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Piotr Szopa (Warszawa)
FINITE-DIMENSIONALITY OF 2-D MICROPOLAR FLUIDFLOW WITH PERIODIC BOUNDARY CONDITIONS
Abstrat. This paper is devoted to proving the �nite-dimensionality ofa two-dimensional miropolar �uid �ow with periodi boundary onditions.We de�ne the notions of determining modes and nodes and estimate theirnumber. We hek how the distribution of the fores and moments throughmodes in�uenes the estimate of the number of determining modes. We alsoestimate the dimension of the global attrator. Finally, we ompare our re-sults with analogous results for the Navier�Stokes equation.1. Introdution. There are some heuristi as well as dimensional anal-ysis arguments suggesting that the long-time behavior of a turbulent �ow isdetermined by a �nite number of parameters. Therefore the �ow has onlya �nite number of degrees of freedom and an be approximated by a �nitesystem of ordinary di�erential equations. These arguments are based on aonjeture that rapidly varying, high-wavenumber omponents deay as fastas they leave lower-wavenumber ingredients una�eted. By Kolmogorov'stheory, in 3-dimensional �ows only the wavenumbers up to the uto� value

λK = (ε/ν3)1/4 need to be onsidered. The question is then redued, asexplained in [17℄, to �nding the number of resolution elements neessary tobe onsidered to desribe the behavior of a �uid in a volume, say a ube ofside length l0. The smallest resolved distane is ld = 1/λK and therefore thenumber of resolution elements is (l0/ld)
3.A theory of Kraihnan [15℄, onerning a 2-dimensional turbulent �ow,allows us to estimate the number of resolution elements required by (l0/λKr)

2,where λKr is the Kraihnan length λKr = (ν3/χ)1/6 and χ is the average
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310 P. Szopaenstrophy dissipation rate. We refer the reader to [3℄ for a more detaileddisussion of turbulent length sales.The notion of determining modes arises naturally when onsidering theFourier deomposition of a �ow. There are some results onerning determin-ing modes in the ontext of 2-dimensional Navier�Stokes equations. Foia³and Prodi showed in [8℄ that if a number of Fourier modes of two di�erentsolutions have the same asymptoti behavior, then the entire solutions alsohave the same asymptoti behavior. Subsequent work has been aimed at es-timating how many low modes are neessary to determine the behavior of a�ow. The most reent results are in [6℄ for the ase of no-slip boundary on-ditions and in [12℄ for the ase of periodi boundary onditions. The numberof determining modes for a 2-D miropolar �uid �ow with no-slip boundaryonditions was estimated in [23℄.In many pratial situations, for instane in physial experiments, dataare olleted from measurements at �nitely many points in the domain ofthe �ow. A natural question is how many measurement points are neessaryto determine the long-term behavior of the �ow. This leads to the notion ofdetermining nodes, introdued by Foia³ and Temam in [9℄. The most reentestimate for the lowest number of determining nodes for the Navier�Stokesequation in the spae-periodi ase was derived in [12℄.Another approah to desribing the asymptoti behavior of a �ow with a�nite number of parameters is to use a global attrator. For every trajetory
u in the phase spae we an hoose, by the �Shadowing Lemma� (f. [21℄),a trajetory uA lying on the attrator that is arbitrarily lose to u in aninterval of time, that is, |u(t) − uA(t)| < ε for t ∈ (t0, t1). On the otherhand, a global attrator has �nite Hausdor� and fratal dimension, so wean parametrize it with a �nite number of parameters (f. [7℄, [10℄, [19℄).Therefore we an desribe approximately the long-term behavior of the �owby a �nite number of parameters.There are many results onerning the dimension of an attrator for theNavier�Stokes equation with a variety of boundary onditions, e.g. periodiboundary onditions [26℄ or a pipe-like domain with arbitrary in�ow at in-�nity [20℄. The dimension of an attrator for miropolar �uid equations withvarious boundary onditions was estimated in [2℄, [18℄.In this paper we will onsider all the above mentioned ways of deter-mining the long-time behavior of a miropolar �uid �ow by a �nite numberof parameters. We estimate the lowest number of determining modes (The-orem 2) and nodes (Theorem 3), and the dimension of a global attrator(Theorem 4).We will onsider the miropolar �uid equations, whih in the two-dimen-sional ase have the form (f. [18℄)
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∂u

∂t
− (ν + νr)∆u+ (u · ∇)u+ ∇p = 2νr rotω + f,(1.1)

div u = 0,(1.2)
∂ω

∂t
− α∆ω + (u · ∇)ω + 4νrω = 2νr rotu+ g,(1.3)where u = (u1, u2) is the veloity �eld, p is the pressure and ω is themirorotation �eld interpreted as the angular veloity of partiles. In thetwo-dimensional ase we assume that the axis of rotation of partiles is per-pendiular to the x1, x2 plane. The �elds f = (f1, f2) and g are the externalfores and moments respetively. The positive onstants ν, νr, α are the vis-osity oe�ients, and

rotu =
∂u2

∂x1
− ∂u1

∂x2
, div u =

∂u1

∂x1
+
∂u2

∂x2
, rotω =

(
∂ω

∂x2
,− ∂ω

∂x1

)
.We supplement these equations with the initial onditions(1.4) u(x, 0) = u0(x), ω(x, 0) = ω0(x)and periodi boundary onditions(1.5) u(x+ Lei, t) = u(x, t), ω(x+ Lei, t) = ω(x, t) ∀x ∈ R

2 ∀t > 0,where e1, e2 is the usual basis of R
2 and L is the period in the ith diretion.We give the existene theorem in the next setion after de�ning the relevantfuntion spaes.This paper is organized as follows: In Setion 2 we introdue the funtionspaes and operators used throughout, and we present the main results. Se-tion 3 ontains some a priori estimates. In Setions 4 and 5 we estimate thenumber of determining modes and determining nodes, respetively. In Se-tion 6 we reall the notions of fratal and Hausdor� dimension and estimatethe dimension of a global atrator.2. Mathematial setting of the problem and the main results.In this setion we introdue some funtion spaes, trilinear forms b and b1,the Stokes and −∆ operators and the rot operator.Funtion spaes. Set Q = (0, L)2. For every Banah spae X we willdenote by X the spae X ×X with the standard produt norm.

Lq is the usual Lebesgue spae Lq(Q) for q ∈ [1,∞]. We denote the salarprodut in L2 by (·, ·) and the norm in L2 by | · | when it does not lead toonfusion.
Hm, m ∈ N, are the usual Sobolev spaes Hm(Q) of funtions whosederivatives up to order m are square integrable, with the norm

‖u‖m =
( ∑

|α|≤m

\
Q

|Dαu|2 dx
)1/2

.



312 P. SzopaWe denote by Hm
per(Q), m ∈ N, the spae of real funtions in Hm

loc(R
n)whih are periodi with period L in eah oordinate diretion: u(x+Lei) =

u(x), i = 1, 2. It is a Hilbert spae with the salar produt
(u, v)m =

∑

|α|≤m

\
Q

Dαu(x)Dαv(x) dx

and the indued norm | · |m. The funtions in Hm
per(Q) are expliitly hara-terized by their Fourier series expansion:

Hm
per(Q) =

{
u =

∑

k∈Zn

uke
2iπk/L·x : uk = u−k, |u|m =

∑

k∈Zn

|k|2m|uk|2 <∞
}
,

where k/L = (k1/L, k2/L). The norm |u|m is equivalent to the norm
{
∑

k∈Zn(1 + |k|2m)|uk|2}1/2. We also set
Ḣm

per(Q) = {u ∈ Hm
per(Q) : u0 = 0}.We denote by H and V the divergene-free subsets of Ḣ

0
per(Q) and

Ḣ
1
per(Q), respetively. We equip V with the salar produt and the Hilbertnorm

((u, v)) =
n∑

i=1

(
∂u

∂xi
,
∂v

∂xi

)
, ‖u‖ = {((u, u))}1/2.

This norm is equivalent to the norm indued by H1
per(Q), and V is a Hilbertspae for this salar produt.One an hek that Ḣ−m

per is the dual spae to Ḣm
per; we also denote thedual spae to V as V ′.Let H and V denote H × Ḣ0

per and V × Ḣ1
per, respetively, with standardprodut norms.

Lq(0, T ;X), where X is a Banah spae, is the spae of strongly measur-able funtions u : (0, T ) → X with the following norm:
‖u‖Lq(0,T ;X) =





(T\
0

‖u(t)‖q
X dt

)1/q
, 1 ≤ q <∞,

ess sup
t∈(0,T )

‖u(t)‖X , q = ∞.
C([0, T ];X), where X is a Banah spae, is the spae of ontinuous fun-tions u : (0, T ) → X with the usual norm.Stokes and −∆ operators. Let us onsider the Stokes problem, obtainedfrom the Navier�Stokes equation by negleting all time-dependent and non-linear terms, with periodi boundary onditions (1.5): for given f ∈ Ḣ

0
per or

Ḣ
−1
per, �nd u ∈ Ḣ

1
per and p ∈ L2 suh that



2-D miropolar �uid �ow 313(2.1) −∆u+ ∇p = f, ∇ · u = 0.It is known (f. e.g. [21, 25℄) that in this ase the Stokes operator A is simply
−∆ (provided that f ∈ H) with domain D(A) = Ḣ

2
per ∩H. The operator Ais one-to-one from D(A) onto H.The operator A−1 is linear and ontinuous from H into D(A). Sinethe injetion of D(A) in H is ompat, we an onsider A−1 as a ompatoperator in H. It is also self-adjoint as an operator in H. Hene it has asequene of eigenfuntions wj , j ∈ N, whih form an orthonormal basisof H,

Awj = λjwj , wj ∈ D(A),

0 < λ1 ≤ λ2 ≤ . . . , λj → ∞ as j → ∞.Let us onsider the Poisson equation with periodi boundary ondition,that is: for given g ∈ Ḣ−1
per �nd ω ∈ Ḣ1

per suh that
−∆ω = g.The operator −∆ has the same properties as the Stokes operator: it is one-to-one from D(A1) = Ḣ2

per ∩ Ḣ0
per onto Ḣ0

per. The operator A−1
1 is linear,ontinuous from Ḣ0

per onto D(A1) and ompat as an operator in Ḣ0
per. Al-though the eigenvalues are the same, the eigenfuntions are di�erent, beause

ω is a salar funtion. We denote the eigenfuntions of −∆ by ̺k. Let A1 bethe −∆ operator with domain D(A1) = Ḣ2
per ∩ Ḣ0

per.We an express every u ∈ H and every ω ∈ Ḣ0
per as

u(x, t) =

∞∑

k=1

uk(t)wk(x), ω(x, t) =

∞∑

k=1

ωk(t)̺k(x).The Galerkin projetors orresponding to the �rst m modes are
Pmu(x, t) =

m∑

k=1

uk(t)wk(x), P 1
mωi(x, t) =

m∑

k=1

ωk(t)̺k(x).We also denote the projetions onto modes higher than m by Qm and Q1
mrespetively,

Qmu(x, t) =

∞∑

k=m+1

uk(t)wk(x), Q1
mω(x, t) =

∞∑

k=m+1

ωk(t)̺k(x).Trilinear forms. We de�ne trilinear forms b and b1 as follows:
b(u, v, w) =

2∑

i,j=1

\
Q

ui
∂vj

∂xi
wj dx



314 P. Szopafor all u, v, w ∈ V , and
b1(u, ω, ψ) =

2∑

i=1

\
Q

ui
∂ω

∂xi
ψ dx

for all u ∈ V and all salar funtions ω, ψ ∈ Ḣ1
per(Q). The forms b and b1are skew-symmetri with respet to the last two oordinates,(2.2) b(u, v, w) = −b(u,w, v), b1(u, ω, ̺) = −b1(u, ̺, ω),whih implies the orthogonality property

b(u, v, v) = 0, b1(u, ω, ω) = 0.In the 2-dimensional spae-periodi ase the form b has one more orthogo-nality property (f. [25℄):(2.3) b(u, u,Au) = 0 ∀u ∈ D(A),whih the form b1 does not have�it is not true that b1(u, ω,A1ω) = 0for all u ∈ D(A) and ω ∈ D(A1). The lak of this orthogonality propertyauses that the a priori estimates we obtain are more involved than analogousestimates for the Navier�Stokes equation with periodi boundary onditions.We get some estimates of the forms b and b1 using the Ladyzhenskayainequality [16℄
‖u‖L4 ≤

(
6

π

)1/4

|u|1/2‖u‖1/2 for all u ∈ Ḣ1
per,and the Agmon inequality [1, 11℄

‖u‖L∞ ≤ 1√
π
|u|1/2|Au|1/2 for all u ∈ D(A).We also use the Hölder inequalities:

|b(u, v, w)| ≤ c1|u|1/2‖u‖1/2‖v‖ · |w|1/2‖w‖1/2, u, v, w ∈ V,(2.4)
|b(u, v, Aw)| ≤ c1|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|Aw|,(2.5)

u ∈ V, v, w ∈ D(A),

|b1(u, ω, ψ)| ≤ c1|u|1/2‖u‖1/2|ψ|1/2‖ψ‖1/2‖ω‖, u, ω, ψ ∈ Ḣ1
per,(2.6)

|b1(u, ω,A1ψ)| ≤ c1|u|1/2|Au|1/2‖ω‖ · |A1ψ|,(2.7)
u ∈ D(A), ω ∈ Ḣ1

per, ψ ∈ D(A1),

|b1(u, ω,A1ψ)| ≤ c1|u|1/2|Au|1/2‖ω‖ · |A1ψ|,(2.8)
u ∈ D(A), ω ∈ Ḣ1

per, ψ ∈ D(A1),for an appropriate onstant c1.



2-D miropolar �uid �ow 315The rot operator has the following properties:
(2.9)

\
Q

rotu · ω dx =
\
Q

rotω · u dx,
\
Q

|rotω|2 dx =
\
Q

|∇ω|2 dx,\
Q

|rotu|2 dx =
\
Q

|∇u|2 dx,

for all u ∈ V and ω ∈ Ḣ1
per.Main results. The existene and uniqueness of solutions for this modelas well as existene of a global attrator were proved in [24℄. We also assume(as in [24℄) that the spae averages of u, ω, f and g vanish.Theorem 1. Let f ∈ L2(0, T ;H), g ∈ L2(0, T ; Ḣ0

per) for eah T > 0and let u0 ∈ H, ω0 ∈ Ḣ0
per. There exists a unique weak solution of problem(1.1)�(1.3), that is, a pair of funtions (u, ω) where

u ∈ C([0, T ];H) ∩ L2(0, T ;V ) for eah T > 0,

ω ∈ C([0, T ]; Ḣ0
per) ∩ L2(0, T ; Ḣ1

per) for eah T > 0,suh that u(x, 0) = u0(x), ω(x, 0) = ω0(x) and satisfying the following iden-tities:
d

dt
(u(t), ϕ) + (ν + νr)(∇u(t),∇ϕ) + b(u(t), u(t), ϕ)

= 2νr(rotω(t), ϕ) + (f, ϕ)for all ϕ ∈ V , and
d

dt
(ω(t), ψ) + α(∇ω(t),∇ψ) + b1(u(t), ω(t), ψ) + 4νr(ω(t), ψ)

= 2νr(rotu, ψ) + (g(t), ψ)for all ψ ∈ Ḣ1
per(Q), in the sense of salar distributions on (0,∞).In the �rst two theorems that we prove in this paper, we onsider thedi�erene between two solutions of miropolar �uid equations. Let us denoteby (u1, ω1) and (u2, ω2) solutions orresponding to two possibly di�erentpairs of the external fores and moments (f1, g1) and (f2, g2) respetively,with the orresponding pressure terms p = p(x, t) and q = q(x, t). We set

u = u1 − u2, ω = ω1 − ω2, f = f1 − f2 and g = g1 − g2.It is assumed that the external fores f1, f2 and moments g1, g2 have thesame asymptoti behavior for large time, that is,(2.10) ‖f1(x, t) − f2(x, t)‖2
H−1 + ‖g1(x, t) − g2(x, t)‖2

H−1 → 0 as t→ ∞for determining modes and(2.11) |f1(x, t) − f2(x, t)|2 + |g1(x, t) − g2(x, t)|2 → 0 as t→ ∞



316 P. Szopafor determining nodes. The estimates obtained in this paper will be given interms of the asymptoti strength of fores and moments measured in their
L2 and H−1 norms, that is,

F̃ = lim sup
t→∞

(|f1(t)|2 + |g1(t)|2)1/2,

F̃−1 = lim sup
t→∞

(‖f1(t)‖2
H−1 + ‖g1(t)‖2

H−1)
1/2.Let us notie that in the autonomous ase, F̃ = (|f |2 + |g|2)1/2.Definition 1. The �rst m modes assoiated with Pm and P 1

m are alleddetermining modes if the ondition(2.12) \
Q

(|Pmu1(x, t) − Pmu2(x, t)|2 + |P 1
mω1(x, t) − P 1

mω2(x, t)|2) dx→ 0

as t → ∞, together with the ondition (2.10) for the fores and moments,implies(2.13) \
Q

(|Qmu1(x, t) −Qmu2(x, t)|2 + |Q1
mω1(x, t) −Q1

mω2(x, t)|2) dx→ 0as t→ ∞.An estimate of the number of determining modes is given in the followingtheorem.Theorem 2. Let fi ∈ L2(0, T ;H), gi ∈ L2(0, T ;L2) for i = 1, 2. Ifthe fores and moments satisfy ondition (2.10), then the �rst m modes aredetermining in the sense of De�nition 1 provided that
m ≥ 16ν2

r

dλ1αk1
+

8c21
dλ1k3k3

1

F̃ 2
−1.In order to prove this estimate we derive a di�erential inequality for

|Qmu(t)|2 + |Q1
mω(t)|2 and then we estimate m by heking the assumptionsof the generalized Gronwall lemma (Lemma 2; f. [5℄).We onsider a set Σ = {x1, . . . , xN} of N measurement points (allednodes). We assume that these points are uniformly distributed within thedomain Q in the sense that Q may be overed by N idential squares

Q1, . . . , QN suh that exatly one xi is in eah square: xi ∈ Qi.We assume that both �ows have the same time-asymptoti behavior atthe measurement points. This an be written in the form
max

j=1,...,N
|u1(x

j , t) − u2(x
j , t)| → 0 as t→ ∞,(2.14)

max
j=1,...,N

|ω1(x
j , t) − ω2(x

j , t)| → 0 as t→ ∞.(2.15)



2-D miropolar �uid �ow 317We want to estimate how many points of observation are neessary to de-termine the asymptoti behavior of the �ow in the following sense:Definition 2. The set Σ = {x1, . . . , xN} is alled a set of determiningnodes if (2.14), (2.15) together with the ondition (2.11) for the fores andmoments implies(2.16) \
Q

(|u1(x, t) − u2(x, t)|2 + |ω1(x, t) − ω2(x, t)|2) dx→ 0 as t→ ∞.Theorem 3. Let Q be a domain overed by N idential squares Q1,
. . . , QN and onsider a set Σ = {x1, . . . , xN} of points in Q distributed onein eah square: xi ∈ Qi for 1 ≤ i ≤ N . Let f1 and f2 be two foring termsin L2(0,∞;H) and g1 and g2 be two moments in L2(0,∞; Ḣ0

per), satisfy-ing (2.11). Then Σ is a set of determining nodes in the sense of De�nition 2for the 2-dimensional miropolar �uid equations with periodi boundary on-ditions provided that
N ≥ c

λ1k1

{
8ν2

r

α
− 2νr

+

(
c21c

1/2

λ1ν
+
c1
α

)
·
(

5αk2 + 32ν2
r

αk2
1k2

F̃ 2 +
16Cĉ1
ανk2

1k
3
2

F̃ 6 exp(ĉ2 + ĉ3 F̃
4)

)

+
16c41ĉ1

λ1ανk1k2
F̃ 4 exp(ĉ2 + ĉ3F̃

4)

}
.To obtain the above estimate we derive a di�erential inequality for the

H1-norm of the di�erene of solutions and bound N from below by hekingthe assumptions of the generalized Gronwall lemma.The following theorem onerns the dimension of a global attrator.Theorem 4. There exists a onstant C0 suh that if N is the integersatisfying
N − 1 < 2C0(k

3
1k2)

−1/2F̃ ≤ N,where k1, k2 are as in (3.2) below , then the N -dimensional volume elementin the phase spae H is exponentially deaying ; moreover the Hausdor� di-mension of the attrator Aνr
, νr ≥ 0, is less than or equal to N and itsfratal dimension is less than or equal to 2N .The dimension of the attrator is estimated by using Lyapunov expo-nents.3. A priori estimates. In this setion we derive some a priori esti-mates. Sine we will onsider the asymptoti behavior of solutions we esti-mate their norms in terms of the asymptoti strength of fores and moments.To this end we set
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(3.1) F̃ = lim sup

t→∞
(|f(t)|2 + |g(t)|2)1/2,

F̃−1 = lim sup
t→∞

(‖f(t)‖2
H−1 + ‖g(t)‖2

H−1)
1/2,and(3.2) k1 = min{ν, α}, k2 = k1λ1.Inequalities (3.3), (3.6) and (3.8) below ome from [24℄. Let us onsider thefollowing one:(3.3) d

dt
(|u(t)|2 + |ω(t)|2) + k2(|u(t)|2 + |ω(t)|2) ≤ k−1

2 (|f(t)|2 + |g(t)|2).Integrating it with respet to t in the interval (0, t) we obtain
(3.4) |u(t)|2 + |ω(t)|2 ≤ |u0|2 + |ω0|2 + k−1

2

t\
0

(|f(s)|2 + |g(s)|2) ds

≤ |u0|2 + |ω0|2 + k−1
2 (‖f‖2

L2(0,∞;H) + ‖g‖2
L2(0,∞;Ḣ0

per)
),whih implies a uniform bound on the norm of the solution in H.Applying Gronwall's inequality to (3.3) we obtain a bound on the normof solutions for large times, whih is independent of the initial ondition.First we have

|u(t)|2 + |ω(t)|2 ≤ e−k2(t−t0)(|u(t0)|2 + |ω(t0)|2)
+ k−2

2 (1 − e−k2(t−t0))(‖f‖2
L∞(t0,t;H) + ‖g‖2

L∞(t0,t;Ḣ0
per)

),hene for t0 and t large enough,(3.5) |u(t)|2 + |ω(t)|2 ≤ 2

k2
2

F̃ 2.To estimate the average of the square of the norm of solutions in V we usethe inequality
(3.6)

d

dt
(|u(t)|2 + |ω(t)|2) + k1(‖u(t)‖2 + ‖ω(t)‖2)

≤ k−1
2 (|f(t)|2 + |g(t)|2).By integration we obtain

|u(t+ T )|2 + |ω(t+ T )|2 + k1

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2) ds

≤ k−1
2

t+T\
t

(|f(s)|2 + |g(s)|2) ds+ |u(t)|2 + |ω(t)|2.Sine |u(t)|2 + |ω(t)|2 is uniformly bounded with respet to t (f. (3.4)), for
t and T large enough we have
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(3.7)

1

T

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2) ds

≤ (k1k2)
−1 1

T

t+T\
t

(|f(s)|2 + |g(s)|2) ds+
1

T
(|u(t)|2 + |ω(t)|2)

≤ 2

k1k2
F̃ 2.In order to derive two more estimates we onsider the inequality

(3.8)
d

dt
(‖u(t)‖2+‖ω(t)‖2) +

k1

2
(|Au(t)|2 + |A1ω(t)|2)

≤
(

2C

α2ν
|u(t)|2‖ω(t)‖2 +

8νr

α

)
(‖u(t)‖2 + ‖ω(t)‖2) +

2

k1
(|f(t)|2 + |g(t)|2).Setting

y(t) = ‖u(t)‖2 + ‖ω(t)‖2, g̃(t) =

(
2C

α2ν
|u(t)|2‖ω(t)‖2 +

8νr

α

)
,

h̃(t) =
2

k1
(|f(t)|2 + |g(t)|2),we infer from (3.8) that

dy

dt
≤ g̃y + h̃.We hek the assumptions of the uniform Gronwall lemma (f. [26℄). If t > t0(so that estimates (3.5) and (3.7) hold), for some r we have

t+r\
t

g̃(s) ds ≤ 8ν2
r r

α
+

8Cr

α2νk1k3
2

F̃ 4 ≡ a1,

t+r\
t

h̃(s) ds ≤ 3r

k1
F̃ 2 ≡ a2,

t+r\
t

y(s) ds ≤ 2r

k2
2

F̃ 2 ≡ a3.Therefore by uniform Gronwall's lemma we obtain(3.9) ‖u(t)‖2 + ‖ω(t)‖2 ≤ 2 + 3k2r

k1k2
F̃ 2 exp

(
8ν2

r r

α
+

8Cr

α2νk1k3
2

F̃ 4

)

for all t > t0 + r. Set(3.10) ĉ1 =
2 + 3k2r

k1k2
, ĉ2 =

8ν2
r r

α
, ĉ3 =

8Cr

α2νk1k3
2

.Then (3.9) beomes(3.11) ‖u(t)‖2 + ‖ω(t)‖2 ≤ ĉ1F̃
2 exp(ĉ2 + ĉ3F̃

4).



320 P. SzopaNow we want to derive an estimate on the average of the square of thenorm of solutions in D(A) ×D(A1). Integrating (3.8) in (t, t+ T ) we get
‖u(t+ T )‖2 + ‖ω(t+ T )‖2 − ‖u(t)‖2 − ‖ω(t)‖2

+
k1

2

t+T\
t

(|Au(s)|2 + |A1ω(s)|2) ds

≤
t+T\

t

{(
2C

α2ν
|u(t)|2‖ω(t)‖2 +

8νr

α

)
(‖u(t)‖2 + ‖ω(t)‖2)

+
2

k1
(|f(t)|2 + |g(t)|2)

}
ds,hene

1

T

t+T\
t

(|Au(s)|2 + |A1ω(s)|2) ds

≤ 1

T

2

k1
(‖u(t)‖2 + ‖ω(t)‖2) +

4

k2
1

1

T

t+T\
t

(|f(s)|2 + |g(s)|2) ds

+
2

k1

1

T

t+T\
t

(
2C

α2ν
(|u(s)|2 + |ω(s)|2)(‖u(s)‖2 + ‖ω(s)‖2) +

8ν2
r

α

)

· (‖u(s)‖2 + ‖ω(s)‖2) ds.Sine solutions are uniformly bounded in the V norm for large t, for t and Tlarge enough we obtain
(3.12)

1

T

t+T\
t

(|Au(s)|2 + |A1ω(s)|2) ds

≤ 5

k2
1

F̃ 2 +
16ν2

r

αk1

1

T

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2) ds

+
4C

α2νk1

1

T

t+T\
t

(|u(s)|2 + |ω(s)|2)(‖u(s)‖2 + ‖ω(s)‖2)2 ds

≤
(

5

k2
1

+
32ν2

r

αk2
1k2

)
F̃ 2 +

8C

α2νk1k2
2

F̃ 2

· 1

T

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2)(‖u(s)‖2 + ‖ω(s)‖2) ds

≤
(

5

k2
1

+
32ν2

r

αk2
1k2

)
F̃ 2 +

16Cĉ1
α2νk2

1k
3
2

F̃ 6 exp(ĉ2 + ĉ3F̃
4).



2-D miropolar �uid �ow 321The estimate we derive below is neessary to estimate the number ofdetermining modes in terms of the H−1 norm of the fores and moments.Taking the salar produt of (1.1) with u in H we obtain(3.13) 1

2

d

dt
|u|2 + (ν + νr)‖u‖2 = 2νr(rotω, u) + (f, u)beause b(u, u, u) = 0. We estimate the terms of the RHS of (3.13) as follows:

(3.14) 2νr(rotω, u) = 2νr(ω, rotu) ≤ 2νr|ω| · ‖u‖ ≤ 2νr|ω|2 +
νr

2
‖u‖2,

(f, u) ≤ ‖f‖H−1‖u‖H ≤ ν

2
‖u‖2 +

1

2ν
‖f‖2

H−1 .We treat (1.3) in an analogous way. We multiply it by ω, integrate over Qand obtain(3.15) 1

2

d

dt
|ω|2 + α‖ω‖2 + 4νr|ω|2 = 2νr(rotu, ω) + (g, ω).The terms of the RHS of (3.15) are estimated as

(3.16) 2νr(rotu, ω) ≤ 2νr|ω|2 +
νr

2
‖u‖2,

(g, ω) ≤ ‖g‖H−1‖ω‖ ≤ α

2
‖ω‖2 +

1

2α
‖g‖2

H−1.Adding equations (3.13) and (3.15), and using estimates (3.14) and (3.16),we arrive at(3.17) d

dt
(|u|2 + |ω|2) + k1(‖u‖2 + ‖ω|2) ≤ 1

k1
(‖f‖2

H−1 + ‖g‖2
H−1).Let us notie that (3.17) looks similar to (3.6). Therefore, proeeding in thesame way we obtain

(3.18) 1

T

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2) ds ≤ 2

k2
1

F̃ 2
−1

for t and T large enough.Let us summarize the above results in the following lemma.Lemma 1. Let u0 ∈ H, ω0 ∈ Ḣ0
per and f ∈ L2(0, T ;H)∩L∞(0, T ;H), g ∈

L2(0, T, Ḣ0
per)∩L∞(0, T, Ḣ0

per) for every T > 0. Let (u(t), ω(t)) be a solutionof equations (1.1)�(1.3) with periodi boundary ondition (1.5). Then thefollowing inequalities hold for t and T large enough:
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(3.19)

|u(t)|2 + |ω(t)|2 ≤ 2

k2
2

F̃ 2,

‖u(t)‖2 + ‖ω(t)‖2 ≤ ĉ1F̃
2 exp(ĉ2 + ĉ3F̃

4),

1

T

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2) ds ≤ 2

k1k2
F̃ 2,

1

T

t+T\
t

(‖u(s)‖2 + ‖ω(s)‖2) ds ≤ 2

k2
1

F̃ 2
−1,

1

T

t+T\
t

(|Au(s)|2 + |Aω(s)|2) ds

≤
(

5

k2
1

+
32ν2

r

αk2
1k2

)
F̃ 2 +

16Cĉ1
α2νk2

1k
3
2

F̃ 6 exp(ĉ2 + ĉ3F̃
4),where the onstants ĉ1, ĉ2, ĉ3 are de�ned in (3.10), k1 = min(ν, α), k2 = k1λ1,and F̃ and F̃−1 are de�ned in (3.1).4. Determining modes. In this setion we prove Theorem 2. We followthe method desribed in [5℄. The proof is based on the following generaliza-tion of the lassial Gronwall lemma.Lemma 2. Let γ = γ(t) and β = β(t) be loally integrable real-valuedfuntions on [t0,∞) that satisfy the following onditions for some T > 0:

(4.1) lim inf
t→∞

1

T

t+T\
t

γ(τ) dτ > 0, lim sup
t→∞

1

T

t+T\
t

γ−(τ) dτ <∞,

lim
t→∞

1

T

t+T\
t

β+(τ) dτ = 0,where γ−(t) = max{−γ(t), 0} and β+(t) = max{β(t), 0}. Suppose that ξ =
ξ(t) is an absolutely ontinuous nonnegative funtion on [t0,∞) that satis�esthe following inequality almost everywhere on [t0,∞):

dξ

dt
+ γξ ≤ β.Then ξ(t) → 0 as t→ ∞.Proof of Theorem 2. Writing the equations of the miropolar �uid in afuntional form for a pair of solutions (u1, ω1) and (u2, ω2) and subtratingthem we �nd

ut + (ν + νr)Au+B(u, u1) +B(u2, u) = 2νr rotω + f,(4.2)
ωt + αA1ω +B1(u, ω1) +B1(u2, ω) + 4νrω = 2νr rotu+ g,(4.3)



2-D miropolar �uid �ow 323where u = u1 − u2, ω = ω1 − ω2, f = f1 − f2 and g = g1 − g2. First wedeal with equation (4.2). Multiplying it by Qmu and integrating over Q weobtain
(4.4)

1

2

d

dt
|Qmu|2 + (ν + νr)‖Qmu‖2 + b(u, u1, Qmu) + b(u2, u,Qmu)

= 2νr(rotω,Qmu) + (f,Qmu).We estimate the linear terms of the RHS of (4.4) as follows:
(f,Qmu) ≤ ‖f‖H−1‖Qmu‖H1 ≤ ν + 2νr

4
‖Qmu‖2 +

1

ν + 2νr
‖f‖2

H−1 ,

2νr(rotω,Qmu) = 2νr[(Pm rotω,Qmu) + (Qm rotω,Qmu)]

≤ 2νr|Qm rotω| · |Qmu|

≤ α

8
‖Q1

mω‖2 +
8ν2

r

α
|Qmu|2beause (Pm rotω,Qmu) = 0. In order to estimate the form b we write(4.5) b(u, u1, Qmu) = b(Pmu, u1, Qmu) + b(Qmu, u1, Qmu)and(4.6) b(u2, u,Qmu) = b(u2, Pmu,Qmu),beause b(u, v, v) = 0. Using (2.2), (2.4) and the Young inequality we inferthat

(4.7) b(Pmu, u1, Qmu) ≤ c1|Pmu|1/2‖Pmu‖1/2|u1|1/2‖u1‖1/2‖Qmu‖,

b(Qmu, u1, Qmu) ≤ ν + νr

8
‖Qmu‖2 +

2c21
ν + νr

|Qmu|2‖u1‖2,

b(u2, Pmu,Qmu) ≤ c1|u2|1/2‖u2‖1/2|Pmu|1/2‖Pmu‖1/2‖Qmu‖.Now we treat equation (4.3) in a similar manner. Taking the salar prod-ut with Q1
mω in Ḣ0

per we obtain
(4.8)

1

2

d

dt
|Q1

mω|2 + α‖Q1
mω‖2 + b1(u, ω1, Q

1
mω) + b1(u2, ω,Q

1
mω)

= 2νr(rotu,Q1
mω) + (g,Q1

mω).The terms of the RHS of (4.8) are estimated as follows:
(g,Q1

mω) ≤ α

4
‖Q1

mω‖2 +
1

α
‖g‖2

H−1 ,

2νr(rotu,Q1
mω) = 2νr(Q

1
m rotu,Q1

mω) ≤ νr

4
‖Qmu‖2 + 4νr|Q1

mω|2,



324 P. Szopaand the form b1 by using (2.2), (2.6) and Young's inequality:
(4.9)

b1(Pmu, ω1, Q
1
mω) ≤ c1|Pmu|1/2‖Pmu‖1/2|ω1|1/2‖ω1‖1/2‖Q1

mω‖,

b1(Qmu, ω1, Q
1
mω) ≤ ν + νr

8
‖Qmu‖2 +

c21‖ω1‖2

2(ν + νr)
|Qmu|2

+
α

8
‖Q1

mω‖2 +
c21‖ω1‖2

2α
|Q1

mω|2,

b1(u2, P
1
mω,Q

1
mω) ≤ c1|u2|1/2‖u2‖1/2‖Q1

mω‖ · |P 1
mω|1/2‖P 1

mω‖1/2.Adding (4.4) and (4.8) and using the foregoing estimates we arrive at
(4.10)

d

dt
(|Qmu|2 + |Q1

mω|2) + k1(‖Qmu‖2 + ‖Q1
mω‖2)

− (|Qmu|2 + |Q1
mω|2)

(
16ν2

r

α
+

4c21
k3

(‖u1‖2 + ‖ω1‖2)

)
≤ β(t)where β(t) = all terms onverging to 0 as t → ∞, and k3 = min(ν + νr, α).We make use of the inequalities λm+1|Qmu|2 ≤ ‖Qmu‖2 and λm+1|Q1

mω|2 ≤
‖Q1

mω‖2 in order to write (4.10) in a form whih allows us to use the gener-alized Gronwall lemma (Lemma 2):
(4.11)

d

dt
(|Qmu|2 + |Q1

mω|2) + (|Qmu|2 + |Q1
mω|2)

·
(
k1λm+1 −

4c21
k3

(‖u1‖2 + ‖ω1‖2) − 16ν2
r

α

)
≤ β.Setting

ξ(t) = |Qmu|2 + |Q1
mω|2, γ(t) = k1λm+1 −

4c21
k3

(‖u1‖2 + ‖ω1‖2) − 16ν2
r

α
,we an write (4.11) in the form

dξ

dt
+ γξ ≤ β.Now we only have to hek the assumptions of Lemma 2. In Lemma 1 wehave shown that

1

T

t+T\
t

(‖u1(s)‖2 + ‖ω1(s)‖2) ds ≤ 2

k2
1

F̃ 2
−1.To hek the �rst ondition in (4.1) we write

lim inf
t→∞

1

T

t+T\
t

γ(s) ds ≥ k1λm+1 −
16ν2

r

α
− lim sup

t→∞

2c21
k3

(‖u1‖2 + ‖ω1‖2)

≥ k1λm+1 −
16ν2

r

α
− 8c21
k2

1k3
F̃ 2
−1 > 0.



2-D miropolar �uid �ow 325This assumption is satis�ed for(4.12) m ≥ 16ν2
r

dλ1αk1
+

8c21
dλ1k3k3

1

F̃ 2
−1beause λm ∼ dm. It is easy to hek that if m satis�es (4.12) then theseond assumption in (4.1) also holds. The third ondition is satis�ed beause

β(t) → 0 as t→ ∞. That ends the proof.This estimate is similar to that obtained in [23℄ but in the present paperwe have relaxed the onvergene of fores and moments to be only in H−1.Moreover, the estimate obtained is in terms of their H−1 norm. The samereasoning works in the ase of no-slip boundary onditions.Corollaries. This part of the paper was inspired by the paper of J. C.Robinson [22℄, in whih he showed how the distribution of a fore throughmodes in�uenes the dimension of a global attrator of the Navier�Stokesequation.Suppose that the asymptoti strength of the fores and moments is equalto F̃ . We hek how their spatial distribution in�uenes the number of de-termining modes. We onsider several ases and write down the alulationsonly for f beause alulations for g are exatly the same.1. Assume that the fores and moments at only in two sales and thenorms of both modes are equal, i.e.
|fn(t)|2 = |fN (t)|2 = |f(t)|2/2.Then the H

−1 norm of f satis�es
‖f‖2

H−1 =
|f |2
2

(
1

λn
+

1

λN

)
∼ |f |2

(
1

n
+

1

N

)
.Inserted into (4.12), this gives

m ≥ 16ν2
r

dλ1αk1
+

8c21
dλ1k3k3

1

F̃ 2

(
1

n
+

1

N

)
.The number of determining modes depends on the inverse of the number ofmodes in whih the fores and moments are ating.2. Suppose that the fores and moments at only in some sales and theenergy in eah mode is not known,

f =

N∑

k=n

fkwk.The following inequalities are straightforward onsequenes of the de�nitionof the norm in H
−1:

1

λN
|f |2 ≤ ‖f‖2

H−1 ≤ 1

λn
|f |2,



326 P. Szopawhih implies(4.13) 1

λN
F̃ 2 ≤ F̃ 2

−1 ≤ 1

λn
F̃ 2.Inserting (4.13) to (4.12) we get

m ≥ 16ν2
r

dλ1αk1
+

8c21
dλ1k3k3

1

F̃ 2
−1 ≥ 16ν2

r

dλ1αk1
+

8c21
dλ1k3k3

1

F̃ 2

λN
.3. Assume that the fores are uniformly distributed in the �rst N modes,that is, |fk|2 = (1/N)|f |2L2. Then

‖f‖2
H−1

|f |2 =
1

N

N∑

k=1

λ−1
k .

Sine λk ∼ k we have F̃−1 ∼ N−1/2(lnN)1/2F̃ , whih yields the followingestimate of the number of determining modes:
m ≥ 16ν2

r

dλ1k3k1
+

8c21
dλ1k3k3

1

F̃ 2N−1/2(lnN)1/2.4. Suppose that the fores and moments at in the �rst N modes and thenorm of a mode inreases linearly with its number,
|fk|2 =

2‖f‖2
L2

N(N + 1)
kfor k = 1, . . . , N . Then

‖f‖2
H−1 =

n∑

k=1

1

λk

2k‖f‖2
L2

n(n+ 1)
=

2‖f‖2
L2

n(n+ 1)

n∑

k=1

k

λk
.

Sine λk ∼ k we have
‖f‖2

H−1 ∼ ‖f‖2
L2

n+ 1and (4.12) implies
m ≥ 16ν2

r

dλ1k3k1
+

8c21
dλ1k3k3

1

F̃ 2

n+ 1
.5. Suppose again that the fores and moments at in the �rst N modes,but now we assume that the norm of a mode dereases linearly with itsnumber, that is,

|fk|2 =
2‖f‖2

L2

n(n+ 1)
(n+ 1 − k), k = 1, . . . , N.
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‖f‖2

H−1 =
2‖f‖2

L2

n(n+ 1)

n∑

k=1

n+ 1 − k

λk
≈ 2‖f‖2

L2

n(n+ 1)

n∑

k=1

(
n+ 1

k
− 1

)

≈ 2‖f‖2
L2

n(n+ 1)
[(n+ 1) lnn− n].Inserting the above into (4.12) we infer that

m ≥ 16ν2
r

dλ1k3k1
+

8c21
dλ1k3k3

1

2F̃ 2

n(n+ 1)
[(n+ 1) lnn− n].The above onsiderations show that if we inrease the number of modesin whih the fores and moments at, or we at only in modes with highwavenumber, then the number of modes neessary to determine the �owdereases. It ould be so beause in small sales, orresponding to high-wavenumber modes, the damping e�et of visosity is stronger than in largesales. Moreover the number of determining modes depends on how the foresand moments are distributed throughout the modes.The same argument an be applied to hek how the distribution of thefores and moments in�uenes the estimates of the number of determiningnodes and the dimension of the global attrator.5. Determining nodes. In this setion we prove Theorem 3. We willatually show that (2.11), (2.14) and (2.15) imply that the solutions onvergeto eah other in a stronger norm assoiated with enstrophy, that is,\

Q

(|∇u1(x, t) −∇u2(x, t)|2 + |∇ω1(x, t) −∇ω2(x, t)|2) dx→ 0 as t→ ∞.Set
η(w) = max

1≤j≤N
|w(xj)|for eah veloity or mirorotation �eld w.In the proof of existene of a �nite set of determining nodes, two lemmasare used. One of them is the generalized Gronwall lemma, already appliedin the previous setion, the other is the following lemma from [12℄.Lemma 3. Let the domain Q be overed by N idential squares Qi. Con-sider the set Σ = {x1, . . . , xN} of points in Q, one in eah square. Then, foreah vetor �eld w in Ḣ

2
per,
|w|2 ≤ c

λ1
η(w)2 +

c

λ2
1N

2
|∆w|2,(5.1)

‖w‖2 ≤ cNη(w)2 +
c

λ1N
|∆w|2,(5.2)
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‖w‖2

L∞(Q) ≤ cNη(w)2 +
c

λ1N
|∆w|2,(5.3)for an appropriate onstant c.Proof of Theorem 3. Set u = u1 − u2, f = f1 − f2 et. Subtrating theequations for u1 and u2 we �nd(5.4) ∂u

∂t
+ (ν + νr)∆u+ (u1 · ∇)u1 − (u2 · ∇)u2 = 2νr rotω + f.By taking the inner produt of (5.4) and Au in H, we get

(5.5)
1

2

d

dt
‖u(t)‖2 + (ν + νr)|Au|2 + b(u, u1, Au) + b(u2, u, Au)

= 2νr(rotω,Au) + (f,Au).Exploiting the orthogonality property (2.3) we obtain (f. [5℄)
b(u, u1, Au) + b(u2, u, Au) = −b(u, u,Au1),thus we an write (5.5) in the form

(5.6)
1

2

d

dt
‖u(t)‖2 + (ν + νr)|Au|2 = 2νr(rotω,Au) + (f,Au) + b(u, u,Au1).We estimate the terms of the RHS of (5.6) using (2.5), Lemma 3 and Young'sinequality:

2νr(rotω,Au) ≤ νr

2
|Au|2 + 2νr‖ω‖2,

(f,Au) ≤ νr

2
|Au|2 +

1

2νr
|f |2,

b(u, u,Au1) ≤
c1/4c1

λ
1/4
1

η(u)1/2‖u‖ · |Au|1/2|Au1|

+
c1/2c21
λ1Nν

‖u‖2|Au1|2 +
ν

4
|Au|2.Using the above estimates we �nd from (5.6) that

(5.7)
1

2

d

dt
‖u‖2 +

3

4
ν|Au|2 − c1/2c21

λ1Nν
‖u‖2 |Au1|2

≤ 2νr‖ω‖2 +
1

2νr
|f |2 +

c1/4c1

λ
1/4
1

η(u)1/2‖u‖ · |Au|1/2|Au1|.Now we treat the equations for mirorotation in a similar way. Subtratingthem we �nd(5.8) ∂ω

∂t
+ αA1ω + (u1 · ∇)ω1 − (u2 · ∇)ω2 + 4νrω = 2νr rotu+ g.
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(5.9)

1

2

d

dt
‖ω‖2 + α|A1ω|2b1(u, ω,A1ω) + b1(u2, ω, A1ω) + 4νr‖ω‖2

= 2νr(rotu,A1ω) + (g,A1ω).We estimate the nonlinear terms using (2.7), (2.8) and the Young inequality:
b1(u, ω1, A1ω) ≤ α

8
|A1ω|2 +

ν

4
|Au|2 +

4c41
α2ν

|u|2‖ω1‖4,

b1(u2, ω, A1ω) ≤ α

8
|A1ω|2 +

2c21
α

|u2| · |Au2| · ‖ω‖2.The terms of the RHS of (5.9) are estimated similar to the terms of the RHSof (5.6):
2νr(rotu,A1ω) ≤ α

8
|A1ω|2 +

8ν2
r

α
‖u‖2,

(g,A1ω) ≤ α

8
|A1ω|2 +

2

α
|g|2.Using the above estimates in (5.9) gives

(5.10)
1

2

d

dt
‖ω‖2 +

α

2
|A1ω|2 + 4νr‖ω‖2 − 8ν2

r

α
‖u‖2 − 2c21

α
|u2| · |Au2| · ‖ω‖2

≤ 2

α
|g|2 +

ν

4
|Au|2 +

4c41
α2ν

|u|2‖ω1‖4.Adding (5.7) and (5.10) we obtain
(5.11)

1

2

d

dt
(‖u‖2+‖ω‖2)+

k1

2
(|Au|2+|A1ω|2)−‖u‖2

(
c21c

1/2

λ1Nν
|Au1|2+

8ν2
r

α

)

− ‖ω‖2

(
2c1
α

|u2| · |Au2| − 2νr

)
− 4c41
α2ν

|u|2‖ω1‖4

≤ 2

k3
(|f |2 + |g|2) +

c1c
1/4

λ
1/4
1

η(u)1/2‖u‖ · |Au|1/2|Au1|,where k3 = min{νr, α}. From Lemma 3 we dedue(5.12) |Au|2 ≥ λ1N

c
‖u‖2 − λ1N

2η(u)2,and an analogous inequality for ω,(5.13) |A1ω|2 ≥ λ1N

c
‖ω‖2 − λ1N

2η(ω)2.By the Poinaré inequality we get(5.14) 4c41
α2ν

|u|2‖ω1‖4 ≤ 4c41
α2νλ1

‖u‖2‖ω1‖4.



330 P. SzopaTaking into aount (5.12)�(5.14) we infer from (5.11) that
(5.15)

1

2

d

dt
(‖u‖2+‖ω‖2)+

(
k1λ1N

c
− c21c

1/2

λ1Nν
|Au1|2−

8ν2
r

α
− 2c1

α
|u2|·|Au2|

+ 2νr −
4c41
α2νλ1

‖ω1‖4

)
(‖u‖2 + ‖ω‖2)

≤ 2

k3
(|f |2 + |g|2) +

c1c
1/4

λ
1/4
1

η(u)1/2‖u‖ · |Au|1/2|Au1|

+
k1λ1N

2

2
(η(u)2 + η(ω)2).Setting

γ(t) = 2

(
k1λ1N

c
− c21c

1/2

λ1Nν
|Au1|2 −

8ν2
r

α
− 2c1

α
|u2| · |Au2|

+ 2νr −
4c41
α2νλ1

‖ω1‖4

)
,

β(t) = 2

(
2

k3
(|f |2 + |g|2) +

c1c
1/4

λ
1/4
1

η(u)1/2‖u‖ · |Au|1/2|Au1|

+
k1λ1N

2

2
(η(u)2 + η(ω)2)

)
,

ξ(t) = ‖u‖2 + ‖ω‖2,we an write (5.15) in the form
dξ

dt
+ γξ ≤ β.The time average of β goes to zero as time goes to in�nity beause for tbounded away from zero the time averages of the squares of the norms of

u1 and u2 in D(A) are uniformly bounded (Lemma 1). Therefore the thirdondition in (4.1) is satis�ed. In order to hek the �rst ondition in (4.1)we write
lim inf
t→∞

1

T

t+T\
t

γ(s) ds ≥ 2

(
k1λ1N

c
+ 2νr −

8ν2
r

α

− lim sup
t→∞

1

T

t+T\
t

{
c21c

1/2

λ1Nν
|Au1(s)|2

+
2c1
α

|u2(s)| · |Au2(s)| +
2c41
λ1αν

‖ω1(s)‖4

}
ds

)
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≥ 2

(
k1λ1N

c
+ 2νr −

8ν2
r

α

− lim sup
t→∞

1

T

t+T\
t

{
c21c

1/2

λ1Nν
|Au1(s)|2 +

c1
α

|u2(s)|2

+
c1
α

|Au2(s)|2 +
4c41
λ1αν

‖ω1(s)‖4

}
ds

)

≥ 2

(
k1λ1N

c
+ 2νr −

8ν2
r

α
−

(
c21c

1/2

λ1ν
+
c1
α

)

·
(

5αk2 + 32ν2
r

αk2
1k2

F̃ 2 +
16Cĉ1
ανk2

1k
3
2

F̃ 6 exp(ĉ2 + ĉ3F̃
4)

)

− 16c41ĉ1
λ1ανk1k2

F̃ 4 exp(ĉ2 + ĉ3F̃
4)

)
.Therefore if

N ≥ c

λ1k1

{
8ν2

r

α
− 2νr +

(
c21c

1/2

λ1ν
+
c1
α

)(5.16)
·
(

5αk2 + 32ν2
r

αk2
1k2

F̃ 2 +
16Cĉ1
ανk2

1k
3
2

F̃ 6 exp(ĉ2 + ĉ3F̃
4)

)

+
16c41ĉ1

λ1ανk1k2
F̃ 4 exp(ĉ2 + ĉ3F̃

4)

}
,then the �rst ondition in (4.1) is satis�ed. It is easy to hek that if Nsatis�es (5.16) then the seond ondition in (4.1) also holds. Therefore weinfer from the uniform Gronwall lemma that ‖u(t)‖2+‖ω(t)‖2 → 0 as t→ ∞.That ends the proof.6. Hausdor� and fratal dimensions of the attrator. In this se-tion we reall the notions of Hausdor� and fratal dimension of an invariantset. Then we prove Theorem 4, i.e. we show that the attrators Aνr

, νr ≥ 0,assoiated with the system (1.1)�(1.3) have �nite Hausdor� and fratal di-mensions, whih an be estimated by onstants depending on the data: f ,
g, ν, α and the domain Q of the �ow but independent of the mirorotationvisosity νr.Let (X, d) be a metri spae and Y ⊂ X be a subset of X. For every
d ∈ R+ and ε > 0 we set

µH(Y, d, ε) = inf
∑

i∈I

rd
i ,where the in�mum is taken over all overings of Y by a family (Bi)i∈I of



332 P. Szopaballs of radii ri ≤ ε. µH(Y, d, ε) is a noninreasing funtion of ε. The number
µH(Y, d), alled the d-dimensional Hausdor� measure of Y , is de�ned as

µH(Y, d) = lim
ε→0

µH(Y, d, ε) = sup
ε>0

µH(Y, d, ε).If µH(Y, d′) <∞ for some d′ then µH(Y, d) = 0 for every d > d′. Then thereexists d0 ∈ [0,∞] suh that µH(Y, d) = 0 for every d > d0 and µH(Y, d) = ∞for d < d0. The d0 is alled the Hausdor� dimension of Y , and denoted by
dH(Y ).Now we de�ne the fratal dimension of Y . Let ε > 0. We denote by nY (ε)the minimum number of balls of X of radius ε neessary to over Y . Thefratal dimension of Y , also alled the apaity of Y , is

dF (Y ) = lim sup
ε→0

lognY (ε)

log 1/ε
.We refer the reader to [4℄ for more details.Proof of Theorem 4. The relation(6.1) N − 1 < 2C0(k

3
1k2)

−1/2(|f |2 + |g|2)1/2 ≤ Nis a onsequene of estimates of the uniform Lyapunov exponents assoiatedwith the attrators Aνr
.First, we rewrite (1.1)�(1.3) in a more suitable form. To do this we intro-due some notations. Let ui = (ui, ωi) ∈ H (or V ) for i = 1, 2. We introduesalar produts and norms in H and V as follows:

[u1, u2] = (u1, u2) + (ω1, ω2), [u] = [u, u]1/2for all u, u1, u2 ∈ H, and
[[u1, u2]] = (∇u1,∇u2) + (∇ω1,∇ω2), [[ū]] = [[ū, ū]]1/2for all u, u1, u2 ∈ V. The notation seems to be onfusing, but it will alwaysbe lear from ontext whether (·, ·) denotes the salar produt in L2 or avetor in H or V.We de�ne a trilinear form B on V × V × V by

B(u1, u2, u3) = b(u1, u2, u3) + b1(u1, ω2, ω3)and assoiate with B a bilinear ontinuous operator B from V × V to V ′ asfollows:
〈B(u1, u2), φ〉 = B(u1, u2, φ), u1, u2, φ ∈ V.We de�ne bilinear forms R and a on V × V by

R(u1, u2) = −2νr(rotω1, u2) − 2νr(rotu1, ω2) + 4νr(ω1, ω2),

a(u1, u2) = (ν + νr)(∇u1,∇u2) + α(∇ω1,∇ω2)



2-D miropolar �uid �ow 333and assoiate with them ontinuous linear operators R and A from V to V ′by
〈R(u), φ〉 = R(u, φ), 〈A(u), φ〉 = a(u, φ), u, φ ∈ V.The weak form of equations (1.1)�(1.3) is (f. [24℄)

(6.2)
d

dt
(u(t), ϕ(t)) + (ν + νr)(∇u(t),∇ϕ(t)) + b(u(t), u(t), ϕ)

= 2νr(rotω(t), ϕ) + (f, ϕ)for all ϕ ∈ V , and
(6.3)

d

dt
(ω(t), ψ) + α(∇ω(t),∇ψ) + b1(u(t), ω(t), ψ) + 4νr(ω(t), ψ)

= 2νr(rotu, ψ) + (g(t), ψ)for all ψ ∈ Ḣ1
per(Q), in the sense of salar distributions on (0,∞). Setting

G = (f, g) ∈ H we an rewrite (6.2) and (6.3) as
d

dt
[u, φ] + a(u, φ) +B(u, u, φ) +R(u, φ) = [G,φ],where u = (u, ω), φ = (ϕ, ψ), or in the funtional form

d

dt
u+ A(u) + B(u, u) + R(u) = G.The orresponding problem linearized about u has the form

d

dt
U = F ′(u)U,where F ′(u) = −A(U) − B(u, U) − B(U, u) + R(U).Our aim is to estimate from above the trae

TrF ′(u) ◦ PN =
N∑

i=1

[F ′(u)ϕj , ϕj],where ϕj = ϕj(τ), j = 1, . . . , N, is an orthonormal (in H) basis of PN (τ)H =Span{U1(τ), . . . , UN (τ)}, PN (τ, ξ1, . . . , ξN) being the orthogonal projetor in
H on the spae spanned by Uj(τ), j = 1, . . . , N , where the Uj satisfy

d

dt
Uj = F ′(u)Uj , Uj(0) = ξj, j = 1, . . . , N.Beause B(u, ϕj , ϕj) = 0, we have

[F ′(u)ϕj, ϕj ] = −a(ϕj , ϕj) −B(ϕj , u, ϕj) −R(ϕj , ϕj).Setting u = (u, ω) and ϕj = (vj, zj) we obtain
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−

N∑

i=1

a(ϕj , ϕj) = −(ν + νr)
N∑

i=1

‖vj‖2 − α
N∑

i=1

‖zj‖2,

−
N∑

i=1

B(ϕj , u, ϕj) = −
N∑

i=1

b(vj , u, vj) −
N∑

i=1

b1(vj , ω, zj)

−
N∑

i=1

R(ϕj , ϕj) = 2νr

N∑

i=1

(rot zj , vj) + 2νr

N∑

i=1

(rot vj , zj) − 4νr

N∑

i=1

|zj |2.Now let us onsider the operator a+R:
a(ϕj , ϕj) +R(ϕj , ϕj) = (ν + νr)((vj, vj))

2 + α((zj, zj))
2

− 2νr(rot zj, vj) − 2νr(rot vj , zj) + 4νr|zj|2.By the �rst identity in (2.9), and Shwarz's and Young's inequalities, wehave
2νr(rot zj, vj) + 2νr(rot vj , zj) = 4νr(rot zj, vj) ≤ νr‖vj‖2 + 4νr|zj|2,therefore

a(ϕj , ϕj) +R(ϕj , ϕj) ≥ ν((vj, vj)) + α((zj, zj)) ≥ k1[[ϕj, ϕj ]] ∀ϕj ∈ V,where k1 = min{ν, α} as in (3.2), whene
−

N∑

i=1

(a(ϕj , ϕj) +R(ϕj , ϕj)) ≤ −k1

N∑

i=1

[[ϕj, ϕj ]]
2.We estimate the trilinear form b as follows:

∣∣∣
N∑

i=1

b(vj , u, vj)
∣∣∣ =

∣∣∣
N∑

i=1

\
Q

(vj · ∇)uvj dx
∣∣∣ ≤

\
Q

|∇u(x, t)|̺1(x, t) dx,where
̺1(x, t) =

N∑

i=1

|vj(x, t)|2,and similarly
∣∣∣

N∑

i=1

b1(vj, u, zj)
∣∣∣ =

∣∣∣
N∑

i=1

\
Q

(vj · ∇)uzj dx
∣∣∣

≤
\
Q

|∇u(x, t)|̺1(x, t)
1/2̺2(x, t)

1/2 dx,where
̺1(x, t) =

N∑

i=1

|zj(x, t)|2.



2-D miropolar �uid �ow 335Therefore we an estimate the form B as follows:
∣∣∣

N∑

i=1

B(ϕj , u, ϕj)
∣∣∣ ≤

\
Q

(|∇u|̺1 + |∇ω|̺1/2
1 ̺

1/2
2 ) dx.Setting ̺ = ̺1 + ̺2, by the Cauhy and Shwarz inequalities we obtain

∣∣∣
N∑

i=1

B(ϕj , u, ϕj)
∣∣∣ ≤

\
Q

(̺|∇u| + ̺|∇ω|) dx ≤
√

2|̺| · [[u]].From the above estimates we infer that(6.4) TrF ′(u(τ)) ◦ PN (τ) ≤ −k1

N∑

i=1

[[ϕj(τ)]]
2 +

√
2|̺(τ)| · [[u(τ)]].Beause the family {ϕj(τ)}N

j=1 is orthonormal inH, the orresponding familyof pairs (vj , zj) is orthonormal in L2(Q)2×2 and we an use a generalizationof the Sobolev�Lieb�Thirring inequality ([26℄) to write(6.5) |̺(τ)|2 ≤ C0

N∑

i=1

(‖vj‖2 + ‖zj‖2) = C0

N∑

i=1

[[ϕj(τ)]]
2,for an appropriate onstant C0.Sine TQ ̺(x, t) dx = N , by the Shwarz inequality we get

N2 ≤ |Q| · |̺|2,and taking into aount (6.5),(6.6) N∑

i=1

[[ϕj(τ)]]
2 ≥ N2

C0|Q| .We estimate the seond term of the RHS of (6.4) using Young's inequality,(6.5) and (6.6):
√

2|̺| · [[u]] ≤ k1

2C0
|̺|2 +

C0

k1
[[u]]2 ≤ k1

2

N∑

i=1

[[ϕj]]
2 +

C0

k1
[[u]]2.From the above onsiderations, we have(6.7) TrF ′(u(τ)) ◦ PN (τ) ≤ −k1

2

N2

C0|Q| +
C0

k1
[[u]]2.Let u0 = (u0, ω0) ∈ A and u(τ) = S(τ)u0. Set

qN (t) = sup
u0∈A

sup

{
1

t

t\
0

TrF ′(S(τ)u0) ◦ PN (τ) dτ :

ξi ∈ H, [ξi] ≤ 1, i = 1, . . . , N

}
,
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qN = lim sup

t→∞
qN (t).In view of (6.7), we onlude that(6.8) qN ≤ − k1

2C0|Q| N
2 +

C0

k1
γ,where

γ = lim
t→∞

sup
u∈A

1

t

t\
0

[[S(τ)u0]]
2 dτ.We an estimate γ in terms of the data using (3.6). Sine

1

t

t\
0

[[S(t)u0]]
2 ≤ 1

k1k2
[G]2 +

1

t

1

k1
[u0]

2,it follows that
γ ≤ 1

k1k2
[G]2and by (6.8),(6.9) qN ≤ − k1

2C0|Q| N
2 +

C0

k2
1k2

[G]2.Setting
κ1 =

k1

2C0|Q| , κ2 =
C0

k2
1k2

[G]2,we an write (6.9) in the form
qN ≤ −κ1N

2 + κ2.The general theory provided in [26℄ allows us to onlude that the uniformLyapunov exponents µj assoiated with the attrator satisfy
µ1 + · · · + µj ≤ −κ1j

2 + κ2, ∀j ∈ N,and for the N satisfying (f. Lemma VI, 2.2 in [26℄)
N − 1 <

(
2κ2

κ1

)1/2

≤ N,the assertion holds.The resulting estimate of the dimension of the global attrator is similarto an analogous estimate for the miropolar �uid equations with no-slipboundary onditions (f. [18℄), but is of a higher order than the analogousestimate for the Navier�Stokes equation with periodi boundary onditions.



2-D miropolar �uid �ow 3377. Conlusions. The lak of the orthogonality property of the form b1,whih was mentioned in Setion 2, auses that the estimates of the numbersof determining modes, nodes and the dimension of the global attrator aremore involved than the orresponding estimates for the Navier�Stokes equa-tion in the spae-periodi ase. The reason is the following: the estimate ofthe square of the norm of a solution in V and the average of the square ofthe norm in D(A) for the Navier�Stokes equation, whih are analogous to(3.9) and (3.12), are proportional to F 2 (f. [5℄), where
F = lim sup

t→∞

(\
Q

|f(x, t)|2 dx
)1/2

.

Estimates (3.9) and (3.12) are exponential with respet to F̃ , whih impliesan exponential estimate of the number of determining nodes. We annotobtain linear dependene of the number of determining modes on F̃ beausethe form b1 does not have the orthogonality property (2.3).We hek how the estimates we obtained depend on νr. The ase when
νr is small is partiularly interesting beause if νr = 0 the miropolar �uidsystem redues to the Navier�Stokes system and the veloity �eld u beomesindependent of the mirorotation �eld ω:

ut − ν∆u+ (u · ∇)u+ ∇p = f,

div u = 0,

ωt − α∆ω + (u · ∇)ω = g.1. The estimate of the number of determining modes
m ≈ c1F̃

2
−1 + c2(f. (4.12)) is similar to that for the Navier�Stokes equation ([5℄) and themiropolar �uid equations ([23℄), both with Dirihlet boundary onditions.The oe�ient c1 does not depend on νr but if νr → 0, then c2 → 0, so if

νr = 0 our estimate agrees with that for the Navier�Stokes equation.2. The estimate of the number of determining nodes
m ≈ P (F̃ ) +Q(F̃ ) exp(R(F̃ ))(f. (5.16)), where P , Q and R are polynomials, is similar to that for theNavier�Stokes equation with Dirihlet boundary onditions ([5℄). If νr → 0,then the above estimate remains exponential with respet to F̃ . Our result ismuh more involved than an analogous result for the Navier�Stokes equationin [5℄, where it was shown that the dependene is linear.3. The estimate (6.1) of the dimension of the global attrator does notdepend on νr and is similar to suh an estimate for the Navier�Stokes equa-tion with Dirihlet boundary ondition ([5℄) and for the miropolar �uidequations with Dirihlet boundary ondition ([18℄).
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