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P1roTr KACPRZYK (Warszawa)

GLOBAL REGULAR NONSTATIONARY FLOW FOR
THE NAVIER-STOKES EQUATIONS
IN A CYLINDRICAL PIPE

Abstract. Global existence of regular solutions to the Navier—Stokes
equations describing the motion of an incompressible viscous fluid in a cylin-
drical pipe with large inflow and outflow is shown. Global existence is proved
in two steps. First, by the Leray—Schauder fixed point theorem we prove lo-
cal existence with large existence time. Next, the local solution is prolonged
step by step.

The existence is proved without any restrictions on the magnitudes of
the inflow, outflow, external force and initial velocity.

1. Introduction. We consider viscous incompressible fluid motions in
a finite cylinder with large inflow and outflow and under boundary slip con-
ditions. Therefore the following initial-boundary value problem is examined:

vy +v-Vo—divT(v,p) = f in T =02 x(0,7),

dive =0 in 27,

v-n=0 on ST =5, x (0,7),
(1.1) vii-D(v) - Ta+70-Ta =0, a =1,2, on ST,

v-n=d on ST =5, x (0,7),

n-DW) - To =0, a=1,2, onSg,

v|i=0 = v(0) in £,

where 2 CR3, S = S1USy = 002, v =v(z,t) = (vi(z,t),va(x, 1), v3(z,1)) €
R? is the velocity vector of the fluid motion, p = p(x,t) € R! the pressure,
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f=f(z,t) = (fi(z,t), f2(x,1), f3(x,t)) € R3 the external force field, 7 the
unit outward vector normal to the boundary S, and 7., @ = 1, 2, are tangent
vectors to S. Moreover, T(v,p) is the stress tensor of the form

T(v,p) = vD(v) = pl,

where v is the constant viscosity coefficient, I the unit matrix and D(v) the
dilatation tensor

D(v) = {via; + vja; }ij=123-
Finally, v > 0 is the slip coefficient.

By 2 ¢ R? we denote a cylindrical type domain parallel to the x3 axis
with arbitrary cross section. We assume that Sy is the part of the boundary
which is parallel to the x3 axis and S5 is perpendicular to x3. Hence

S;={z e R®: p(z1,29) = cp, —a < 3 < a},
SQ(_G’) = {x € R3 : QO(I'L,Z'Q) < Cp, T3 = _a}7
Sy(a) = {z € R®: p(z1,22) < co, 3 = a},
where a, ¢y are given positive numbers and ¢(x1,x2) = ¢ describes a suffi-
ciently smooth closed curve in the plane x3 = const.

To describe the inflow and outflow we define
(12) di=-v- ﬁ’Sg(—a)? dy=v- 77L|Sz(a)7
sod; > 0,47 = 1,2, and by (1.1)23 and (1.2) we have the compatibility
condition
(1.3) o= S d1 dSQ = S d2 dSQ,

Sa2(—a) Sa(a)
where @ is the flux.

Let us introduce an extension a = a(xz,t) € R such that

(1.4) a]SQ(,a) = d1, 04’52((1) = dg.

Then equations (1.1)236 and (1.3) imply the compatibility condition
Vamdr=— | alp——adS+ | als—adS2=0.
n Sa(—a) Sa(a)

The aim of this paper is to prove the existence of global solutions to prob-
lem (1.1) without any restrictions on the magnitudes of the initial velocity,
external force field, inflow and outflow. This will be done by increasing reg-
ularity of weak solutions. For this purpose we follow the ideas and methods
from [9]. To show the existence of such solutions we need, however, some
small parameters. By such parameters we have Lo-norms of derivatives of
v and f with respect to z3 and derivatives of di, dy with respect to 2/,
' = (11, x2).
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Hence we introduce the quantities
h:U,azga q = Dx3, g:f,arga
w = vs, X = V201 — Vl,az-

Finally, we recall the definitions of Besov spaces which are necessary to
understand the main results:

W;vo/Q(QT) = {u = u($7 t) : ||u||W;,0/2(QT) = HUHLP(QT)

T [o] [o] / 1/p
|Dz "u(z,t) — D, u(z’,t)|P ,
+ <§ i dz dz’ dt
09290

(1.5)

|x — w/’3+p(0’—[0’])

TT  Alo/2] _ alo/2] INT 1/p
n <S S S 10, “u(z,t) — 0, “u(z, t')] dxdtdt’) < OO}’
Q00
<p

|t — t/|1+P(U/2*[0/2D

where 2 C R3, 1
of o, and

wyunz{u=umruwWﬂmzuw%m)

DY u(z) — DI lu(arypp VP
+ <§2§2 PR dxdx < 00p.

Now we formulate our main results.

THEOREM 1.1 (local existence). Assume that:

(a) h(0) € W3(£2), x(0) € L2(£2), v(0) € Wy (), g € La(27), dy €
Lo(0, T, W o($2)), do € W'?¥U(ST), d e Wi/21(sE), f e
L5/2(QT), F3 S Llo/g(QT), d S LOO(O,T, W?)I(SQ))

(b) There ezists a constant A such that p(A,G(T))n?(T) + G'(T) < A,
where

h(T)= ¢(||d”Loo(0,t,W§(Sz))’T)(Hdnig(o,t,Hl(Sg)) +|d,t|(2;/5,2,52T
+ |f|g/5,2,(zt + ‘”(O)gn)?

G(T) = (1) +[dlls/s,5/2,5; + [[0(0) 11,572, + 52,007
+1F3]10/3,0m + [X(0) 2,2+ ldl3 6 57 + ldls 00,57

G(T) = lglg,or +11(0) 12,0+ 1 (T) +[1da 132,257

m(T) = ts/gl% ld o (') I1,55 + | | Lo (04,17 (52))

Fld il Ly0,mw (52)) T 3lays.2,57 +1ales.2,.0r +10(0)]2,0

6/5

and @, are increasing positive functions.
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Then there exists a solution to problem (1.1) such that
HhHngl(QT) < A, HUHW;/»;(QT) < QOO(A7 G(T), G/(T)7771(T)7l1(T))7
where g 1S an increasing positive function.

THEOREM 1.2 (global existence). Let the assumptions of Theorem 1.1
be satisfied. Then there exists a sequence {T,}°° |, increasing to infinity,
such that in each interval [T, Ty+1] with Ty41 — T, < T there exists a local
solution to problem (1.1) satisfying the estimates

HhHW22’1(.Q><(Tn,Tn+1)) <4

||UHW52/’;(Q><(Tn,Tn+1))

for all m € N.

2. Notation and auxiliary results. To simplify the writing we intro-
duce the following notation:

ulp.@ = lullz,@): Qe {n",8", 02,5}, pel,od
HUHS,Q = HU’HHS(Q)? Q € {Qv S}? 5 € RJr U {0}7
”U’HS,QT = HUHWZS’S/Q(QTy Q € {Qa S}? S R-f— U {0}7

Iulp,q,QT = Hu||Lq(0,T;Lp(Q))7 Q € {‘Qa S}? D, g€ [1700]7
||u||s,q,QT = HUHW;aS/Q(QT), Q € {'Qv S}v 5 € RJr U {0}7 qec [1a OO],

HUHS,%Q = Hu||qu(Q)7 Q € {‘Qa S}? s € R-f— U {0}7 qc [17 OO]

By ¢ we denote a generic constant which changes its magnitude from formula
to formula. By ¢(o) and ¢(o) we understand generic functions which are
always positive and increasing. Finally, we do not distinguish scalar and
vector-valued functions in notation.

We introduce the space

V(") = {u Hullygory = 388(51%? [wll )
S El

T 5 1/2
+ (S IVu@®) o) dt) < OO}, k€ N.
0

Now we recall a certain imbedding for anisotropic Sobolev spaces. Let
2 C R3. Then we define

1/2
= |Vl + |Vl + |VEuPydz| ", keN,
02

||u||W217k(_Q)
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where V' = (0;,, 0z,). From [6] we have

1-2
(2.1) Ly < €lll}) gy 55500 fuly 577
where
2 2k+1 2k+1
2.2 - = .
(2:2) r * qk 2k
For r = ¢ we have
2(4k + 1)
2. =—* =q(k
(23) o= = am
and the inequality
(2.4) [ulg or < clull}? esssup uly ",

La(0.T,W, " (£2)
where 2/q < 1. By the Young inequality, (2.4) gives

(2.5) lulg or < g1/2 @) T ce9/(a=2) esstsup lul2,0,

el 0,725
Finally, from [9] we get, for a weak solution to problem (1.1):

LEMMA 2.1. Assume that d € Loo(0,T; W4 (S2)) N L2(0,T; H(S2)),
d+ € Ly(0,T; L6/5(Sg)), f e La(0,T; L6/5(Q)) v(0) € La(£2). Then
(2.6)  lvllven < ez o.wi(sw)) B[ldlZ, (0,t,H(S2))

|d7t|6/5,2,sg F 115 50,00 + [0(0)[3 0] = (1)

where p is an increasing positive function.

3. Basic formulations. To prove the existence of global solutions to
problem (1.1) we follow [9]. Therefore we need problems satisfied by quanti-
ties (1.5). First we have, from [9]:

LEMMA 3.1. The quantities h,q are solutions to the problem
hy—divT(h,q) = —v-Vh—h-Vo4g in 27,

divh =0 in 27T,
n-h=20 on ST,
(3.1) vi-D(h) - To +7h - Ta =0, a=1,2, on ST,
hi=—dg, i=12, on ST,
h3zs = A'd on S5,
h|i—o = h(0) in £,

where A = 82 + 02

T

d stands for di and ds, because d]SQ(,a) = di,
d| sy (+a) = da-
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Proof. Equations (3.1)1,234,7 follow directly from the corresponding
equations in (1.1) by differentiation with respect to 3, because S; is parallel
to the x3 axis.

To show (3.1)56 we recall that

(3.2) ’Ug|s2 = d, (’Ui’% + US,:E,')|52 =0, 1=1,2.
Hence v; 4,|s, = —d 4;, i = 1,2, and (3.1)5 holds.
From (1-1)2 we have 'U3,903€E3‘52 = _('ULZBSM + U27IE3$2)|S2 = d,ﬂhm + d,ﬂﬁzwz

= A'd. Hence (3.1)g follows. This ends the proof.

LEMMA 3.2. The function X = v2 4, — V1, @S a solution to the problem
Xt +v-VXx—=h3x+howy —hw,, —vAx=F3 in 0T,

Xls; = _Ui(ni,ijlj + Tu‘,mjnj) + ngle
(3-3) + U Ti(T12,00 — Tiles) = X on 5{7
X,z3 =0 on SQT,
Xlt=0 = x(0) in 12,
where
(P21, 0.250) (=$22, .01, 0)

’ﬁ"5'1 = ) 7__1|S1 = ) 7_—2‘51 = (0707 1) = es,
\ O T P \ O T P,
nls, = €3, Tils, =e€1, Tals, = €2,
where €; = (1,0,0), é2 = (0,1,0) and F3 = foz, — f1,2,-

Proof. Differentiating the first equation of (1.1); with respect to xg, the
second equation of (1.1); with respect to z1, and subtracting the results
yields (3.3)1.

To show (3.3)2 we extend the vectors 71, 7 into a neighbourhood of Sj.
In this neighourhood v' = (v1,v3) can be expressed in the form

v =v- AT+ v D
Then
Xlsy = [(v-Tim2 +v-nng) oy — (v- TiT11 + 0 - Wn1) 205,
= [_ﬁ V(7)) +v-7 (712,11 - 7—1175132)”517
where (1.1)3 was employed and 714, n; are the ith Cartesian coordinates.

Utilizing (1.1)3 in (1.1)4 for a = 1 yields
(3.5) vn - V(U . 7_'1) — l/’UZ'(nl"ijlj + Tu,xjnj) +yv-71 =0.

Exploiting (3.5) in (3.4) yields (3.3)2. By the definition of x and (3.1)5 we
have

(3.4)

X,w3|52 + (7}2,$1I3 - U1,$2$3)’52 = _(dﬂﬁlm - d,$2$1)’52 =0.
This ends the proof.
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For solutions to problem (3.1) we get (see [9])

LEMMA 3.3. Assume that v is a weak solution to problem (1.1). Then
t
(36)  hOBa+ v | IO gt +1h- Tal g
0
< @(ldils g1, [Volz 2,005 01, |d|3,oo,s§)"7%(t),

where @ is an increasing positive function, ly is defined by (2.6) and

(3.7) m(t) =sup|ld o ()15, + Id | oo, 11 (52)) F Ndtll oo, (55))
t'<t /5

6

+ 1 fslayz2,s 1 19l6ss,2,0t + [h(0)]2,0-

4. Estimates. First we examine problem (3.3). Let x be a solution of
the problem

Xt —vAY=0 in QT

~ — ST,
(4.1) X=X on

Xas =0 on 87,

)~(|t:0 =0 in (2.

Then x' = x — X is a solution of
X+ VX' = h3(voe, — Vig,) + howe, — hiwg,

—vAY' =F3—v-VY in 2T,
(4.2) X = on ST,
Xy =0 on Sy,

X lt=0 = x(0) in 2.

LEMMA 4.1. Assume that h € L5(27), F3 € Lig7(27), v € Lo(0, T,
W91/5(Q)), NS Wf’s/2(QT) with 5/r —3/2 < s, x(0) € La(£2). Assume also
that v is a weak solution satisfying (2.6). Then a solution of problem (4.2)

satisfies the inequality
t

(43) XD, + { XA odt’ < C(l%(t)(Ilv/Him(o,t,ng/s(m) + R[5 q0)
0

+ 1012, 0 + | F3l30,7.00 + [X(0)[3 0)-
Proof. Multiplying (4.2); by x’ and integrating the result over {2 we get
X D0+ VX Be = [ (020 = vigs)hax'de
2

- S(hZU)@“l — hiw 4,)X dx + S v Vxx'dz + S F3x/dx.
9] 9] 9]

| =
SE



296 P. Kacprzyk

Utilizing the Poincaré inequality and integrating with respect to time yields

t
(14) OB+ INOIRgdt’ < e( ] hsl V2] | do
0 0t

+ | Il 1] da dt + (
Qt

O ey

Vo) VX)X () do dt!
(9]

+ § B[] dwdt + [x(0)B.0)-
nt
We estimate the first term on the r.h.s. of (4.4) by |hs5 ot -|VV'|2 0t [X[10/3,0t
and the second by [V'w|y ot |h']5 0t|X'|10/3,0t- The third term on the r.h.s. of
(4.4) can be expressed in the form
t
( VL o) - v @)x(t) da dt!
0
and estimated by

5|VX/‘§,Qt + |vvg,9f|)~(|§,oo,9t'
We bound the fourth integral on the r.h.s. of (4.4) by

X' 110730t | F3]10/7,0t
Utilizing the above estimates in (4.4) we obtain
t

X'13,0 + S X' ()7 odt < 0(5(|X/’%o/3,m +1VX'13 00)
0

+ |VU’§,QtI>~<I§,oo,Qt + ’hg,mwvg,m + ’F3\%0/7,9t + [x(0)13,0)-

Applying the transformation x’ = x — x and taking e sufficiently small we

have
t

OB+ § IO gdt' < o(|0 o IK e 0 + 1 e V0 o
0
t

HEO B oo, + VIRWOIE 20t + 1Bl 7,00+ IX(O) B 0)-
0
Now using the inequalities

[ulio/3,0t < c(lulz00,0t + [[ully0,mwi (2)) < cllullsror
where 5/r — 3/2 < s, we obtain
t

X130+ X o dt’ < (RO 0.0 + )AL g + 1KI1Z, 00
0

+ \Fi%ﬁo/?,m + [x(0)[3,0).
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and using the inequalities [X[[s,0t < cllx«lls—1/rnst < clv]lsrer and
[Xl5,00,2t < 1V'|3.00,5t < [[V'[|Lec (0,8, 5(02))» We obtain (4.3). This concludes
the proof.

Next we consider the problem

: /
Vlgo — V221 = X in {2 )

: /

(4.5) Vg T V22, = —hz in (2,
v'on' =0 on S,

where 2 = 2N {x3 = const € (—a,a)}, S] = S1 N{x3 = const € (—a,a)},
and x3,t are treated as parameters.

LEMMA 4.2. Let the assumptions of Lemma 4.1 be satisfied. Then any
solution of problem (4.5) satisfies

(@8)  sup /@)l 0+ IV 03 < e(BOUAE e+ 1)+ 112

t
+1Esfloymon + [X(O) B+ 5up () B o+ S 101 0dt') = A4%(0).
0

Proof. For solutions of problem (4.5) we get the estimates

W o < eIxBor + 1hsl3 ), I1V13.00 < clIxlIf o + IIhs]lf o)-

where v/ = (v1,v2). Integrating the above estimates with respect to x3 and
the second one also with respect to time, and adding the results, we ob-
tain

a

sup | [0 (z3,8)|3 o das +

a
{110/ (s, )13 g dvs
t'<t _

a

O ey

t t
e(JINWIE g at’ +{Ins ()1} g dt).
0 0

Adding to the last inequality supy ., |W/|3 , + 80 B (t)]12 , dt', we obtain

)

t t
Sup 1013 .+ § 113, ¢ < c(S IX()IE o dt’ + Sup 7130
1< 1<

0 0
t t
+ IR @3 0 dt' + [IAa (@)1} g ).
0 0

Utilizing (4.3) to estimate the first norm in the last inequality and the in-
equality [|v'||1_ 0. W) S e[Vl Lo (0., 51 (2)) + €(1/E)[]2, 00,021, We Obtain
(4.6). This concludes the proof.
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Now we increase the regularity of v. For problem (1.1) we obtain
4.7)  vllzg0 + Vplger < c(jv" Volg g + [w - hlg o
+lldllg-1/q,85 + 170 Talli-1/g,4st + [0(0) 1.2 + | Flg,0)-
We estimate the first term of the r.h.s. by
V" Volg 0t < 10|x0,0t VU g0t

where A\1qg = 10, Aog =2 and 1/A; +1/X2 = 1, so ¢ = 5/3. The second term
is estimated by

lw - hls3,00 < |wlio/3,0t hl10/3,0t-
Using the above estimates and the inequality
[vllo5,5/3,5t < €llvllass.or + c(1/€)|v]2,0f,
we obtain
(4.8) lvll2s/3.00 + [Vplsss.00 < c(A)I (L) + [|dll7/5,5/3,:
+|v(0) |1 573,00 + 11 (t) + | fl5/3,00)-

Now in (4.8) we use (4.6) and the inequality [[v|s, ot < ellvllas/3,.0t +
C(%)Mz,m, with 1+ s < 5/r, to obtain

(4.9) |lvll25/3,0t < C(ll(t)(l + |hls,0t) + [ F3]10/3,0t + [x(0)|2,0

1/2
R gdt’)

1 Fls/s 00 +5up K (Bl +
t'<t

= A'(1),

N O e

+ lldll75,53,5 + [[0(0)[|1,5/3,00

2,1
sov € W5/3(Qt).
Next for problem (1.1) we obtain the inequality
(4.10)  [Jvllog,0t + VD20t < c(|v" - Volg gt 4+ |w - bl or + dl3/2,2,s1
+ [Jyv - Ta”1/2,2,s{ + 10(0)[[1.2,2 + | fl2,0¢)-
We estimate the first term of the r.h.s. by
[v" - Voly or < 0'|10,0t [ V]5/2,00

and the second term by

|w - hlo ot < |wls gl hlio/3,00
Using the inequalities

Vo5 9,0t + |v]5,00 < c||vlla5/3,0t
[vll1/2,2,5t < ellvlla2,er + c(1/e)|v]2 a0,

we obtain
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(4.11) ||vlla2,0t + [Vplo0t <c([[v]l5/3,2,0t([0'[10,0t + |Rl10/3,0t)
+ |v(0)|l1,2,2 + [ flo.ot + 1 (t) + Hd||3/2,2,sg)-
We need more regularity for v. Hence we prove
LEMMA 4.4. Assume that v € Wg’l(ﬂt). Then
(4.12)  vllas/0,0t + 1VDls 2.0t < c((A'(2) + 1)) ([[vll2,2,00 +A'(t) + 11(2))
+ [v0)ll1,5/2,2 + | fls/2,00 + 11 (t) + [|dllg/5,5/2,58)-
Proof. From (1.1) we obtain
(4.13)  ollas2,0t + 1 VDlsj2,00 < c([v'- Vo500t + |w - hls/o o
+ ldlls/s,5/2,55 + 170 - Talls/ss/2,5t + 1100157200 + | fls5/2,.0t)-
Then from (4.13), using the inequality
[v]l3/5,5/2,5t < €llvlls 22,00 + c(1/€)v]2,0t,
we obtain
(4.14) [jvlla5/2,0t + IVDl5/2,00 < C(’U,|10,Qt|vv|10/3,m + [vli0,0¢t|Pl10/3,00
+ [vO0)ll1,5/2,2 + | fls /2,0t + (1))
Now using in (4.14) the inequalities |v|19 ot < c||v[[2,2, ot and
(Vuliosz,0t < ellvllags/e.or +c(1/)|v]g 0f,
we obtain (4.12). This concludes the proof.

To prove the existence of local solutions to problem (1.1) we apply the
Leray—Schauder fixed point theorem. We show existence of a fixed point of
a transformation generated by problem (3.1).

LEMMA 4.5. Let v € W5(2'), g € La(2"), h(0) € La(R2). Then a
solution of (3.1) satisfies
(4.15)  |IRll2,2,0t + [Vala,0r < clp(l|v]]5/2,2,00)|Pl2,0t + [|d 2[l3/2,2,00
+ [v(0)[|1.2,2 + lgl2,0¢),
where @ an increasing positive function.
Proof. From (3.1) we get
(4.16)  [|hll22,0t + [Vdl2,0t < c(|v- Vhlz ot + [k - Vulg o
+ Ivh - Tallij22,st + ||d,x’||3/2,2,S§ + [v(0) 1,22 + |gl2,0¢)-
Using the Holder inequality in (4.16) we obtain
(4.17) HhH2,2,Qt + ’VCI|2,Qt < C(|U’10,Qtwh’5/2,m + |h|5,9t|vv|10/3,m
+ HhHl/2,2,S§ + ”d,x’||3/2,2,sg + [[v(0)[|1,2,2 + |g2,0)-
Now using the inequalities
1hll1/2,2,5t < ellhlla2,0r + C(1/e)[hl2,qr,
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[vl10,0t|Vhl5/2,0t < €llhlla2,0t + 1([v]10,00)[h]2,00
and
IVlio/3,0tlhls,0r < ellhllaz,0r + 02(IVulioss )bl o,
where ¢1, o are increasing positive functions, we obtain (4.15).
From (4.9) and (4.11) we get
(4.18) [0ll2,2,0t < (A (H)(A'(t) +11(t)) + [[v(0)]2,2,000
+ | fl20r + (@) + |ldlls/2,2,51) = B(t).
Next from (4.18) and (4.12) we get
(419)  vllas/z.00 < c((A/(E) + L)) (B(E) + A'(t) + Ui (1))
+ vO)l15/2,.2 + | fls/2.00t + 1 (t) + [|dllg/5,5/2,58)-
Finally, from (4.15) and (4.19) we obtain
(4.20) 12ll2.2,00 < @(l[hll22,00 G(8)|hl2,00 + G'(2),
where
G(t) = () + [|dlls/s,5/2,51 + 1v(O)l15/2.2 + | fl5/2,t
(4.21) + | F3l10/3,0t + [x(0)]2,2,
G'(t) = lgla.ot + [1R(O0)[[12,0 + 11 (t) + | d o [l3/2,2,58 + |hl2,00

and ¢ is an increasing positive function.

5. Local existence and uniqueness. To prove the existence of local
solutions to problem (1.1) we look for a fixed point of the transformation

(5.1) h=¢(h,A), A€0,1],
defined by the following system:
hy—divT(h,q) = —=A(w(h) - Vh+h-Vo(h)) +g in 27,

divh =0 in 27,
n-h=0 on Sf,
(5.2) vn-D(h) 7o +vh-7a =0, a=1,2, on ST,
hi=—dg,, i=1,2, on ST,
h3 4y = A'd on Sg,
hli=o = h(0) in 2.

Moreover, the dependence v = v(h) is determined by Lemma 4.4. The main
problem of this section is to show the existence of a fixed point of the trans-
formation (5.1) for A = 1.

The above formulation suggests that the Leray—Schauder fixed point the-
orem should be applied.
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To define the domain of ¢ we first examine the mapping v = v(h) defined
by Lemma 4.4. In view of the assumptions of (4.18) we define

(5.3) Mo(2") ={h:h € Lyg3(2") N Loo(0,t, La(£2)) N La(0, ¢, H'(£2))}.
Then (4.18) shows that

(5.4) v Mo — Wi (2.

Let ¢ be the transformation defined by problem (5.2). Then from (5.4) and
Lemma 4.5 we get

M = Mo(2T) N Wy (QT) 0 Ls(27) (1 {h s Vh € Ly p(027)}
and ¢ : M — WQQ’I(QT).
LEMMA 5.1. Assume that

g€ Ly(2"), de W85//52’5/4(52T); fE€Lsp(27), Fs€ Lygs(27),

X(0) € Lo(2),  v(0) € W35(R2), h(0) € W3(2), du € Wyin(S3),
Then the imbedding W3 (2T) ¢ M(2T) is compact.

Proof. In view of interpolation inequalities the following imbeddings are
compact:

W2H0T) € Mo(27), WEH(QT) c Wy P(2T), WEN(RT) c Ls(2T),
and Wy (27) ¢ {h : Vh € Ls/2(£27)}. Hence W2HRT) ¢ M(Q7) is
compact.

LEMMA 5.2. With the assumptions of Lemma 4.5, there exists a constant
A > 0 such that a fized point of ¢ satisfies

(5.5) [hll22,0t + [Val2,0 < A
Proof. From (3.6) and (4.20) we get
[hll22,0t < @(llhll2,2,00 G(t)m(t) + G'(t),
where
G(t) =1(t) + [|dllg/5,5/2,55 + [10(O)[1,5/2,02¢ + [[fll5/2,02t + | F3l10/3,00
+[x(0)|2,2 + ldl36,5t + |d’3,oo,557
G'(t) = |gla.0t + [[0(0) l1,2,0 + 11 (t) + ld .o ll3/2,2,5

and ¢ is an increasing positive function. For n;(¢) sufficiently small there
exists a constant A such that o(A, G(t))n(t) + G'(t) < A and G'(t) < A.
Hence the estimate (5.5) holds. This concludes the proof.

Finally, we show the uniform continuity of ¢.

LEMMA 5.3. Let the assumptions of Lemma 5.2 hold. Then the mapping
¢ is uniformly continuous in M(027) x [0,1].
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Proof. The uniform continuity with respect to A € [0, 1] is evident. There-
fore we examine the uniform continuity with respect to elements of M(£2¢)
for any A € [0, 1].

Since the dependence on A is elementary we omit A in the considerations
below because this does not change the proof.

Let hy € M(£2Y), s = 1,2. We consider the problem
het — div T(hs, qs) = —vs - Vhs — hs - Vog+¢g  in 27T,

divhs =0 in 27,
hs-n=0 on S;‘F;
(5.6) vn-D(h) - To +vh -7 =0, a=12, on ST,
hei = —dg;, i=1,2, on ST,
hogy = Ald on ST,
hs|i=o = h(0) in (2,

where s = 1,2 and vs = v(hs). Moreover, we have

Xs,t + Vs - VXS + E52ws,$1 - hslws,;vz - hs3Xs

—vAxs = F3 in 027,
2
(57) Xs = sziai = Xsx* on S?,
=1
Xs,z3 = 0 on SQT,
Xslt=0 = x(0) in £,

where s = 1,2, and a;, i = 1,2, are defined by (3.3)s.
Next we have the elliptic problem

Vs, 221 — Usl,zo = Xs in Q,,
(58) Vsl,zq + VUs2,o = —hs3 in .Q/,
v’ =0 on 57,
where s = 1,2, 2" and S} are cross-sections of {2 and S; with a plane

perpendicular to the z3 axis, and n’ = (ng, ng, 0).
First we examine problem (5.7). Let xs solve the problem
Xsit —VAXs =0 in T,
Vs = Yox on ST,
(5.9) Xo X !
Xs,zz3 =0 on Sy,

Xslt=o =0 on ST,
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where s = 1,2. Then x, = xs — Xs, $ = 1,2, is a solution to the problem

X{s,t + Vs - VX; - iLS3X’5 + h32ws,:1:1 - hslws,mg - VAX;

= Fs — vy - VX, + hasXs in 7,
(65.10) XL =0 on ST,
Xszy =0 on ST,

Xslt=0 = x'(0) in (2.

Since we are looking for a solution which is a regularization of a weak solution
we use the energy type estimate for the weak solution

(5.11) IUIQ,OO,-Qt + |v’l}’279t < ll(t), t<T.
Repeating the considerations leading to (4.19) we obtain

(5.12)  Jvsllap/2,0t < c((A'(t) 4 d2(t))(B(t) + A'(t) + da(t))
+ vO)l15/2,2 + [ flls /2,00 + 11 (t) + [|dllg/5,5/2,58)

where h is replaced by h. In view of (5.12) we have

(5.13) [vsll2,5/2,0¢ < @Rl ateor), 1 (E),72(0)),
where
Y1) = 0(t) + ldlls 552,51 + | fl5/2.00 + |F5l10/3,0t
72(0) = [[v(0)]l1,5/2,2¢ + [x(0)]2,02

and ¢ is an increasing positive function. By problem (5.2), from Lemma 4.5
and (4.20) we get

(5.14) sl mqery < @(lhsllmean, GE)L(E) + G'(1),
where
G =U(t) + dllss,5/2,5; + 10(O)1,5/2.02 + | fl5/2,0t + [F3l10/3,00
+ x(0)[2,0,

G = |glo.0t + [[M(0)|l1,2,0 + 11 () + [dar]]3/2,2,51

and ¢ is an increasing positive function.
Hence the mapping ¢ transforms bounded sets in M(£27) into bounded
sets in M(027).
Now we show the uniform continuity of ¢. For this purpose we introduce
H:hl—hg, VZUl—UQ,
Q=qa—-—q@ K=x—x
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Then H satisfies
H;—divT(H,Q) =~V -Vhy —vy-VH
—FI-V’Ul—iLQ'VV in QT,

divH=0 in 27,
(5.15) H-n=0 on ST,
vn -D(H) 7o +v7H -7, =0, a=1,2, on ST,
H; =0, i=1,2, on ST,
Hs ., =0 on SQT,
H|i=o=0 in £2.

For solutions to problem (5.15) we obtain
(5.16)  [[Hl22.0t + |VQl2.0r < |V - halyor + [v2 - VH|3 00
+[H - Voilp gt + [ho - VV o 0t + [[VH - Tall1/2,2,5t)-

Assume that hg, s = 1,2, belong to a bounded set in M(£2?). Hence there
exists a constant A such that

(5.17) sl < A, s=1,2.
Then from (5.16) we obtain
(5.18) 1H ll2,2,00 + [VQl2,00 < ¢(A)(IVll2s/2,00 + I1H | miear))

where t < T and ¢ is an increasing positive function.
To show the continuity of ¢ we have to find an estimate for [|V'[|3 5/, ot
For this purpose we consider the problem

Vi —divT(V,Q) = =V’ -Vuy —vh - VV = Why —weH in 027,

divV =0 in 27,
(5.19) V.-n=0 on ST,

n-Tw,Q) Ta+7V 70 =0, a=1,2, on ST,

V0]t=o =0 in £2,

where V! = (V1, Vo), W = Vi, vl = (vs1,vs2), ws = vs3, s = 1,2. For
solutions of (5.19) we have
(5:20) [[Vll25/2,0t + VQlg0t < c(|V" - Vuilsa.00 + |5 - V52 00
+ ’Wh1‘5/279t + |w2H\5/27m).
We bound the first term on the r.h.s. by
V' - Voils/2,00 < Vo0t Voilioss o

<e|Vllas/2,0t + lvllzs/2,00) V2,0t

The second term on the r.h.s. of (5.20) is estimated by
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vy - VV 52,00 < |vg]s. 0t VV ]40/11,0t
<elVllags 2.0t + elvllas/2,00)V ]z 0t
The third term on the r.h.s. of (5.20) is estimated by
[Whilso,00 < Wi 0tlhils o0 < ellVlas 2,0t + @lRll2,2,00)V]2,00
The last term on the r.h.s. of (5.20) is estimated by
(w2 H |52, 0t < |wal|i0,0t[H|10/3,0t < |V]5/2,2,0t | H|10/3,0t-
Utilizing the above estimates in (5.20) we obtain
(5.21) 1Vll2,5/2,0t + IV Q572,00 < ©(A)(IV]2,00 + [H]10/3,0t)-
Now we have to estimate the r.h.s. of (5.21) in terms of H. Multiplying
(5.19); by V and integrating over {2 yields
1d
2 dt
Multiplying (5.15); by H and integrating over {2 yields

(5.22) V3o +vIVIE e < c(IVuild o +1h3 )V o+ w2l3 o HI3 o).

1d ~ .
(5.23) Qawg,n +V|H|F o < (VI3 0lVI5a+ val3.0l VH o
+ |VU1|§,Q|ﬁ|§,Q + Slip ’BQ|Z2S,Q|VV|%,Q)'
Adding (5.22) and (5.23) gives
1d c1
620 3 G@lVBo+ B+ (S IVIEL+IHIE )
< c((|[Vuil3o+ 1hl3o+ Va3 0) V3.0 + w3 ol HI3 0

+ |U2’§,Q’VH’%,Q + |VU1|§,Q|H|%,Q),

where ¢1/2 > sup, |ﬁg]§79
Integrating (5.24) with respect to time yields
t
(625 VOBa+HOBe+r|(IVE)Eg+IHIE o) de
0

< cexp C(W”ﬂ%,z,m + |h1|§,2,9t + |Vh1|§,2,m + |v2|§,2,_(2t)
: (|U2|§,oo,m’vj§’§,m + |Ul|§,2,nt|ﬁ|g,m,m) =J
By imbedding theorems we have
J < cexp C(Hle%,s)/th + ||U2H§,5/2,Qt + Hh1||3,2,9t)
: (||U2H§,5/27mwg’§,m + ”U1||§,5/2,Qtlﬁ|%,oo,ﬂt) =Ji.
By (5.17) we obtain
Ji < p(A)(IVH g + HHI; oo 0)-
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Hence (5.25) takes the form
(5.26) IVIlvean + I1H e (o < @(A)(IVH o0t + |Hlz00,00)-
Finally, from (5.18), (5.21) and (5.26) we obtain
1| pmeery < oA H | pary.
This implies the continuity of ¢ and ends the proof.

Finally, by the Leray—Schauder fixed point theorem we deduce Theorem
1.1 (local existence).

6. Global existence

THEOREM 6.1. Let the assumptions of Theorem 1.1 be satisfied. Then
there exists a sequence {t;}:°, increasing to infinity such that the local solu-
tion determined by Theorem 1.1 exists in each interval [t;,t;11], 7 =0,1,...,
where tyg = 0.

Proof. Assume that we have proved the existence of a local solution with
sufficiently large existence time 7. Then

T T
5/2

Jlo@Bodt <, [ll@®ys,qdt <e,

0 0

T T

JInBodt <, lIr@3a0dt <

0

0

Then there exists T, < T sufficiently large and there exists ¢, € [T, T] such
that

w(t)lz,e,  [ht)lz.e, o)z, [[h(E) 220
are so small that
[v(t)]2,2 < |v(0)]2,0,
|h(te)]2,0 < [h(0)]2,0,
vt )lle/5,5/2,2 < 1v(0)ll6/5,5/2,2;
1Rt 12,2 < [17(0)][12,0-

Then we can prove the existence of local solutions in [T, ¢, 4+ T']. Hence the
global existence follows.
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