k, l + 1) =

∑
a∈A1

#E1
a = #A0phn+n−1

= pn−1#A0#E0
a = pn−1

∑
a∈A0

#E0
a = pn−1#Mh

p (δ, k, l),

as claimed.

Corollary 3.3. We have

σp(δ, k) = p1−n
τ∑
h=0

p−2h(n−1)#Mh
p (δ, k, 2h+ 1).

Proof. This follows immediately from the lemma.

If p 6∈ S, then τ is fixed, and the corollary implies that σ̂p(Y ) = σp(δ, 0)
only depends on the type of Y . Furthermore, it transpires that for p ∈ Λ the
local density σp(δ, 0) is positive if the congruence (1) is soluble. If p 6∈ Λ∪S,
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then τ = 0 and there is the classical identity∑
x (mod p)

ep(aF (x)) = pn/2εnp

(
2n detF

p

)
, εp =

{
1 if p ≡ 1 (mod 4),
i if p ≡ 3 (mod 4),

for the quadratic Gauss sum when (2a detF , p) = 1. Therefore

Mp(δ, 0, 1) = pn−1 + pn/2−1εnp

(
detF
p

) p−1∑
a=1

(
2a
p

)n
ep(−apδ),

which by Corollary 3.3 yields

σp(δ, 0) =


1− p−n/2εnp

(
detF
p

)
if n is even and ≥ 2,

1 + p(1−n)/2εn+1
p

(
−2pδ detF

p

)
if n is odd.

This shows that

(10) Lδ =
∏
p 6∈S

σ̂p(Y )

is a non-negative constant only dependent on the type of Y if n ≥ 4. It
is zero if and only if the congruence (1) does not have a solution for some
p ∈ Λ. With regard to our conjecture we observe that if n = 3, then

Lδ =
L(1, χ)
L(2, χ2)

∏
p 6∈S

σ̂p(Y )
1 + χ(p)p−1

equally depends only on the type of Y . Here χ is the Dirichlet character
given by χ(p) = (−2pδ detF/p); it is principal if and only if −2pδ detF is a
square. Moreover, if (1) is soluble for all p ∈ Λ∪S, then the quadratic form
f(x1, . . . , x4) = F (x) − pδx2

4 is isotropic over all Qp by Lemma 3.2. When
this coincides with χ being principal, then for any prime p Hasse’s invariant
εp(f) must satisfy

(11) εp(f) = (−1,−1)p,

where (·, ·)p is the Hilbert symbol relative to Qp. Because of the identities
εp(f) = εp(F )(−pδ, 2 detF) and

(−1,−1)p(−pδ, 2 detF)p(−1,−2 detF)p = (pδ,−2pδ detF) = 1,

equation (11) is equivalent to εp(F ) = (−1,−2 detF)p, which in turn implies
that F is isotropic over Qp.

If p ∈ S, then τ may grow with P . Subject to existence we define

ρp = lim
k→∞

σp(δ, k),

whose key properties are summarised as follows.
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Theorem 3.4. The limit ρp exists, is non-negative and independent of δ,
satisfies

(12) ρp − σp(δ, k)� p−k,

and equals zero if and only if F is anisotropic over Qp.

Proof. Let us write

Shp = {x (mod p2h+1) : F (x) ≡ 0 (mod p2h+1) ∧ ph ‖∇F (x)}.
Since F is non-singular, one has

#Shp ,#M
h
p (δ, k, 2h+ 1) ≤ #{x (mod p2h+1) : ph | ∇F (x)} � phn.

So setting

ρp = p1−n
∞∑
h=0

p−2h(n−1)#Shp

gives
ρp − σp(δ, k)�

∑
h>τ/2

p−2h(n−1)+hn � p−k.

It is also clear now that ρp = 0 if F is anisotropic over Qp since any element
of Shp can be lifted to a non-trivial p-adic zero by Lemma 3.2. If F does rep-
resent zero p-adically, then there exists a zero x ∈ Znp of F with ph ‖∇F (x)
for some integer h. Therefore x ∈ Shp , and ρp must be positive.

4. Proof of Theorem 1.1. Without loss of generality we assume from
now on that p1, . . . , pl are isotropic and pl+1, . . . , pm anisotropic. In the latter
case we let

(13) θi(δ) =
∞∑
s=0

σpi(δ, s).

These series are convergent by Theorem 3.4. They are also positive since
F (x) = pδ has a solution over all p-adic fields. So if p = pi, then multiplying
such a solution by psi

i for a sufficiently large si gives rise to an element of
the set Mpi(δ, si, 4(si + 1)), from which one deduces that σpi(δ, si) > 0.

Let N ∗(P ) be the counting function obtained by omitting the require-
ment that x is primitive from the definition of N (P ). Since

N (P ) =
∑
Y

µ(Y )N ∗(P/Y ),

an instance of Möbius inversion shows that it suffices to consider N ∗(P ). In
analogy with (4) we have

N ∗(P ) =
∑
δ∈∆

∑′

Y�P 2

IB(P ;Y )S(Y ) +O(Pn−2K−1),

where the prime indicates that Y is of type δ, and K = logP .
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By initially considering only that part of the summation which has |Y | ≤
P 2K−5m, we will be able to take advantage of Lemma 2.1. This lemma is
fruitful only in combination with Lemma 2.2, whose requirements may not
be satisfied by B. It is clearly possible though to choose some n-dimensional
box B0 ⊂ B that does satisfy the conditions of the lemma. One can then
partition B into a finite number of equally oriented n-dimensional boxes
B0, B1, . . . , Bg which may or may not contain some or all of their faces.
(Note that the absence of faces from the boxes Bi is irrelevant with regard
to the results proved in Section 2, as the faces are nullsets in Rn.) We obtain∑′

Y≤PK−5m

IB(P ;Y )S(Y ) =
∑′

Y≤PK−5m

g∑
i=0

IBi(P ; 0)S(Y ) +O(Pn−2K−1)

since S(Y )� 1 by (10). The definition of the singular integral in (3) shows
that

IBi(P ; 0) = HBiP
n−2

for some constant HBi . In addition, HBi must be real and non-negative. For
otherwise Theorem 1.2 applied to N = pδp2k1

1 · · · p2kl
l p

2sl+1

l+1 · · · p
2sm
m , where

the si are fixed and defined as above and the ki tend to infinity with P ,
would, in combination with the resulting positivity of the singular series
and Lemma 2.1, imply that there is a complex or negative number of zeros
x ∈ PBi of Q(x, N). Furthermore, H0 > 0 since B0 fulfils the conditions of
Lemma 2.2. Therefore our summation becomes

(14) HPn−2
∑′

|Y |≤P 2K−5m

S(Y ) +O(Pn−2K−1),

where H = H0 + · · ·+Hg is a positive constant. Now let us write

σ1(Y ) = σ̂p1(Y ) · · · σ̂pl
(Y ) and σ2(Y ) = σ̂pl+1

(Y ) · · · σ̂pm(Y ).

Then the summation in (14) is

Lδρp1 · · · ρpl

∑′

|Y |≤P 2K−5m

σ2(Y ) +O
( ∑′

Y≤P 2K−5m

|σ1(Y )− ρp1 · · · ρpl
|σ2(Y )

)
,

where the error term is due to the convergence of the series (13) bounded
by ∑

k1,...,kl�K
|σp1(δ, k1) · · ·σpl

(δ, kl)− ρp1 · · · ρpl
| � K l−1 logK.

The final estimate above follows from splitting the summation according to
whether or not ki ≥ logK for all i = 1, . . . , l, and then using the approxi-
mation (12). We have shown that (14) is equal to

HLδρp1 · · · ρpl
Pn−2

∑′

|Y |≤P 2K−5m

σ2(Y ) +O(Pn−2K l−1 logK).
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In what follows, we use the decomposition Y = Y1Y2 into factors Y1 > 0
and Y2 which contain the isotropic and anisotropic prime factors of Y re-
spectively. With this notation we can write the summation over the Y as

(15)
∑′

Y1≤P 2K−5m

∑′

Y2

σ2(Y )−
∑′

Y1≤P 2K−5m

∑′

|Y2|>P 2K−5mY −1
1

σ2(Y ),

where the primes indicate that Y1 is of type (δ1, . . . , δl) and similarly for Y2.
Since the final summation above is bounded by

�
∑

|Y2|>P 2K−5mY −1
1

|Y2|−1 �
(

P 2

K5mY1

)−1/2∑
Y2

|Y2|−1/2 �
(

P 2

K5mY1

)−1/2

,

we have ∑′

Y1≤P 2K−5m

∑′

|Y2|>P 2K−5mY −1
1

σ2(Y )� P−1K5m/2
∑

Y1≤P 2K−5m

Y
1/2
1 .

Now the sum above is � PK−5m/2 if l > 0 and equal to 1 otherwise.
Therefore ∑′

|Y |≤P 2K−5m

σ2(Y ) = θl+1(δ) · · · θm(δ)
∑′

Y1≤P 2K−5m

1 +O(K l−1),

and it only remains to note that the l-dimensional pyramid given by the
equations

ki ≥ 0, i = 1, . . . , l, and pδ1+2k1
1 · · · pδl+2kl

l ≤ P 2K−5m

has volume
1
l!

l∏
i=1

K

log pi
+O(K l−1 logK).

Via (15) and (14) we conclude that the contribution from |Y | ≤ P 2K−5m

to N ∗(P ) is given by

HLρp1 · · · ρpl

l! log p1 · · · log pl
Pn−2K l +O(Pn−2K l−1 logK),

where we set L =
∑

δ∈∆ Lδθl+1(δ) · · · θm(δ).
Lastly, we need to consider the contribution from all S-units whose mod-

ulus is greater than P 2K−5m. By the results of the previous two sections
this contribution clearly is

� Pn−2
∑

Y1≤PK−6m

∑
Y2≥Km

σ2(Y ) +O(Pn−2K l−1 logK)� Pn−2K l−1 logK

since the sum over all Y2 ≥ Km is of size O(K−1) by Theorem 3.4.
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If for all δ ∈ ∆ there exists a prime p ∈ Λ such that (1) has no solution,
then obviously N (P ) = 0. Otherwise L > 0, and Theorem 1.1 holds with

c =
HLρp1 · · · ρpl

l! log p1 · · · log pl

∏
p∈S

(1− p2−n),

where the product over the p ∈ S stems from a Möbius inversion.
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