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A GEOMETRIC POINT OF VIEW
ON MEAN-VARIANCE MODELS

Abstract. This paper deals with the mathematics of the Markowitz the-
ory of portfolio management. Let E and V be two homogeneous functions
defined on Rn, the first linear, the other positive definite quadratic. Further-
more let ∆ be a simplex contained in Rn (the set of admissible portfolios),
for example ∆ : x1 + . . .+xn = 1, xi ≥ 0. Our goal is to investigate the prop-
erties of the restricted mappings (V,E) : ∆→ R2 (the so called Markowitz
mappings) and to classify them. We introduce the notion of a generic model
(∆,E, V ) and investigate the equivalence of such models defined by contin-
uous deformation.

1. Introduction. The portfolio selection theory founded by Markowitz
half a century ago ([4, 5]) became a classical part of the modern mathemat-
ical finance ([7]) and is a starting point of both practical (see for example
[1, 6]) and theoretical courses (for example [2]). The aim of the present paper
is to get a better insight into the mathematics lying behind the Markowitz
model.

In portfolio theory (see [5, 2, 7]) we consider the future rates of return
of several financial assets. We model these rates as random variables ri,
i = 1, . . . , n. If x = (x1, . . . , xn) denotes a portfolio, i.e. xi is an amount in-
vested in the ith asset, then the associated income (gain, return) is modeled
by a random variable

R(x) =
n∑

i=1

rixi.

Our goal is to compare the expected return (i.e. the mean) E(R(x)) and the
variance V (R(x)) for all admissible portfolios x. We assume that our port-
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folios have the same fixed initial value. Therefore the admissible portfolios
are contained in an affine subspace H ⊂ Rn given by

x1 + . . .+ xn = v > 0.

Usually it is assumed that the value of a portfolio equals 1 unit (v = 1). Then
R(x) becomes the rate of return of the portfolio. Sometimes it is convenient
to add some more restrictions. For example if short selling is not allowed
we have to assume that all xi are nonnegative. In this case the admissible
portfolios are contained in the (n− 1)-dimensional simplex ∆ ⊂ Rn defined
by

x1 + . . .+ xn = 1 > 0, x1 ≥ 0, . . . , xn ≥ 0.

Note that E(R(x)) is a linear function of x:

E(R(x)) =
n∑

i=1

xiE(ri),

and V (R(x)) is quadratic:

V (R(x)) =
n∑

i=1

x2
iV (ri) + 2

∑

i<j

xixj cov(ri, rj),

where cov(ri, rj) stands for the covariance.
The admissible portfolio x is considered to be effective if it simulta-

neously maximizes E(R(x)) and minimizes V (R(x)). In more detail: the
admissible portfolio x is effective if for any admissible portfolio y,

E(R(y)) < E(R(x)) ∨ V (R(y)) > V (R(x))

∨ [E(R(y)) = E(R(x)) ∧ V (R(y)) = V (R(x))].

Such portfolios are contained in the set of portfolios of relatively minimal
variance which are of special interest (see Theorem 3.2).

We introduce the notion of a generic model (∆,E, V ) (see §4) in such
a way that two generic models which are close enough to each other have
similar polygonal lines of portfolios of relatively minimal variance, and the
set of nongeneric models is a proper algebraic subset of the set of all models.

Furthermore we introduce the equivalence of generic triples. We say that
(∆0, E0, V0) is equivalent to (∆1, E1, V1) if there exists a continuous family
of generic triples (∆t, Et, Vt), t ∈ [0, 1], joining them.

We show that equivalent triples have similar polygonal lines of port-
folios of relatively minimal variance. Moreover we describe the numerical
invariants of the above equivalence.

Basing on this we give a complete classification of generic models de-
scribing the three assets case. We show that up to equivalence there are
seven possibilities (i.e. there are seven stable shapes of polygonal lines of
portfolios of relatively minimal variance).
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Next we study the one-factor models (Sharpe–Lintner models), the sim-
plest models in APT (arbitrage pricing theory) or CAPM (capital asset
pricing model)—see [7, §§8.2, 8.7]. We describe the polygonal line of port-
folios of relatively minimal variance for such models. Since models obtained
by studying “real” markets are often very close to one-factor models, this
gives some insight into the “shape” of the image of a “real life” Markowitz
mapping.

This paper is rather technical. Its aim is to provide tools for further more
practical studies, like for example:

• constructing Markovitz models with prescribed properties,
• testing the volatility of the covariance matrix of financial returns,
• testing the conjecture of the existence of some dominant factors on a

given market.

2. Notation. We use the matrix notation. All vectors are column vec-
tors and the superscript “T” denotes transposition.

The n-dimensional mean-variance model is a triple (∆,E, V ), where:

• ∆ is a simplex in Rn such that the affine space H spanned by all the
vertices of ∆ is a hypersurface not containing the origin,

H : hTx = 1, h ∈ Rn;

• E is a linear function (called mean) on Rn,

E(x) = µTx, µ ∈ Rn, µ 6= 0;

• V is a positive definite quadratic function (called variance) on Rn,

V (x) = xTCx, ∀x 6= 0 V (x) > 0,

where C is a symmetric positive definite n× n matrix.

We denote by Σ the critical set of the restricted mapping

(V,E) : H → R2.

Remark. If E is not constant on H then Σ coincides with the set of
portfolios of relatively minimal variance

Σ = {x ∈ H : V (x) = min{V (z) : z ∈ H ∧E(z) = E(x)}}.
Therefore, for any nonempty subset K of H, we denote by ΣK the subset
of K consisting of portfolios of relatively minimal variance (in K):

ΣK = {x ∈ K : V (x) = min{V (z) : z ∈ K ∧ E(z) = E(x)}}.
We denote by XK the right inverse of the mean E restricted to ΣK :

XK : E(K)→ ΣK , E(XK(t)) = t.

In Section 3 we discuss the uniqueness of XK .
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Furthermore we denote by K⊥ the linear space consisting of vectors
C-orthogonal to the affine space spanned by K:

K⊥ = {x ∈ Rn : ∀z1, z2 ∈ K xTC(z1 − z2) = 0};
moreover, IntK is the interior of K considered as a subset of the affine space
spanned by K, and K1 +K2 is the set of sums of vectors from K1 and K2,

K1 +K2 = {x+ z : x ∈ K1 ∧ z ∈ K2}.
If K consists of just one point then K⊥ = Rn and IntK = K.

Next, for any finite set of points of Rn, say z1, . . . , zk, we denote by
∆(z1, . . . , zk) the convex polyhedron spanned by the zi’s, i.e.

∆(z1, . . . , zk)

= {z ∈ Rn : z = a1z1 + . . .+ akzk, ai ∈ R, ai ≥ 0, a1 + . . .+ ak = 1};
by H(z1, . . . , zk) the affine space spanned by the zi’s:

H(z1, . . . , zk) = {z ∈ Rn : z = a1z1 + . . .+ akzk, ai ∈ R, a1 + . . .+ ak = 1};
and by Lin(z1, . . . , zk) the linear space spanned by the zi’s:

Lin(z1, . . . , zk) = {z ∈ Rn : z = a1z1 + . . .+ akzk, ai ∈ R}.
If k ≤ n and z1, . . . , zk are in general position then ∆(z1, . . . , zk) is a
(k − 1)-dimensional simplex, H(z1, . . . , zk) is a (k − 1)-dimensional space
and Lin(z1, . . . , zk) a k-dimensional space.

3. Normal forms. Following the standard notation we put

α = µTC−1µ, γ = hTC−1h,

β = hTC−1µ, δ = αγ − β2.

Since C is positive definite, it is invertible and its inverse is also positive
definite. Therefore α and γ are positive. If E is not constant on H then δ
being the Gram determinant of the C−1-product of h and µ is also positive.

Let C∗ be the (n+ 2)× (n+ 2) matrix obtained from C by adding two
rows and two columns:

C∗ =




0 0 hT

0 0 µT

h µ C


 .

Lemma 3.1. detC∗ = δ detC.

Proof. We observe that



0 0 hT

0 0 µT

h µ C






−1 0 0

0 −1 0

C−1h C−1µ Id
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=




hTC−1h hTC−1µ hT

µTC−1h µTC−1µ µT

−h+ CC−1h −µ+ CC−1µ C




=




hTC−1h hTC−1µ hT

µTC−1h µTC−1µ µT

0 0 C


 .

Thus

detC∗ = det

(
hTC−1h hTC−1µ

µTC−1h µTC−1µ

)
· detC = δ detC.

Theorem 3.1. If n ≥ 2 and E is not constant on H then there exists a
coordinate system y0, y1, . . . , yn−1 in Rn such that :

• V (x) = y2
0 + y2

1 + . . .+ y2
n−1;

• H = {y0 = 1/
√
γ};

• for x ∈ H,

E(x) =

√
δ

γ
y1 +

β

γ
.

Proof. We apply the Gram–Schmidt orthonormalization to the vectors

v̂0 = C−1h, v̂1 = C−1µ,

extended to a basis v̂0, v̂1, . . . , v̂n−1 of Rn. We obtain an orthonormal basis
v0, v1, . . . , vn−1 for the bilinear product defined by C. Moreover

v0 =
1√
γ
C−1h, v1 =

γC−1µ− βC−1h√
γδ

.

The new coordinates yi are the coefficients of vectors in the basis v0, . . . , vn−1,
i.e.

x = y0v0 + y1v1 + . . .+ yn−1vn−1.

Obviously, since the vi’s are orthonormal,

xTCx =
n−1∑

i=0

y2
i .

Furthermore

xTh = xT (
√
γ Cv0) =

√
γ xTCv0 =

√
γ y0,

xTµ = xT
√
γδ Cv1 + βh

γ
=

√
δ

γ
y1 +

β

γ
xTh.
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Therefore, if x ∈ H, i.e. xTh = 1, then

xTµ =

√
δ

γ
y1 +

β

γ
.

Corollary 3.1. Under the assumption of Theorem 3.1 the critical set
Σ is a line parallel to the y1-axis:

y0 = 1/
√
γ, y2 = . . . = yn−1 = 0,

i.e. it is a shifted line Lin(v1),

Σ =
{

1√
γ
v0

}
+ Lin(v1) = H ∩ Lin(v0, v1).

Moreover Σ is the image of the linear function

XH : R→ Σ, XH(t) =
1√
γ
v0 +

(
t− β

γ

)√
γ√
δ
v1.

Proof. In the y-coordinates the hyperplaneH is described by y0 = 1/
√
γ,

and the hyperplanes E(z) = const by y1 = const. Therefore the relative
minimum of V (z), i.e. of the sum of the squares of the yi’s, is attained when
y2 = . . . = yn−1 = 0. Thus

Σ =
{
z =

1√
γ
v0 + y1v1 : y1 ∈ R

}
=
{

1√
γ
v0

}
+ Lin(v1).

The formula for XH follows from the condition E(XH(t)) = t.

Note:

V (XH(t)) =
1
γ

+
γ

δ

(
t− β

γ

)2

.

Remark. Since the critical set Σ is a line it is called the critical line.

Let H1 be an affine subspace of H.

Corollary 3.2. Under the assumption of Theorem 3.1,

ΣH1 = H1 ∩Π, where Π = Lin(v1) +H⊥1 .

Proof. We shall base on the fact that in the y-coordinates the scalar
product induced by C is the canonical euclidean scalar product of vectors.

Let L be any affine subspace of H, and z1 the point of L nearest to the
origin. Obviously z1 is the orthogonal projection of the origin on L, thus

{z1} = L ∩ L⊥.
Now let E0 be a fixed level and L an affine subspace of the level set E(x)
= E0,

L = H1 ∩ {E(x) = E0}, {z1} = ΣH1 ∩ {E(x) = E0}.
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Note that since v1 ⊥ H ∩ {E(x) = E0}, we have

L⊥ = H⊥1 + Lin(v1) = Π.

Therefore

(H1 ∩Π) ∩ {E(x) = E0} = L ∩ L⊥ = {z1} = ΣH1 ∩ {E(x) = E0}.
This finishes the proof of the corollary.

Note that if E is constant onH1 thenΣH1 consists of one point, otherwise
it is a line. Indeed, in the first case v1 ∈ H⊥1 , hence

dimΠ = codimH1,

while in the second case v1 6∈ H⊥1 , hence

dimΠ = codimH1 + 1.

Note that in both cases the function XH1 is unique. In the second case it is
a linear function defined on the whole real line R.

Next we shall deal with Markovitz like models. Let ∆ denote a simplex
contained in H, m the minimal and M the maximal value of E restricted
to ∆. We say that a simplex ∆1 is a subsimplex of ∆ if every vertex of ∆1

is a vertex of ∆. We recall that the matrix C is positive definite and it is
well known that the set Σ∆ of portfolios of relatively minimal variance is a
polygonal line.

Theorem 3.2. The set Σ∆ of portfolios of relatively minimal variance
is the image of a continuous, piecewise linear (affine) function

X∆ : [m,M ]→ Σ∆, E(X∆(t)) = t.

Moreover for any subsimplex ∆1 of ∆ the preimage X−1
∆ (Int∆1) is connected

and the restriction of X∆ to it coincides with XH1 where H1 is the affine
space spanned by the vertices of ∆1.

Proof

Step 1. For every E ∈ [m,M ] there exists exactly one xE ∈ ∆ such that
E(xE) = E and V (xE) = min{V (x) : x ∈ ∆, E(x) = E}.

Indeed, since the simplex ∆ is compact and convex, the intersection
∆E = ∆ ∩ {E(x) = E} is nonempty, convex and compact. On the compact
set ∆E the continuous function V attains its minimum, Vmin. Since C is
positive definite, it follows that V is strictly convex and Vmin is attained at
exactly one point.

Step 2. The mapping E 7→ X(E) = X∆(E) = xE is continuous.

Assume that X(·) is not continuous at some point E0 ∈ [m,M ]. This
means that there exists a sequence (En)∞n=1 such that En → E0 but X(En)
6→ X(E0). Since ∆ is compact we may choose En in such a way that
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• it is strictly monotonic,
• X(En) has a limit

lim
n→∞

X(En) = x∞.

Obviously E(x∞) = E0. Therefore since X(E0) is a unique minimum of V
on ∆E0 the only possibility is that V (x∞) > V (X(E0)). To show that this
is not possible we consider the segment of portfolios

xt = tX(E1) + (1− t)X(E0), t ∈ [0, 1].

Since V is convex,

V (xt) ≤ tV (X(E1)) + (1− t)V (X(E0)).

Since our sequence En is strictly monotonic we get for every n > 1 the
estimate

V (X(En)) ≤ V (xtn) < tnV (X(E1)) + (1− tn)V (X(E0)),

where tn ∈ (0, 1) is a solution of the equation

En = tnE1 + (1− tn)E0.

Letting n tend to infinity we get

V (x∞) ≤ V (X(E0)),

which eliminates the above possibility. We get a contradiction.

Step 3. X∆(·) is piecewise linear.

If E(·) is constant on H then Σ∆ consists of one point. Otherwise we
apply induction on the number of vertices of ∆.

Assume that for every proper subsimplex ∆′ of ∆ the set of portfolios
of relatively minimal variance is a union of segments or a point. Since E(·)
is not constant on H, from Corollary 3.1 we see that the intersection of Σ∆

and the interior of ∆ is either empty or an open segment. The rest of Σ∆

is contained in the border of ∆, i.e. the union of its proper subsimplexes.
Since Σ∆ ∩∆′ ⊂ Σ∆′ we get

Σ∆ ⊂ (Σ∆ ∩ Int(∆)) ∪
⋃
Σ∆′ .

Hence Σ∆ is contained in a finite union of segments and points. Since it is
the image of a continuous function X∆(·), this function must be piecewise
linear.

Step 4. For any subsimplex ∆1 of ∆ the restriction of X∆1 to the preim-
age X−1

∆1
(Int∆1) coincides with the restriction of XH1 where H1 is the affine

space spanned by the vertices of ∆1.

It is enough to show that the images of both functions coincide. One
inclusion is obvious:

∆1 ⊂ H1 ⇒ ΣH1 ∩∆1 ⊂ Σ∆1 ⇒ ΣH1 ∩ Int∆1 ⊂ Σ∆1 ∩ Int∆1.
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The other inclusion follows from the fact that Int∆1 is an open subset of H1.
Indeed, assume that there exists t such that

X∆1(t) ∈ Int∆1.

Now, Int∆1 ∩ {E(x) = t} is an open subset of the affine space H1 ∩ {E(x)
= t}. Since the function V restricted to Int∆1 ∩ {E(x) = t} has a global
minimum at the point X∆1(t), the function V restricted to H1∩{E(x) = t}
has at least a local minimum at this point. But V is strictly convex and a
local minimum must be a global one, i.e.

XH1(t) = X∆1(t).

Step 5. For any two subsimplexes ∆1 and ∆2 of ∆ with ∆1 ⊂ ∆2 ⊂ ∆,
the intersection Σ∆2 ∩ Int∆1 is connected.

Assume that the above statement is not true, and select the smallest
subsimplex ∆3 of ∆ such that ∆1 ⊂ ∆3 and Σ∆3 ∩ Int∆1 is not connected.
Due to the minimality of ∆3 there are real numbers E1 < E2 such that

X∆3(E1) ∈ Int∆1, X∆3(E2) ∈ Int∆1, ∀t ∈ (E1, E2) X∆3(t) ∈ Int∆3.

Let Hi be the affine space spanned by the vertices of ∆i. Since the functions
X∗ are continuous we get

XH3(Ej) = X∆3(Ej) = X∆1(Ej) = XH1(Ej), j = 1, 2.

But two linear functions XH∗ equal at two different points must be equal,
which leads to a contradiction.

Remark. Since the critical set Σ∆ of portfolios of relatively minimal
variance is the image of a piecewise linear mapping it is called the polygonal
line of portfolios of relatively minimal variance.

Example 3.1 (“Noncorrelated rates of return”). We consider the sim-
plest n-dimensional model describing the assets with noncorrelated (for ex-
ample independent) rates of return. Here C = Id, ∆ = {x :

∑
xi = 1,

xi ≥ 0} = ∆(e1, . . . , en), where ei are the unit vectors, h = e = (1, . . . , 1)T

and H = {x : eTx = 1}. We assume that the expected rates of return of
different assets are different, and we order the assets according to these rates:

µ = (µ1, . . . , µn)T , µ1 < . . . < µn.

In this case the basic quantities can be expressed in terms of the mean µ
and the standard deviation Sµ of µi’s:

α =
∑

µ2
i , β =

∑
µi = nµ, γ = n,

δ = n
∑

µ2
i −

(∑
µi

)2
= n2S2

µ,

v0 =
1√
n
e, v1 =

1√
nSµ

(µ− µe),
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XH(t) =
1√
n
v0 + (t− µ)

1√
nSµ

v1 =
1
n

(
e+

t− µ
S2
µ

(µ− µe)
)
, t ∈ R.

We show that:

1. The critical line Σ intersects the interior of ∆.
2. The points

q1 = XH(t1), t1 = µ−
S2
µ

µn − µ
,

q2 = XH(t2), t2 = µ−
S2
µ

µ1 − µ
,

are the points of intersection of Σ and the boundary of ∆.
3. q1 and q2 belong to subsimplexes of codimension 1,

q2 ∈ ∆1 = ∆(e2, . . . , en), q1 ∈ ∆n = ∆(e1, . . . , en−1).

4. The parametrization of the polygonal line Σ∆ decomposes as follows:

X∆(t) =




X∆n(t) for t ∈ [µ1, t1],
XH(t) for t ∈ (t1, t2),
X∆1(t) for t ∈ [t2, µn].

To do this we have to check for which t the coordinates of the parametri-
zation XH(t) are positive. For j = 1, . . . , n the jth coordinate equals

eTj XH(t) =
1
n

(
1 + (t− µ)

µj − µ
S2
µ

)
≥ 0.

The condition imposed on t depends on the sign of µj − µ. We obtain:

• for µj < µ,

t ≤ µ−
S2
µ

µj − µ
;

• for µj = µ there is no restriction on t;
• for µj > µ,

t ≥ µ−
S2
µ

µj − µ
.

Taking the smallest and largest µj, i.e. µ1 and µn, we get the formulas for
t1 and t2:

t1 = µ−
S2
µ

µn − µ
, t2 = µ−

S2
µ

µ1 − µ
.

For t ∈ [t1, t2], XH(t) belongs to the simplex ∆. Moreover only the last
coordinate of XH(t1) and the first of XH(t2) vanish. Hence XH(t1) belongs
to the face ∆(e1, . . . , en−1); and XH(t2) belongs to ∆(e2, . . . , en).

The fourth property follows from the fact that the first and last coor-
dinates of X∆(t) are monotonic. Indeed, X∆(·) is a continuous piecewise
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linear function. Moreover each linear part is equal to XH′ where H ′ is an
affine space containing the subsimplex ∆′ of ∆. There are two possibilities.
If e1 (resp. en) is not a vertex of ∆′ then the corresponding coordinate is
constant, equal to 0. Otherwise, since the restriction of the noncorrelated
returns model to a subsimplex remains of the same type, we get the mono-
tonicity from the above formula for eTj XH(t).

4. Generic models. The above theorems on normal forms suggest the
following notion of “general position”.

The linear function E is in general position if it is not constant on ∆.
The quadratic function V is in general position if the critical line Σ is in
general position with respect to the skeleton of ∆. Adding to the above the
hereditary condition we obtain:

Definition. The n-dimensional mean-variance model (∆,E, V ) is gene-
ric if

• ∆ is an (n− 1)-dimensional simplex,
• the values of E at the vertices of ∆ are pairwise different,
• for any two affine spaces H1 ⊂ H2 spanned by some vertices of ∆, if

2 + dimH1 ≤ dimH2 then the critical line ΣH2 neither intersects H1 nor is
parallel to it.

Remark. 1. The restriction of a generic model to a face of the simplex
∆ remains generic.

2. In the generic case the mean E is not constant on any subsimplex of
∆ (of positive dimension).

3. All one-dimensional models are generic.
4. A two-dimensional model is generic if and only if E(z1) 6= E(z2),

where zi are vertices of ∆.

Note that if ∆ has less than 3 vertices then the affine space spanned by
some vertices of ∆ has dimension smaller than 2 and the third condition is
meaningless.

The mean-variance model (∆,E, V ) is determined by the vertices of ∆,
a vector µ and a positive definite, symmetric matrix C. Therefore the set
M of all n-dimensional mean-variance models, with ∆ being an (n − 1)-
dimensional simplex, is parametrized by an open semialgebraic subset of
RN , where

N = n2 + n+
n(n+ 1)

2
=

3n(n+ 1)
2

.

Having the topology on M (induced by the parametrization) we may
introduce equivalence of generic models basing on continuous deformations.
Namely:
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Definition. Two generic n-dimensional models (∆,E, V ), (∆′, E′, V ′)
are equivalent if there exists a continuous path

φ : [0, 1]→ RN , t 7→ (z1,t, . . . , zn,t, µt, Ct),

such that:

∆ = ∆(z1,0, . . . , zn,0), E(x) = µT0 x, V (x) = xTC0x for x ∈ Rn,
∆′ = ∆(z1,1, . . . , zn,1), E′(x) = µT1 x, V ′(x) = xTC1x for x ∈ Rn,

and for all t ∈ [0, 1], (∆(z1,t, . . . , zn,t), µTt x, x
TCtx) is a generic model.

In the next sections we will show that the set Mg of generic models is
also an open semialgebraic subset of RN , and moreover it is dense in M.
Therefore, as a matter of fact, two generic models are equivalent if and only
if they belong to the same connected component of Mg.

Remark. The equivalence relation introduced above can be extended to
nongeneric cases. Namely we stratify the space of all models depending on
the violated regularity conditions and say that two models are equivalent if
one can be deformed to the other within the same stratum.

5. Lines of relative minimal variance for generic models. The
aim of this section is to show that equivalent generic models have similar
polygonal lines of portfolios of relatively minimal variance, namely these
lines cross the same subsimplexes. For simplicity we apply the coordinate
system determined by the vertices of the simplex ∆. Throughout this section
the ith vertex of ∆ is the unit vector of the ith axis, i.e. ∆ = ∆(e1, . . . , en),
where ei is a vector with one nonzero coefficient, equal to 1, at the ith po-
sition. Furthermore we code subsimplexes by their characteristic functions.
The {0, 1} sequence (ε1, . . . , εn) denotes the simplex spanned by the vertices
ei with εi = 1.

We shall investigate three functions induced by X∆:

sim : [m,M ]→ {0, 1}n,
dim : [m,M ]→ {0, 1, . . . , n− 1},
l2 : [m,M ]→ (0, 1].

Let t ∈ [m,M ]. Then sim(t) is the subsimplex whose interior contains
X∆(t), dim(t) is its dimension, and l2(t) the second smallest positive coor-
dinate of X∆(t) if it is not a vertex and 1 otherwise.

The functions sim, dim and l2 are compositions of X∆ and functions
defined on the unit cube:

sim(t) = Sgn ◦X∆(t), dim(t) = Σsgn ◦X∆(t), l2(t) = L2 ◦X∆(t),
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where

Sgn(x1, . . . , xn) = (sgn(x1), . . . , sgn(xn)),

Σsgn(x1, . . . , xn) = sgn(x1) + . . .+ sgn(xn),

L2(x1, . . . , xn) =
{

min{l : #{i : 0 < xi ≤ l} = 2} if #{i : xi > 0} > 1,
1 otherwise.

The function dim(t) is lower semicontinuous (because Σsgn(x1, . . . , xn)
is lower semicontinuous for nonnegative xi’s). Moreover for a generic model
the jumps of dim(t) are not greater than 1.

Lemma 5.1. For every generic model the function dim is either locally
constant or has jumps of size 1, i.e.

∀t0 ∈ [m,M ] ∃ε > 0 ∀t ∈ [m,M ] ∩ (t0 − ε, t0 + ε)

dim(t) = dim(t0) or dim(t) = dim(t0) + 1.

Proof. Let ∆1 be a subsimplex of ∆ such that X∆(t0) belongs to Int∆1.
Then either the intersection Σ∆ ∩ Int∆1 is a segment (not one point!) and
X∆(t0) is its inner point, or X∆(t0) is approached by X∆(t) from the interior
of some larger subsimplex, say ∆2. In the first case dim(t) is constant on
some neighbourhood of t0 (Theorem 3.2). In the second case there is a jump.
But since X∆ is continuous, we have

X∆(t0) ∈ cl(Σ∆ ∩ Int∆2) ⊂ cl(σH2 ∩ Int∆2) ⊂ ΣH2 ,

where cl stands for closure, and H2 is the affine space spanned by ∆2. Due
to the generic conditions ΣH2 cannot intersect subsimplexes of dimension
smaller than dimH2 − 1. Therefore the jump is equal to 1.

Example 5.1. We describe the sim(t) function for the “noncorrelated
rates of return” model from Example 3.1. The polygonal line of portfolios
of relatively minimal variance starts from the vertex e1, crosses 2n− 1 open
subsimplexes and ends at en:

sim(t) =





(1, 0, 0, . . . , 0, 0, 0) if t = t1,

(1, 1, 0, . . . , 0, 0, 0) if t ∈ (t1, t2],

. . .

(1, 1, 1, . . . , 1, 1, 0) if t ∈ (tn−2, tn−1],

(1, 1, 1, . . . , 1, 1, 1) if t ∈ (tn−1, tn),

(0, 1, 1, . . . , 1, 1, 1) if t ∈ [tn, tn+1),

. . .

(0, 0, 0, . . . , 0, 1, 1) if t ∈ [t2n−3, t2n−2),

(0, 0, 0, . . . , 0, 0, 1) if t = t2n−2,
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where t1 = µ1, t2n−2 = µn, and for j = 3, . . . , n,

tj−1 = µj −
Sj

µj − µj
, t2n−j = µ∗j −

S∗j
µn−j+1 − µ∗j

.

Here µj and Sj are the mean and standard deviation of the first j µi’s, while
µ∗j and S∗j are the mean and standard deviation of the last j µi’s.

Indeed, as was shown in Example 3.1, Σ∆ intersects the interior of the
simplex ∆ = (1, . . . , 1). Moreover starting from this interior one can get
along Σ∆ only to the open simplexes (0, 1, . . . , 1) or (1, . . . , 1, 0). Next we
continue by induction.

The values of ti are obtained from Example 3.1 applied to the subsim-
plexes (1, . . . , 1, 0, . . . , 0) and (0, . . . , 0, 1, . . . , 1).

Lemma 5.2. Every generic model (∆,E, V ) has a neighbourhood U in the
space of all generic models on which the function l2 is uniformly bounded
away from 0:

∃ε > 0 ∀(∆′, E′, V ′) ∈ U ∀t l2(t) ≥ ε
Proof. Since ∆ is covered by a finite number of open subsimplexes, it is

enough to find a positive lower bound ε for every subsimplex ∆1. Let H1 be
the affine space spanned by the vertices of ∆1. We have the inclusion (see
Theorem 3.2)

Σ∆ ∩ Int∆1 ⊂ ΣH1 ∩ Int∆1.

Assume that ΣH1 crosses the interior of ∆1 (otherwise we put ε = 1).
Due to the generic conditions the critical line ΣH1 crosses only the faces of
∆1 of codimension 1. Hence at a crossing point only one coordinate tends
to 0. Therefore L2 is bounded away from 0 on ΣH1 ∩ Int∆1. Moreover ΣH1

depends continuously on the coefficients of the model. Thus we can find a
uniform bound.

The final estimate is the minimum of all bounds obtained for subsim-
plexes.

Lemma 5.3. Let (∆,E, V ) be a generic model. If a subsimplex ∆1 of ∆
has at least two vertices and the intersection Π = Σ∆ ∩ Int∆1 is not empty
then Π is a segment.

Proof. Since Π = Σ∆ ∩ Int∆1 is a bounded, connected subset of a line
(see Theorem 3.2) it can be either an empty set, a point or a segment. We
show that in the case of a generic model it cannot be a point. Assume the
contrary:

Σ∆ ∩ Int∆1 = {q}.
Then there are two bigger simplexes, say ∆2 and ∆3, such that for t close to
E(q), X∆(t) belongs to one of their interiors. Let ∆4 be the simplex spanned
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by the vertices of both ∆2 and ∆3, and Hi the affine space spanned by the
vertices of ∆i, i = 1, 2, 3, 4. Obviously

H1 = H2 ∩H3, H4 ⊃ H2 ∪H3.

Furthermore, let Πi = Lin(v1) +H⊥i . As shown in Corollary 3.2,

ΣHi = Hi ∩Πi.

Moreover, q ∈ Π2 ∩Π3.
We estimate the dimension of Π1. We have

Π1 = Lin(v1)+H⊥1 = Lin(v1)+(H2∩H3)⊥ = Lin(v1)+H⊥2 +H⊥1 = Π2+Π3.

Hence
dimΠ1 = dimΠ2 + dimΠ3 − dimΠ2 ∩Π3.

But Π2 ∩ Π3 ⊃ Π4 ∪ {q}. Since our model is generic, q 6∈ Π4. Indeed,
q ∈ H1 ⊂ H4 and Π4 ∩H4 = ΣH4 , which does not intersect H1 (dimH1 ≤
dimH4 − 2). Therefore

dimΠ2 ∩Π3 ≥ dimΠ4 + 1.

Hence

dimΠ1 ≤ codimH2 + 1 + codimH3 + 1− (codimH4 + 2) = codimH1.

From Theorem 3.1 it follows that E is constant on H1, which is not possible
because the model is generic.

We recall that two functions φi : [mi,Mi]→ R, i = 1, 2, are right piece-
wise linear equivalent if there exists a piecewise linear homeomorphism

ψ : [m1,M1] onto−→ [m2,M2], ψ(m1) = m2,

such that
φ2 ◦ ψ = φ1.

Theorem 5.1. For equivalent generic models the corresponding func-
tions sim are right piecewise linear equivalent.

Proof. Since there is a continuous deformation (∆,Es, Vs), s ∈ [0, 1],
from one model to the other, there is also a continuous family of X∆ func-
tions

Xs : [ms,Ms]→ ∆, s ∈ [0, 1].

We deform Xs into the skeleton of the unit cube. Let Hr : ∆ → [0, 1]n

denote the deformation

Hr(x1, . . . , xn) = (min(1, rx1), . . . ,min(1, rxn)),

r ∈ [1,∞), x = (x1, . . . , xn) ∈ ∆.
Note that Hr “preserves” sims, namely for every r ≥ 1 and t ∈ [ms,Ms],

sims(t) = Sgn(Hr(Xs(t))).
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Since the closed interval is compact and all models are generic there is
a uniform bound B for the second smallest coordinate of Σs. Obviously for
every s and r > 1/B the image of HrXs is contained in the one-dimensional
skeleton of the cube. Since Xs is piecewise linear and it crosses the interior
of any subsimplex at most once, for r > 1/B the mappings HrXs are right
piecewise linear equivalent.

Now sims = Sgn ◦Hr ◦ Xs, therefore sims’s are right piecewise linearly
equivalent.

6. Invariants. The aim of this section is to provide certain numerical
invariants of the equivalence relation of generic models, namely the signs of
the n-minors of certain n× (2n+ 2) matrices of the form (a, b, A,B) where
A and B are invertible square n× n-matrices and a, b are column vectors.

Let I and J be two sets of indices, I,J ⊂ {1, . . . , n}, having respectively
k and n−k−2 elements, k = 0, 1, . . . , n−2 . We denote by dI,J the n-minor of
the n×(2n+2) matrix (a, b, A,B) obtained by taking: first the two columns
a and b, then the I columns of A and the J columns of B (preserving the
order of the columns).

Definition. We call the minors dI,J admissible if the sets I and J are
disjoint.

With every n-dimensional mean-variance model (∆,E, V ) such that ∆ is
a simplex spanned by n linearly independent vertices z1, . . . , zn, we associate
four n× (2n+ 2) matrices C#, Z#, Z#

1 and Y # as follows:

• C# = (e, µ̂, Ĉ, Id), where e = (1, . . . , 1)T , µ̂ = (E(z1), . . . E(zn))T , and
Ĉ is the Gram matrix of the vertices of ∆, Ĉi,j = zTi Czj .

• Z# = (h, µ,CZ, (Z−1)T ), where Z is the matrix of the coefficients
of the vertices zi of the simplex ∆, Z = (z1, . . . , zn). Note that ZTh = e,
ZTµ = µ̂ and ZTCZ = Ĉ.

• Z#
1 = (v0, v1, Z, Z

∗), where Z∗ is the matrix of the coefficients of the
dual basis, Z∗ = (z∗1 , . . . , z

∗
n). The duals z∗i are determined by the rule

zTj Cz
∗
i =

{
0 if i 6= j,
1 if i = j.

Note that since ZTCZ∗ = Id, we have Z∗ = C−1(Z−1)T .

• Y # = (e1, e2, Y, (Y −1)T ), where Y is the matrix of the y-coordinates
of the vertices zi (see §3) and ei is the ith standard unit vector.
• Y = ΦZ, where Φ is a transition matrix. Since ZTCZ = Ĉ = Y TY ,

we have C = ΦTΦ.



Mean-variance models 233

We recall that Φv0 = e1 and Φv1 = e2. Therefore

Y T e1 = Y TΦv0 = ZTΦTΦv0 = ZTCv0 =
1√
γ
e,

Y T e2 = Y TΦv1 = ZTΦTΦv1 = ZTCv1 =
1√
γδ

(γµ̂− βe).

We show that the signs of the dI,J minors of the above matrices are
closely related.

Lemma 6.1. For any disjoint I,J ,

dI,J (C#) =
√
δ detY · dI,J (Y #) = detZ · dI,J (Z#)

=
√
δ detZ · detC · dI,J (Z#

1 ).

Proof. Multiplication of an n×n square matrix by an n× (n+2) matrix
induces multiplication of n-minors of the second matrix by the determinant
of the first. Hence the assertion of the lemma follows from the equalities

CZ#
1 = C(v0, v1, Z, Z

∗) =
(

1√
γ
h,

1√
γδ

(γµ− βh), CZ, (Z−1)T
)
,

ZTZ# = ZT (h, µ,CZ, (Z−1)T )) = (e, µ̂, Ĉ, Id) = C#,

Y TY # = Y (e1, e2, Y, (Y −1)T ) =
(

1√
γ
e,

1√
γδ

(γµ̂− βe), Ĉ, Id
)
.

Corollary 6.1. If detZ > 0 and detY > 0 then the corresponding
dI,J minors of the matrices C#, Z#, Z#

1 and Y # have the same sign.

The dual basis simplifies the description of C-orthogonal spaces. Let
H(zi : i ∈ I) (Lin(v0, z

∗
j : j 6∈ I), Lin(v0, v1, z

∗
j : j 6∈ I)) be the affine

(respectively linear) space spanned by the vertices zi where i ∈ I (resp. by
v0 and z∗j where j 6∈ I, or v0, v1 and z∗j where j 6∈ I). Our proof of the main
theorem on invariants will be based on the following:

Lemma 6.2. For any set of vertices zi, i ∈ I, of ∆,

H(zi : i ∈ I)⊥ = Lin(v0, z
∗
j : j 6∈ I).

Proof. We recall that for i ∈ I and j 6∈ I, zTi Cz
∗
j = 0 and zTi Cv0 = 1/

√
γ.

Therefore v0 and z∗j ’s are orthogonal to H(zi : i ∈ I) but v0 does not belong
to Lin(z∗j : j 6∈ I). We get

H(zi : i ∈ I)⊥ ⊃ Lin(v0, z
∗
j : j 6∈ I),

but
dim Lin(v0, z

∗
j : j 6∈ I) = n−#I + 1 = codimH(zi : i ∈ I)

= dimH(zi : i ∈ I)⊥.

Therefore the two spaces coincide.
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Corollary 6.2. For any set of vertices zi, i ∈ I, of ∆,

ΣH(zi:i∈I) = H(zi : i ∈ I) ∩ Lin(v0, v1, z
∗
j : j 6∈ I).

Theorem 6.1. The mean-variance model (∆,E, V ) is generic if and
only if all admissible minors of the matrix C# (equivalently Y #, Z# or
Z#

1 ) are nonzero.

Proof. For n = 1 the theorem is obvious, all models are generic and the
set of admissible minors is empty.

Assume that our model is n-dimensional, n ≥ 2, and I and J are disjoint
sets of indices with union I ∪J containing n− 2 elements. We consider two
cases depending on whether I is empty or not.

Lemma 6.3. If I = ∅, then the vanishing of the dI,J minor of the matrix
C# (equivalently Y #, Z# or Z#

1 ) is equivalent to the equality of the value
of the mean E on the two vertices not in J .

Proof. Let J = (j1, . . . , jn−2), j1 < . . . < jn−2, and k, l, k < l, be the
two missing indices. We have

d∅,J (C#) = det(e, µ̂, ej1 , . . . , ejn−2) = (−1)k+l+1 det

(
1 µ̂k

1 µ̂l

)

= (−1)k+l+1(µ̂l − µ̂k).
Therefore the vanishing of the minor is equivalent to the equality

E(zk) = µ̂k = µ̂l = E(zl).

Next assume that I is not empty. Let

H1 = H(zi : i ∈ I), H2 = H(zi : i 6∈ J ).

Obviously H1 is a subspace of H2 of codimension 2.

Lemma 6.4. If I 6= ∅, then the following conditions are equivalent :

(i) The dI,J minor of the matrix Z#
1 (equivalently Y #, Z# or C#) is

zero.
(ii) ΣH2 intersects H1, or is parallel to it , or consists of one point.

Proof. From Corollary 6.2 we get

ΣH2 = H2 ∩ Lin(v0, v1, z
∗
j : j ∈ J ).

Therefore if ΣH2 intersects H1 or is parallel to it then the vectors v0, v1, z∗j
(j ∈ J ), zi (i ∈ I) are linearly dependent and the dI,J minor of the matrix
Z#

1 vanishes.
If ΣH2 degenerates to a point then the vectors v0, v1 and z∗j are linearly

dependent, hence the minor vanishes as well.
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On the other hand if the dI,J minor of Z#
1 is zero then there are coeffi-

cients c0, c1, ai (i ∈ I), bj (j ∈ J ), not all zero, such that

c0v0 + c1v1 +
∑

i∈I
aizi +

∑

j∈J
bjz
∗
j = 0.

We put
z =

∑

i∈I
aizi, a =

∑

i∈I
ai.

There are three possibilities:

• z = 0,
• z 6= 0 but a = 0,
• a 6= 0.

Case 1. If z = 0 then the vectors v0, v1, z∗j (j ∈ J ) are linearly depen-
dent, hence ΣH2 consists of one point.

Case 2. If a = 0 then z is parallel to H1. But on the other hand it
belongs to Lin(v0, v1, z

∗
j : j ∈ J ). We show that z is a leading vector of ΣH2 ,

i.e.
ΣH2 = {q}+ Lin(z),

where q is any point from the line ΣH2 . Indeed, z is parallel to H1 which is
a subspace of H2, hence {q}+ Lin(z) ⊂ H2. Next since q, z ∈ Lin(v0, v1, z

∗
j :

j ∈ J ),
{q}+ Lin(z) ⊂ H2 ∩ Lin(v0, v1, z

∗
j : j ∈ J ) = ΣH2 .

Since z 6= 0 and z is parallel to H1, we conclude that ΣH2 is parallel to H1.

Case 3. If a 6= 0 we may put z = (1/a)z. Then z ∈ H1. But also
z ∈ Lin(v0, v1, z

∗
j : j ∈ J ). Since H1 ⊂ H2, we get

z ∈ H1∩Lin(v0, v1, z
∗
j : j ∈ J ) = H1∩H2∩Lin(v0, v1, z

∗
j : j ∈ J ) = H1∩ΣH2 ,

which means that H1 and ΣH2 have a nonempty intersection.
To finish the proof of the theorem one has to apply the above lemmas to

all admissible minors. Note that the degeneration of ΣH2 to a point, when
dimH > 0, is equivalent to the constancy of the mean E on the space H2,
which is not possible for generic models.

Corollary 6.3. The set Mg of n-dimensional generic models is an
open dense semialgebraic subset of the set M of all n-dimensional models.

Proof. Mg is the complement of an algebraic set described by vanishing
of admissible minors.

Corollary 6.4. The signs of admissible minors are invariants of the
equivalence relation between generic models with fixed ordering of the vertices
of ∆.
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Proof. Admissible minors are continuous functions on the space of all
generic models of a given dimension and with fixed ordering of the vertices.
Since they are nonvanishing, their signs are constant on connected subsets
of this space, in particular on the images of the unit interval.

The signs of admissible minors cannot be chosen arbitrarily. There are
some restrictions. For example the determinant of the matrix

C∗ =




0 0 eT

0 0 µ̂T

e µ̂ Ĉ




is positive (compare Lemma 3.1). But taking twice the Laplace expansion
(compare [3, §1.6]) we obtain

detC∗ =
∑

dI,∅(C
#)d∅,I(C

#),

where the sum extends over all sets I of indices with #I = n− 2. Since at
least one summand must be positive, we get:

Corollary 6.5. If n ≥ 3 then for at least one set I with #I = n− 2,
the minors dI,∅ and d∅,I have the same sign.

Basing on the characterization of generic models by means of admissible
minors we get the following practical rule of checking the equivalence.

Corollary 6.6. Two generic models (∆,E, V ) and (∆′, E′, V ′) are
equivalent if there exists a continuous mapping

Φ : [0, 1]→ RN , t 7→ (Zt, µt, Ct),

such that :

(i) for all t, detZt 6= 0, detCt > 0 and Ct is symmetric;
(ii) for every admissible minor dI,J and all t, dI,J (C#

t ) 6= 0, where
C#
t = (e, ZTt µt, Z

T
t CtZt, Id);

(iii) ∆ = ∆(Z0e1, . . . , Z0en), E(x) = µ0x, V (x) = xTC0x for x ∈ Rn;
(iv) ∆′ = ∆(Z1e1, . . . , Z1en), E′(x) = µ1x, V ′(x) = xTC1x for x ∈ Rn.

Lemma 6.5. If (∆,E, V ) is a generic model , ∆ = ∆(e1, . . . , en), E(x) =
µTx and V (x) = xTCx for x ∈ Rn, then for any reals a1, a2, b, c1, c2, c3 with
ai > 0, ci ≥ 0 the model (∆,E′, V ′), where

E′(x) = a1µ
Tx+ beTx,

V ′(x) = a2x
TCx+ c1x

T eeTx+ c2x
TµµTx+ c3x

T (e+ µ)(eT + µT )x,

for x ∈ Rn, is equivalent to (∆,E, V ).

Proof. Since ci ≥ 0 and a2 > 0, the new variance V ′ is positive definite.
Multiplication of µ by a positive constant a1 induces multiplication of all
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admissible minors by a1. Analogously multiplication of C by a2 induces mul-
tiplication of admissible minors by a power of a2. The other transformations
do not change the admissible minors. Therefore the mapping

Φ : [0, 1]→ RN ,
Φ(t) = (Id, (1− t+ ta1)µ+ tbe,

(1− t+ ta2)C + t(c1ee
T + c2µµ

T + c3(e+ µ)(eT + µT ))),

induces the equivalence.

Before finishing this section we show one more application of Corol-
lary 6.6. Let diag(σ2

1, . . . , σ
2
n) denotes the diagonal n × n matrix with σ2

i ’s
on the diagonal. We shall consider the general noncorrelated rates of return
model (∆,E, V ), where

∆ = ∆(e1, . . . , en), E(x) = µTx, V (x) = xT diag(σ2
1, . . . , σ

2
n)x, x ∈ Rn.

Lemma 6.6. If the σi are positive and µi are pairwise distinct then the
general noncorrelated rates of return model

(∆(e1, . . . , en), µTx, xT diag(σ2
1, . . . , σ

2
n)x)

is generic and is equivalent to the model from Example 3.1,

(∆(e1, . . . , en), µTx, xTx).

Proof. Multiplying the columns of C = diag(σ2
1, . . . , σ

2
n) by positive con-

stants we do not change the signs of the admissible minors dI,J (C#). There-
fore the mapping

Φ : [0, 1]→ RN ,

Φ(t) =
(

Id, µ,diag
(

σ2
1

1− t+ tσ2
1
, . . . ,

σ2
n

1− t+ tσ2
n

))
,

induces the equivalence.

7. Three-dimensional models. In this section we give a complete
classification of the three-dimensional generic models.

For simplicity we assume that the simplex ∆ is spanned by the unit
vectors ei, ∆ = ∆(e1, e2, e3), and µ1 < µ2 < µ3. In this case the signs of the
minors d∅,J (C#) are fixed:

d∅,{1} = µ3 − µ2 > 0,

d∅,{2} = µ1 − µ3 < 0,

d∅,{3} = µ2 − µ1 > 0.

Therefore we have to deal only with the minors d{1},∅(C#), d{2},∅(C#) and
d{3},∅(C#). Due to Corollary 6.5 only 7 of the 8 possible combinations of
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signs may occur. The case (−,+,−), i.e. d{1},∅ < 0, d{2},∅ > 0, d{3},∅ < 0, is
not possible. We show that this is the only restriction.

We remark that in the three-dimensional case the sign of d{i},∅(C#) is
determined by the sign of the last y-coordinate of the ith vertex (in the
coordinates introduced in §3). Indeed, due to Lemma 6.1,

d{i},∅(C
#) =

√
δ detY · d{i},∅(Y #).

Y # =




1 0

0 1 Y (Y −1)T

0 0


 , Y =




y1,0 y2,0 y3,0

y1,1 y2,1 y3,1

y1,2 y2,2 y3,2


 ,

where
ei = yi,0v0 + yi,1v1 + yi,2v2.

Hence
d{i},∅(C

#) =
√
δ detY · yi,2.

Moreover

yi,0 =
1√
γ
, yi,1 =

√
γ√
δ

(
µi −

β

γ

)
.

Therefore the simplest way to construct examples is to provide the Y ma-
trices. The only condition to check is

detY > 0.

Examples. We fix β = 0 and α = γ = δ = 1. Then µ = Y T e2 and
C = Y TY . In the table opposite we list representatives for each combination
of signs of the admissible minors of C#. In the last column we also list all
open subsimplexes of ∆ crossed by the polygonal line Σ∆ of relative minimal
variance, i.e. the successive values of the function sim(t). In Figures 1 and 2
we show the triangles ∆ in (y1, y2)-coordinates. Looking at the intersection
of ∆ and the lines y1 = const we get the points of relative minimal variance.

Next we show that every generic three-dimensional model is equivalent
to one from the above list.

Theorem 7.1. Any three-dimensional models having the same signs of
the admissible minors are equivalent.

Proof. First we order the vertices with respect to the expected value of
return:

µi,1 < µi,2 < µi,3, i = 0, 1.

Next we deform continuously both models to models based on the same
simplex spanned by unit vectors ej . Due to Lemma 6.5 we may further
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Signs Y µ C Simplexes

+ + +

(
1 1 1
1 2 3
2 1 2

) (
1
2
3

) (
6 5 8
5 6 9
8 9 14

)



1 0 0
1 1 0
0 1 0
0 1 1
0 0 1




+ +−

(
1 1 1
1 2 5
2 1 −1

) (
1
2
5

) (
6 5 4
5 6 10
4 10 27

)



1 0 0
1 1 0
0 1 0
0 1 1
1 1 1
1 0 1
0 0 1




+−+

(
1 1 1
1 2 3
1 −1 1

) (
1
2
3

) (
3 2 5
2 6 6
5 6 11

)



1 0 0
1 1 0
1 1 1
0 1 1
0 0 1




+−−

(
1 1 1
1 2 3
1 −1 −1

) (
1
2
3

) (
3 2 3
2 6 8
3 8 11

)



1 0 0
1 1 0
1 1 1
1 0 1
0 0 1




−+ +

(
1 1 1
1 2 3
−1 1 4

) (
1
2
3

) (
3 2 0
2 6 11
0 11 26

)



1 0 0
1 0 1
1 1 1
1 1 0
0 1 0
0 1 1
0 0 1




−−+

(
1 1 1
1 2 3
−1 −1 1

) (
1
2
3

) (
3 4 3
4 6 6
3 6 11

)



1 0 0
1 0 1
1 1 1
0 1 1
0 0 1




−−−

(
1 1 1
1 2 3
−1 −2 −1

) (
1
2
3

) (
3 5 5
5 9 9
5 9 11

) (
1 0 0
1 0 1
0 0 1

)

deform our models to equivalent ones having µ0,1 = µ1,1 = −1, µ0,2 = µ1,2
= 0 and µ0,3 > 0, µ1,3 > 0. We may assume that µ0,3 ≤ µ1,3.

If µ0,3 = µ1,3 (i.e. E0 = E1 = E) then our models (∆,E, V0) and
(∆,E, V1) can be joined by a linear path (∆,E, (1 − t)V0 + tV1), t ∈ [0, 1],
which induces the equivalence. Indeed, since the admissible minors d{i},∅
depend linearly on t, there is no change of sign.
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Fig. 2. Cases (−+ +), (−−+) and (−−−)

If µ0,3 < µ1,3 we transform (∆,E0, V0) to an equivalent model (∆,E1, V
′).

Let C be the matrix of V0. We multiply the first row and first column of C
by µ1,3/t and the second row and second column by (µ1,3 + 1)(t + 1). We
denote the resulting matrix by Ct. Moreover we put µt = (−1, 0, t)T . The
mapping

Φ(t) = (Id, µt, Ct) for t ∈ [µ0,3, µ1,3]

induces the equivalence. To finish the proof we apply the line equivalence
described above.

8. One-factor models. The one-factor models describe markets with
one dominant synthetic asset which determines the returns of all other assets
(Sharpe–Lintner version of CAPM, see [7, pp. 148–149], or APT [7, p. 159]).
Namely, such models base on the assumption that there exist a random
variable r and constants βi and rf such that the rate of return of the ith
asset satisfies

ri = rf + βir + εi,

where εi’s are not correlated among themselves and not correlated with r.
Most often rf coincides with the risk free return. Let m = E(r), s2 = V (r)
and σ2

i = V (εi). Then we get the following mean-variance model:

µ = rfe+mβ, C = s2ββT + diag(σ2
1, . . . , σ

2
n).
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Theorem 8.1. If m > 0 and βi are pairwise distinct then the one-factor
model

(∆(e1, . . . , en), (rfe+mβ)Tx, xT (s2ββT + diag(σ2
1, . . . , σ

2
n))x)

is generic and is equivalent to the noncorrelated rates of return model

(∆(e1, . . . , en), βTx, xTx).

Proof. Apply Lemmas 6.5 and 6.6.

Corollary 8.1. If β1 < . . . < βn then the polygonal line Σ∆ is a union
of 2n−3 segments. The interior of the middle one is contained in the interior
of ∆, the interior of the ith, i < n − 1, in the interior of ∆(e1, . . . , ei+1),
and the interior of the jth, j > n− 1, in the interior of ∆(ej+2−n, . . . , en).

Proof. Compare Example 5.1 and Theorem 5.1.

Note that since the equivalence of generic models is stable, i.e. it is
preserved by small enough changes, the assertion of Corollary 8.1 remains
valid also if our model is only close enough to a one-factor model.
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