Independence results for pattern sequences in distinct bases

by
Yohei Tachiya (Yokohama)

1. Introduction and results. Let $q \geq 2$ be an integer. Then any positive integer n has a unique representation of the form

$$
\begin{equation*}
n=\sum_{i=0}^{k} a_{i} q^{i}, \quad a_{i} \in \Sigma_{q}:=\{0,1, \ldots, q-1\}, \quad a_{k}>0 . \tag{1}
\end{equation*}
$$

We denote by Σ_{q}^{*} the set of all finite strings of elements in Σ_{q},

$$
\Sigma_{q}^{*}:=\left\{b_{l-1} b_{l-2} \cdots b_{0} \mid b_{i} \in \Sigma_{q}, l \geq 1\right\} .
$$

(Note that the set Σ_{q}^{*} does not contain the empty string.) For an integer $n \geq 1$ having the expression (1), the string of digits

$$
(n)_{q}:=a_{k} a_{k-1} \cdots a_{0} \in \Sigma_{q}^{*}
$$

is called the q-ary expansion of n. Let $w \in \Sigma_{q}^{*}$. We put $w^{l}=w \cdots w$ (l times). If $w=0^{l}$ for some $l \geq 1$, we say that w is a zero pattern; otherwise it is a nonzero pattern. We define $e_{q}(w ; n)$ to be the number of (possibly overlapping) occurrences of w in the q-ary expansion of an integer $n>0$. Here if w is a nonzero pattern, then in evaluating $e_{q}(w ; n)$ we assume that the q-ary expansion of n starts with an arbitrarily long string of zeros. On the other hand, if w is a zero pattern, then $w=0^{l}$ for some $l \geq 1$, and we just count the number of occurrences of w in the q-ary expansion of n. We set $e_{q}(w ; 0)=0$ for any $w \in \Sigma_{q}^{*}$. The resulting sequence

$$
\left\{e_{q}(w ; n)\right\}_{n \geq 0}
$$

is sometimes called the pattern sequence for the pattern $w \in \Sigma_{q}^{*}$ (cf. Allouche and Shallit [1]). We note that the value $e_{2}(1 ; n)$ coincides with the sum of the base-2 digits of n.

Uchida [11] gave necessary and sufficient conditions for algebraic independence over $\mathbb{C}(z)$ of generating functions of pattern sequences in one q-adic

[^0]number system. Recently, Shiokawa and the author [8] obtained similar results for pattern sequences in $\langle q, r\rangle$-number systems $(r=0,1, \ldots, q-2)$ with a fixed base q. Generating functions and their values defined by digital properties of integers have also been studied in [3], [7] and [9]. In the case of different bases, only special pattern sequences have been discussed; for example Toshimitsu [10] proved that for a given integer b the generating functions of the pattern sequences $\left\{e_{q}(b ; n)\right\}_{n \geq 0}(q=b+1, b+2, \ldots)$ are algebraically independent over $\mathbb{C}(z)$.

In this paper, for arbitrary given nonzero patterns $w_{q} \in \Sigma_{q}^{*}(q=2,3, \ldots)$ we prove the algebraic independence of the values of the generating functions

$$
\sum_{n \geq 0} e_{q}\left(w_{q} ; n\right) z^{n}, \quad q=2,3, \ldots
$$

which converge in $|z|<1$. Furthermore, we derive the algebraic independence over $\mathbb{C}(z)$ of the above generating functions. In particular, the latter implies the linear independence of the pattern sequences in distinct bases (Corollary 11).

Theorem 1. Let $w_{q} \in \Sigma_{q}^{*}(q \geq 2)$ be nonzero patterns and

$$
\begin{equation*}
f_{q}(z)=\sum_{n \geq 0} e_{q}\left(w_{q} ; n\right) z^{n}, \quad q=2,3, \ldots \tag{2}
\end{equation*}
$$

Then for any algebraic number α with $0<|\alpha|<1$, their values $\left\{f_{q}(\alpha)\right\}_{q \geq 2}$ are algebraically independent.

Theorem 2. The generating functions of the pattern sequences (2) are algebraically independent over $\mathbb{C}(z)$.

By Theorem 2, a nontrivial linear combination of the functions (2)

$$
c_{1} f_{2}(z)+c_{2} f_{3}(z)+\cdots+c_{m-1} f_{m}(z)
$$

over \mathbb{C} is not a rational function for $|z|<1$. Hence we obtain the following:
Corollary 1. Let $w_{q} \in \Sigma_{q}^{*}(q=2, \ldots, m)$ be $m-1$ nonzero patterns and $c_{1}, \ldots, c_{m-1} \in \mathbb{C}$ not all zero. Then the linear combination of the pattern sequences

$$
\left\{c_{1} e_{2}\left(w_{2} ; n\right)+c_{2} e_{3}\left(w_{3} ; n\right)+\cdots+c_{m-1} e_{m}\left(w_{m} ; n\right)\right\}_{n \geq 0}
$$

cannot be a linear recurrence sequence. In particular, the pattern sequences $\left\{e_{q}\left(w_{q} ; n\right)\right\}_{n \geq 0}(q=2,3, \ldots)$ are linearly independent over \mathbb{C}.

Example 1. Let $w=b_{l-1} b_{l-2} \cdots b_{0}$ be a nonzero pattern with $b_{i} \in$ $\{0,1\}$. Then the pattern sequences

$$
\left\{e_{2}(w ; n)\right\}_{n \geq 0}, \quad\left\{e_{3}(w ; n)\right\}_{n \geq 0}, \ldots,\left\{e_{m}(w ; n)\right\}_{n \geq 0}, \ldots
$$

are linearly independent over \mathbb{C}. For example, the sequences $\left\{e_{2}(10 ; n)\right\}_{n \geq 0}$, $\left\{e_{3}(10 ; n)\right\}_{n \geq 0}$, and $\left\{e_{4}(10 ; n)\right\}_{n \geq 0}$ which are defined by the number of 10 's
appearing in the dyadic, 3 -ary, and 4 -ary expansions of n, respectively, are linearly independent over \mathbb{C}.

On the other hand, within one fixed number system, the generating functions can be algebraically dependent over $\mathbb{C}(z)$.

Example 2 (Shiokawa and Tachiya [8]). In the usual dyadic expansion, we consider the generating functions

$$
f_{1}(z)=\sum_{n \geq 0} e_{2}(01 ; n) z^{n}, \quad f_{2}(z)=\sum_{n \geq 0} e_{2}(10 ; n) z^{n} .
$$

Then the sequence $\left\{e_{2}(01 ; n)-e_{2}(10 ; n)\right\}_{n \geq 0}=\{0,1,0,1, \ldots\}$ is periodic, and so

$$
f_{1}(z)-f_{2}(z)=\frac{z}{1-z^{2}}, \quad|z|<1 .
$$

Example 3. Let $w \in \Sigma_{q}^{*}$. By the definition of $e_{q}(w ; n)$, we have

$$
e_{q}(w ; n)=\sum_{b=0}^{q-1} e_{q}(b w ; n) .
$$

Therefore the pattern sequences $\left\{e_{q}(w ; n)\right\}_{n \geq 0},\left\{e_{q}(b w ; n)\right\}_{n \geq 0}(b=0,1, \ldots$ $\ldots, q-1)$ are linearly dependent over \mathbb{C}, and so are their generating functions.
2. Lemmas. In this section, we prepare some lemmas for proving Theorem 1. Fix an integer $q \geq 2$. For any nonzero pattern $w=b_{l-1} b_{l-2} \cdots b_{0}$ $\in \Sigma_{q}^{*}$ with $b_{i} \in \Sigma_{q}$, let $|w|$ denote the length l and put $\nu(w)=\sum_{k=0}^{l-1} b_{k} q^{k}$.

Lemma 1. Let $i \geq 1$ be an integer and $w \in \Sigma_{q^{i}}^{*}$ be a nonzero pattern. Then for any integer $d \geq 0$, we have

$$
e_{q^{i}}\left(w ; \nu(w) q^{d}\right)= \begin{cases}1, & i \mid d \\ 0, & \text { otherwise } .\end{cases}
$$

Proof. We put

$$
w=0^{l} a_{k} \cdots a_{0}, \quad a_{j} \in \Sigma_{q^{i}}, a_{k} \neq 0, k, l \geq 0 .
$$

Then $\nu(w)=\sum_{j=0}^{k} a_{j}\left(q^{i}\right)^{j}$ and $(\nu(w))_{q^{i}}=a_{k} \cdots a_{0}$. Let h and r be integers with

$$
\begin{equation*}
d=i h+r, \quad 0 \leq r<i . \tag{3}
\end{equation*}
$$

First we consider the case that d is divisible by i. Since $r=0$ in (3), the q^{i}-ary expansion of the integer $\nu(w) q^{d}$ is represented as

$$
\left(\nu(w) q^{d}\right)_{q^{i}}=\left(\nu(w) q^{i h}\right)_{q^{i}}=a_{k} \cdots a_{0} 0^{h}
$$

It is clear that $e_{q^{i}}\left(w ; \nu(w) q^{d}\right) \geq 1$. If $e_{q^{i}}\left(w ; \nu(w) q^{d}\right)>1$, we get $w=$ $a_{k-m} \cdots a_{0} 0^{l+m}$ for some integer m with $1 \leq m \leq k$. Then we have

$$
\begin{aligned}
\nu(w) & =a_{k-m} q^{i(k+l)}+a_{k-m-1} q^{i(k+l-1)}+\cdots+a_{0} q^{i(k+l-(k-m))} \\
& =q^{i(l+m)}\left(a_{k-m} q^{i(k-m)}+a_{k-m-1} q^{i(k-m-1)}+\cdots+a_{0}\right) \\
& =q^{i(l+m)}\left(\nu(w)-a_{k} q^{i k}-\cdots-a_{k-m+1} q^{i(k-m+1)}\right),
\end{aligned}
$$

so that $\left(q^{i(l+m)}-1\right) \nu(w) \equiv 0 \bmod q^{i(k+l+1)}$. Noting that the integers $q^{i(l+m)}-1$ and $q^{i(k+l+1)}$ are coprime, we get $\nu(w) \equiv 0 \bmod q^{i(k+l+1)}$, that is, $a_{j}=0$ for all $j=0,1, \ldots, k$. This is a contradiction and hence we obtain $e_{q^{i}}\left(w ; \nu(w) q^{d}\right)=1$.

Next we consider the case that d is not divisible by i. For the integer $r \geq 1$ defined in (3), we put

$$
\left(\nu(w) q^{r}\right)_{q^{i}}=b_{s} b_{s-1} \cdots b_{0} \in \Sigma_{q^{i}}^{*}, \quad b_{j} \in \Sigma_{q^{i}}, b_{s} \neq 0
$$

where $s=k, k+1$, since

$$
k+1=\left|(\nu(w))_{q^{i}}\right| \leq\left|\left(\nu(w) q^{r}\right)_{q^{i}}\right| \leq\left|\left(\nu(w) q^{i}\right)_{q^{i}}\right|=\left|(\nu(w))_{q^{i}}\right|+1=k+2 .
$$

Suppose on the contrary that $e_{q^{i}}\left(w ; \nu(w) q^{d}\right) \neq 0$, that is, the pattern w appears at least once in the q^{i}-ary expansion of $\nu(w) q^{d}$:

$$
\left(\nu(w) q^{d}\right)_{q^{i}}=\left(\nu(w) q^{r+i h}\right)_{q^{i}}=b_{s} b_{s-1} \cdots b_{0} 0^{h}
$$

Hence, as $b_{s} \neq 0$, the q^{i}-ary expansion of w must be of the form either

$$
\begin{equation*}
w=0^{l} b_{s} b_{s-1} \cdots b_{s-k} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
w=b_{s-m} b_{s-m-1} \cdots b_{s-m-(k+l)} \tag{5}
\end{equation*}
$$

for some integer m with $1 \leq m \leq s$, where we define $b_{j}=0$ for negative j. If the equality (4) is satisfied, we have

$$
\nu(w)=b_{s} q^{i k}+b_{s-1} q^{i(k-1)}+\cdots+b_{s-k}= \begin{cases}\nu(w) q^{r}, & s=k \\ q^{-i}\left(\nu(w) q^{r}-b_{0}\right), & s=k+1\end{cases}
$$

Since $1 \leq r<i$, in any case we can deduce a contradiction. On the other hand, if the case (5) holds, we get

$$
\begin{aligned}
\nu(w) & =b_{s-m} q^{i(k+l)}+b_{s-m-1} q^{i(k+l-1)}+\cdots+b_{s-m-k-l} \\
& =q^{i(k+l-(s-m))}\left(b_{s-m} q^{i(s-m)}+\cdots+b_{s-m-k-l} q^{i(s-m-k-l)}\right) \\
& =q^{i(k+l-(s-m))}\left(\nu(w) q^{r}-b_{s} q^{i s}-\cdots-b_{s-m+1} q^{i(s-m+1)}\right)
\end{aligned}
$$

so that $\left(q^{r+i(k+l-(s-m))}-1\right) \nu(w) \equiv 0 \bmod q^{i(k+l+1)}$. Since $r+i(k+l-$ $(s-m)) \geq 1$, we obtain $\nu(w) \equiv 0 \bmod q^{i(k+l+1)}$, which implies $a_{j}=0$ for all $j=0,1, \ldots, k$. This is a contradiction and the lemma is proved.

Let $m \geq 2$ be an integer. We set

$$
\begin{align*}
S & :=\left\{\left(k_{1}, \ldots, k_{m-1}\right) \in \mathbb{Z}_{\geq 0}^{m-1} \mid 0 \leq k_{j} \leq j-1, j=1, \ldots, m-1\right\} \tag{6}\\
S_{n} & :=\left\{\left(k_{1}, \ldots, k_{m-1}\right) \in S \mid k_{1}+\cdots+k_{m-1}=n\right\} \tag{7}
\end{align*}
$$

Lemma 2. For every integer $m \geq 2$, there exist integers d_{1} and d_{2} with $0 \leq d_{1}<d_{2} \leq m-1$ such that

$$
\sum_{\substack{n \geq 0 \\=d_{1} \bmod m}} \sharp S_{n} \neq \sum_{\substack{n \geq 0 \\ n \equiv d_{2} \bmod m}} \sharp S_{n},
$$

where $\sharp S_{n}$ is the number of elements of S_{n}.
Proof. We define

$$
f(x)=\frac{1}{(1-x)^{m-1}} \prod_{k=1}^{m-1}\left(1-x^{k}\right) \in \mathbb{Z}[x]
$$

Let ξ be a primitive m th root of unity. Then it is clear that $f(\xi) \neq 0$. Since the polynomial $f(x)$ is expressed as

$$
f(x)=(1+x)\left(1+x+x^{2}\right) \cdots\left(1+x+x^{2}+\cdots+x^{m-2}\right)=\sum_{n \geq 0}\left(\sharp S_{n}\right) x^{n},
$$

we have

$$
\begin{equation*}
f(\xi)=c_{0}+c_{1} \xi+\cdots+c_{m-1} \xi^{m-1} \tag{8}
\end{equation*}
$$

where

$$
c_{i}=\sum_{\substack{n \geq 0 \\ n \equiv i \bmod m}} \sharp S_{n}, \quad i=0,1, \ldots, m-1 .
$$

If $c_{i}=c_{j}$ for all i, j, then by (8) we get

$$
f(\xi)=c_{0}\left(1+\xi+\cdots+\xi^{m-1}\right)=0
$$

a contradiction.
Lemma 3 (Uchida [11]). Let $d \geq 2$ and $l \geq 1$ be integers. If $c(z) \in \mathbb{C}(z)$ satisfies the functional equation

$$
c(z)=c\left(z^{d}\right)+\frac{(1-z) a(z)}{1-z^{d^{l}}}, \quad a(z) \in \mathbb{C}[z]
$$

then there exists $b(z) \in \mathbb{C}[z]$ such that

$$
c(z)=\frac{(1-z) b(z)}{1-z^{d^{l-1}}}
$$

LEMMA 4 (Nishioka [5]). Let K be an algebraic number field and $d_{1}, \ldots, d_{t} \geq 2$ be integers with $\log d_{i} / \log d_{j} \notin \mathbb{Q}$ if $i \neq j$. Suppose that $f_{i, j}(z) \in K[[z]]\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)$ satisfy the functional equations

$$
f_{i, j}\left(z^{d_{i}}\right)=a_{i, j}(z) f_{i, j}(z)+b_{i, j}(z) \quad\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)
$$

where $a_{i, j}(z), b_{i, j}(z) \in K(z), a_{i, j}(0)=1$, and $f_{i, 1}(z), \ldots, f_{i, m_{i}}(z)$ are algebraically independent over $K(z)$ for each $i=1, \ldots, t$. If α is an algebraic number with $0<|\alpha|<1$, $a_{i, j}\left(\alpha^{d_{i}^{k}}\right) \neq 0(k \geq 0)$ and all $f_{i, j}(z)$ converge at $z=\alpha$, then the values

$$
f_{i, j}(\alpha) \quad\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)
$$

are algebraically independent.
Lemma 5 (Kubota [2], Loxton and van der Poorten [4]; see Nishioka [6]). Let $d \geq 2$ be an integer. Suppose that $g_{1}(z), \ldots, g_{n}(z) \in \mathbb{C}[[z]]$ are algebraically dependent over $\mathbb{C}(z)$ and satisfy the functional equations

$$
g_{i}\left(z^{d}\right)=g_{i}(z)+a_{i}(z), \quad a_{i}(z) \in \mathbb{C}(z), i=1, \ldots, n .
$$

Then there exist constants $c_{1}, \ldots, c_{n} \in \mathbb{C}$ not all zero such that

$$
c_{1} g_{1}(z)+\cdots+c_{n} g_{n}(z) \in \mathbb{C}(z)
$$

3. Proofs of Theorems 1 and 2, Define

$$
M=\left\{q \in \mathbb{N} \mid q \neq a^{n} \text { for any } a, n \in \mathbb{N}, n \geq 2\right\}
$$

Then

$$
\mathbb{N} \backslash\{1\}=\bigcup_{q \in M}\left\{q, q^{2}, \ldots\right\}=\left\{q^{j} \in \mathbb{N} \mid q \in M, j \geq 1\right\}
$$

Let $q_{1}, \ldots, q_{t} \in M$ be distinct integers, $w_{i, j} \in \Sigma_{q_{i}^{j}}^{*}\left(j=1, \ldots, m_{i}\right)$ be nonzero patterns, and

$$
f_{i, j}(z)=\sum_{n \geq 0} e_{q_{i}^{j}}\left(w_{i, j} ; n\right) z^{n} \quad\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)
$$

It is easily seen that $\log q_{i} / \log q_{j} \notin \mathbb{Q}$ if $i \neq j$. Then by Theorem 1 in [11] the functional equations

$$
f_{i, j}(z)=\frac{1-z^{q_{i}^{j}}}{1-z} f_{i, j}\left(z^{q_{i}^{j}}\right)+\frac{z^{\nu\left(w_{i, j}\right)}}{1-z^{q_{i}^{j\left|w_{i, j}\right|}}} \quad\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)
$$

are satisfied. Here, putting $F_{i, j}(z)=(1-z) f_{i, j}(z)$, we have

$$
F_{i, j}(z)=F_{i, j}\left(z^{q_{i}^{j}}\right)+z^{\nu\left(w_{i, j}\right)} \frac{1-z}{1-z^{q_{i}^{j\left|w_{i, j}\right|}}} \quad\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)
$$

and so
$F_{i, j}(z)=F_{i, j}\left(z^{q_{i}^{D_{i}}}\right)+\sum_{k=0}^{D_{i} / j-1} z^{q^{k j} \nu\left(w_{i, j}\right)} \frac{1-z^{q_{i}^{k j}}}{1-z^{q_{i}^{j\left|w_{i, j}\right|+k j}}} \quad\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)$,
where $D_{i}=\operatorname{lcm}\left(1, \ldots, m_{i}\right)$. Hence, if the functions $F_{i, 1}(z), \ldots, F_{i, m_{i}}(z)$ are algebraically independent over $\mathbb{C}(z)$ for each $i=1, \ldots, t$, then by Lemma 4 the values $F_{i, j}(\alpha)=(1-\alpha) f_{i, j}(\alpha)\left(1 \leq i \leq t, 1 \leq j \leq m_{i}\right)$ are algebraically
independent for any algebraic number α with $0<|\alpha|<1$. Therefore, to prove Theorem 1, it is enough to show the algebraic independence over $\mathbb{C}(z)$ of the functions

$$
\begin{equation*}
F_{i}(z):=(1-z) \sum_{n \geq 0} e_{q^{i}}\left(w_{i} ; n\right) z^{n}, \quad i=1, \ldots, m \tag{9}
\end{equation*}
$$

for any fixed integer $q \geq 2$ and for nonzero patterns $w_{i} \in \Sigma_{q^{i}}^{*}$.
Proof of Theorem 1. Let $q \geq 2$ be a fixed integer and $w_{i} \in \Sigma_{q^{i}}^{*}(i=$ $1, \ldots, m)$ be nonzero patterns. In what follows, we prove the algebraic independence over $\mathbb{C}(z)$ of the functions $F_{1}(z), \ldots, F_{m}(z)$ given in (9). We use induction on m. By Theorem 1 in [11] the function $F_{1}(z)$ is transcendental over $\mathbb{C}(z)$, and hence the claim is satisfied in the case of $m=1$. Let $m \geq 2$ and assume the claim is true for $m-1$. Towards a contradiction, suppose that the functions $F_{1}(z), \ldots, F_{m}(z)$ are algebraically dependent over $\mathbb{C}(z)$. Since they satisfy the functional equations

$$
\begin{equation*}
F_{i}(z)=F_{i}\left(z^{q^{D}}\right)+\sum_{k=0}^{D / i-1} z^{q^{k i} \nu\left(w_{i}\right)} \frac{1-z^{q^{k i}}}{1-z^{q^{i\left|w_{i}\right|+k i}}}, \quad i=1, \ldots, m \tag{10}
\end{equation*}
$$

with $D=\operatorname{lcm}(1, \ldots, m)$, applying Lemma 5 we see that there exist constants $c_{1}, \ldots, c_{m} \in \mathbb{C}$ not all zero such that

$$
R(z):=c_{1} F_{1}(z)+\cdots+c_{m} F_{m}(z) \in \mathbb{C}(z) .
$$

We may suppose $c_{m} \neq 0$ from the assumption of induction. Substituting $z^{q^{D}}$ for z in the above identity and using the functional equation (10), we have

$$
\begin{equation*}
R(z)=R\left(z^{q^{D}}\right)+\frac{1-z}{1-z^{q^{D l}}} \sum_{i=1}^{m} \sum_{k=0}^{D / i-1} c_{i} z^{q^{k i} \nu\left(w_{i}\right)} \frac{1-z^{q^{k i}}}{1-z} \frac{1-z^{q^{D l}}}{1-z^{q^{i\left|w_{i}\right|+k i}}}, \tag{11}
\end{equation*}
$$

where $l:=\max _{1 \leq i \leq m}\left|w_{i}\right|$ and

$$
i\left|w_{i}\right|+k i \leq i(l+k) \leq i(l+D / i-1) \leq D l
$$

Thus the functional equation (11) can be written as

$$
\begin{equation*}
R(z)=R\left(z^{q^{D}}\right)+\frac{(1-z) a(z)}{1-z^{q^{D l}}} \tag{12}
\end{equation*}
$$

with

$$
a(z)=\sum_{i=1}^{m} \sum_{k=0}^{D / i-1} c_{i} q^{k i} \nu\left(w_{i}\right) \frac{1-z^{q^{k i}}}{1-z} \frac{1-z^{q^{D l}}}{1-z^{q^{i\left|w_{i}\right|+k i}}} \in \mathbb{C}[z]
$$

Using Lemma 3, we see that there exists $b(z) \in \mathbb{C}[z]$ such that

$$
\begin{equation*}
R(z)=\frac{(1-z) b(z)}{1-z^{q^{D(l-1)}}} \tag{13}
\end{equation*}
$$

Substituting the expression (13) into and multiplying both sides by $\left(1-z^{q^{D l}}\right) /(1-z)$, we have

$$
\frac{1-z^{q^{D l}}}{1-z^{q^{D(l-1)}}} b(z)=\frac{1-z^{q^{D}}}{1-z} b\left(z^{q^{D}}\right)+a(z)
$$

where $\operatorname{deg} a(z) \leq q^{D l}-1$. If the degree of the first term of the right-hand side is not greater than that of the left-hand side, we get $\operatorname{deg} b(z) \leq q^{D(l-1)}-1$. Otherwise, the degree of the first term coincides with $\operatorname{deg} a(z)$; then we can deduce $\operatorname{deg} b(z) \leq q^{D(l-1)}-1$. In any case, we have

$$
\begin{equation*}
\operatorname{deg} b(z) \leq q^{D(l-1)}-1 \tag{14}
\end{equation*}
$$

By the expression (13), we have

$$
\begin{aligned}
b(z) & =\frac{1-z^{q^{D(l-1)}}}{1-z} R(z)=\left(1-z^{q^{D(l-1)}}\right) \sum_{n \geq 0} \sum_{i=1}^{m} c_{i} e_{q^{i}}\left(w_{i} ; n\right) z^{n} \\
& =\sum_{n=0}^{q^{D(l-1)}-1} a_{n} z^{n}+\sum_{n \geq 0}\left(a_{n+q^{D(l-1)}}-a_{n}\right) z^{n+q^{D(l-1)}}
\end{aligned}
$$

where $a_{n}=\sum_{i=1}^{m} c_{i} e_{q^{i}}\left(w_{i} ; n\right)$. Therefore by (14) we obtain $a_{n}=a_{n+q^{D(l-1)}}$ ($n \geq 0$), so that the sequence

$$
\begin{equation*}
\left\{\sum_{i=1}^{m} c_{i} e_{q^{i}}\left(w_{i} ; n\right)\right\}_{n \geq 0} \tag{15}
\end{equation*}
$$

is periodic with period $q^{D(l-1)}$.
Now we prove $c_{m}=0$ and deduce a contradiction. We choose integers $d_{1}, d_{2}\left(0 \leq d_{1}<d_{2} \leq m-1\right)$ as in Lemma 2. Define the positive integers
$N_{j}=\nu\left(w_{m}\right) \sum_{k_{1}=0}^{0} \sum_{k_{2}=0}^{1} \cdots \sum_{k_{m-1}=0}^{m-2} q^{k_{1}+\cdots+k_{m-1}+m-d_{j}+D L\left(1+k_{1}+m k_{2}+\cdots+m^{m-2} k_{m-1}\right)}$
for $j=1,2$, where $L>0$ is a sufficiently large integer. Noting that $w_{m} \in \Sigma_{q^{m}}^{*}$ is a nonzero pattern and

$$
k_{1}+m k_{2}+\cdots+m^{m-2} k_{m-1} \neq k_{1}^{\prime}+m k_{2}^{\prime}+\cdots+m^{m-2} k_{m-1}^{\prime}
$$

if $\left(k_{1}, \ldots, k_{m-1}\right) \neq\left(k_{1}^{\prime}, \ldots, k_{m-1}^{\prime}\right)$, we have
$e_{q^{i}}\left(w_{i} ; N_{j}\right)=\sum_{k_{1}=0}^{0} \cdots \sum_{k_{m-1}=0}^{m-2} e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{k_{1}+\cdots+k_{m-1}+m-d_{j}+D L}\right), \quad j=1,2$,
for every $i=1, \ldots, m$. For a fixed integer $i \geq 1$, if s_{1} and s_{2} are nonnegative integers with $s_{1} \equiv s_{2} \bmod i$, then the identity

$$
e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{s_{1}+D L}\right)=e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{s_{2}+D L}\right)
$$

holds. Hence for each $i=1, \ldots, m-1$ we get

$$
\begin{aligned}
& \sum_{k_{i}=m-d_{1}}^{i-1+m-d_{1}} e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{k_{1}+\cdots+k_{m-1}+D L}\right) \\
&=\sum_{k_{i}=m-d_{2}}^{i-1+m-d_{2}} e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{k_{1}+\cdots+k_{m-1}+D L}\right)
\end{aligned}
$$

so that

$$
\begin{align*}
e_{q^{i}}\left(w_{i} ; N_{1}\right) & =\sum_{k_{1}=0}^{0} \cdots \sum_{k_{i}=m-d_{1}}^{i-1+m-d_{1}} \cdots \sum_{k_{m-1}=0}^{m-2} e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{k_{1}+\cdots+k_{m-1}+D L}\right) \tag{16}\\
& =\sum_{k_{1}=0}^{0} \cdots \sum_{k_{i}=m-d_{2}}^{i-1+m-d_{2}} \cdots \sum_{k_{m-1}=0}^{m-2} e_{q^{i}}\left(w_{i} ; \nu\left(w_{m}\right) q^{k_{1}+\cdots+k_{m-1}+D L}\right) \\
& =e_{q^{i}}\left(w_{i} ; N_{2}\right), \quad i=1, \ldots, m-1 .
\end{align*}
$$

On the other hand, by Lemma 1 we have

$$
\begin{aligned}
e_{q^{m}}\left(w_{m} ; N_{j}\right) & =\sum_{k_{1}=0}^{0} \cdots \sum_{k_{m-1}=0}^{m-2} e_{q^{m}}\left(w_{m} ; \nu\left(w_{m}\right) q^{k_{1}+\cdots+k_{m-1}+m-d_{j}+D L}\right) \\
& =\sharp\left\{\left(k_{1}, \ldots, k_{m-1}\right) \in S \mid k_{1}+\cdots+k_{m-1} \equiv d_{j} \bmod m\right\} \\
& =\sum_{\substack{n \geq 0 \\
n \equiv d_{j} \bmod m}} \sharp S_{n}, \quad j=1,2,
\end{aligned}
$$

where S and S_{n} are the sets defined by (6) and (7), respectively. Hence it follows from Lemma 2 that

$$
\begin{equation*}
e_{q^{m}}\left(w_{m} ; N_{1}\right) \neq e_{q^{m}}\left(w_{m} ; N_{2}\right) . \tag{17}
\end{equation*}
$$

Since the sequence 15 is periodic with period $q^{D(l-1)}$ and $N_{1} \equiv N_{2} \bmod$ $q^{D(l-1)}$ if L is large, we have

$$
\sum_{i=1}^{m} c_{i} e_{q^{i}}\left(w_{i} ; N_{1}\right)=\sum_{i=1}^{m} c_{i} e_{q^{i}}\left(w_{i} ; N_{2}\right) .
$$

Combining (16), 17), and the above identity, we obtain $c_{m}=0$. This is a contradiction and the proof of Theorem 1 is complete.

Proof of Theorem 2. Suppose that the functions $f_{q}(z)(q=2,3, \ldots)$ are algebraically dependent over $\mathbb{C}(z)$, so that

$$
\begin{equation*}
\sum_{0 \leq i_{1}, \ldots, i_{m} \leq N} a_{i_{1}, \ldots, i_{m}}(z) f_{q_{1}}(z)^{i_{1}} \cdots f_{q_{m}}(z)^{i_{m}}=0 \tag{18}
\end{equation*}
$$

with $a_{i_{1}, \ldots, i_{m}}(z) \in \mathbb{C}[z]$ not all zero. Let $\left\{\beta_{1}, \ldots, \beta_{s}\right\}$ be a maximal subset of the set of all the coefficients of $a_{i_{1}, \ldots, i_{m}}(z)$ which is linearly independent over \mathbb{Q}. Then the polynomials $a_{i_{1}, \ldots, i_{m}}(z)$ can be written as

$$
a_{i_{1}, \ldots, i_{m}}(z)=\sum_{j=1}^{s} b_{i_{1}, \ldots, i_{m}, j}(z) \beta_{j}, \quad b_{i_{1}, \ldots, i_{m}, j}(z) \in \mathbb{Q}[z],
$$

and so by (18) we have

$$
\sum_{j=1}^{s}\left(\sum_{0 \leq i_{1}, \ldots, i_{m} \leq N} b_{i_{1}, \ldots, i_{m}, j}(z) f_{q_{1}}(z)^{i_{1}} \cdots f_{q_{m}}(z)^{i_{m}}\right) \beta_{j}=0 .
$$

Since $\beta_{1}, \ldots, \beta_{s}$ are linearly independent over \mathbb{Q}, we get

$$
\sum_{0 \leq i_{1}, \ldots, i_{m} \leq N} b_{i_{1}, \ldots, i_{m}, j}(z) f_{q_{1}}(z)^{i_{1}} \cdots f_{q_{m}}(z)^{i_{m}}=0
$$

for all $j=1, \ldots, s$. Noting that at least one of $b_{i_{1}, \ldots, i_{m}, j}(z)$ is not zero, we obtain the algebraic dependence over $\mathbb{Q}(z)$ of the functions $f_{q_{1}}(z), \ldots, f_{q_{m}}(z)$. Hence $f_{q_{1}}(\alpha), \ldots, f_{q_{m}}(\alpha)$ are algebraically dependent for some algebraic number α with $0<|\alpha|<1$. This is a contradiction by Theorem 1 .

References

[1] J. P. Allouche and J. Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge Univ. Press, 2003.
[2] K. K. Kubota, On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann. 227 (1977), 9-50.
[3] T. Kurosawa and I. Shiokawa, q-linear functions and algebraic independence, Tokyo J. Math. 25 (2002), 459-472.
[4] J. H. Loxton and A. J. van der Poorten, A class of hypertranscendental functions, Aequationes Math. 16 (1977), 93-106.
[5] K. Nishioka, Algebraic independence by Mahler's method and S-unit equations, Compos. Math. 92 (1994), 87-100.
[6] -, Mahler Functions and Transcendence, Lecture Notes in Math. 1631, Springer, 1996.
[7] S. Okada and I. Shiokawa, Algebraic independence results related to $\langle q, r\rangle$-number systems, Monatsh. Math. 147 (2006), 319-335.
[8] I. Shiokawa and Y. Tachiya, Pattern sequences in $\langle q, r\rangle$-numeration systems, Indag. Math. (N.S.) 19 (2008), 151-161.
[9] T. Toshimitsu, q-additive functions and algebraic independence, Arch. Math. (Basel) 69 (1997), 112-119.
[10] T. Toshimitsu, Strongly q-additive functions and algebraic independence, Tokyo J. Math. 21 (1998), 107-113.
[11] Y. Uchida, Algebraic independence of the power series defined by blocks of digits, J. Number Theory 78 (1999), 107-118.

Yohei Tachiya
Department of Mathematics
Keio University
Hiyoshi, Kohoku-ku, Yokohama 223-8522
Japan
E-mail: bof@math.keio.ac.jp

Received on 14.1.2009
and in revised form on 20.7.2009

[^0]: 2010 Mathematics Subject Classification: 11A63, 11J85.
 Key words and phrases: q-ary expansion, pattern sequences, algebraic independence, Mahler-type functional equations.

