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EIGENVALUES AND EIGENVECTORS OF SOME
TRIDIAGONAL MATRICES WITH

NON-CONSTANT DIAGONAL ENTRIES

Abstract. We give explicit expressions for the eigenvalues and eigenvec-
tors of some tridiagonal matrices with non-constant diagonal entries. Our
techniques are based on the theory of recurrent sequences.

1. Introduction. We consider tridiagonal matrices of the form

(1) An =



−α+ b1 c1 0 0 . . . 0
a1 b2 c2 0 . . . 0

0 a2 b3
. . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . . . . cn−1

0 . . . . . . 0 an−1 −β + bn


,

where aj and cj , j = 1, . . . , n − 1, and α and β are complex numbers. We
suppose that

(2) ajcj = d2, j = 1, . . . , n− 1,

and

(3) bj =
{
b1 if j is odd,
b2 if j is even,

j = 1, . . . , n− 1,

where d, b1 and b2 are complex numbers with d 6= 0.
If σ is a mapping (not necessarily a permutation) from the set of the

integers from 1 to n − 1 into the set N∗ of integers different from zero, we
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denote by An(σ) the n× n matrix

(1.1) An(σ) =



−α+ b1 cσ1 0 0 . . . 0
aσ1 b2 cσ2 0 . . . 0

0 aσ2 b3
. . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . . . . cσn−1

0 . . . . . . 0 aσn−1 −β + bn


and by ∆n(σ) = |An(σ) − λIn| its characteristic polynomial. If σ = id,
where id is the identity, then An(id) and its characteristic polynomial ∆n(id)
coincide with An and ∆n respectively. Our aim is to establish the eigenvalues
and the corresponding eigenvectors of the matrices An(σ).

We mention that the matrices An(σ) are of circulant type when α = β =
a1 = a2 = · · · = 0 and all the entries on the subdiagonal are equal. They
are of Toeplitz type when α = β = 0 and all the entries on the subdiagonal
are equal and those on the superdiagonal are also equal (see U. Grenander
and G. Szegö [4]).

When a1 = a2 = · · · = c1 = c2 = · · · = 1, b1 = b2 = −2 and α = β = 0,
the eigenvalues of An have been found by J. F. Elliott [1] and R. T. Gregory
and D. Carney [2] to be

λk = −2 + 2 cos
kπ

n+ 1
, k = 1, . . . , n.

When a1 = a2 = · · · = c1 = c2 = · · · = 1, b1 = b2 = −2 and α = 1 and
β = 0 or β = 1, the eigenvalues have been reported to be

λk = −2 + 2 cos
kπ

n
, k = 1, . . . , n,

and

λk = −2 + 2 cos
2kπ

2n+ 1
, k = 1, . . . , n,

respectively, without proof.
W. C. Yueh [7] has generalized the results of J. F. Elliott [1] and

R. T. Gregory and D. Carney [2] to the case when a1 = a2 = · · · = a,
c1 = c2 = · · · = c, b1 = b2 = b and α = 0, β =

√
ac or α = 0, β = −

√
ac

or α = −β =
√
ac or α = β =

√
ac or α = β = −

√
ac. He has calculated, in

this case, the eigenvalues and their corresponding eigenvectors

λk = b+ 2
√
ac cos θk, k = 1, . . . , n,

where θk = 2kπ/(2n+ 1), (2k − 1)π/(2n+ 1), (2k − 1)π/(2n), kπ/n and
(k − 1)π/n, k = 1, . . . , n, respectively.
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In [6], we have generalized the results of [7] to more general matrices
of the form (1.1) for any complex constants satisfying condition (2) but
with b1 = b2. We have proved that the eigenvalues remain the same as in
the case when the ai’s and the ci’s are equal but the components of the
eigenvector u(k)(σ) associated to the eigenvalue λk, which we denote by
u

(k)
j (σ), j = 1, . . . , n, are of the form

u
(k)
j (σ) = (−d)1−jaσ1 . . . aσj−1u

(k)
1

× d sin (n− j + 1)θk − β sin (n− j)θk
d sinnθk − β sin (n− 1)θk

, j = 1, . . . , n,

where θk is given by the formula

d2 sin (n+ 1)θk − d(α+ β) sinnθk + αβ sin (n− 1)θk = 0, k = 1, . . . , n.

Recently [4], we generalized the above results to tridiagonal matrices (1.1)
satisfying

ajcj =
{
d2

1 if j is odd,
d2

2 if j is even,
j = 1, 2, . . . ,

where d1 and d2 are complex numbers, but we always required the diagonal
entries to be equal. We have given explicit eigenvalues for many cases, for
example when n is even and αβ = d2

2, we have

λk =



b+
√
d2

1 + d2
2 + 2d1d2 cos θk, k = 1, . . . ,m− 1,

b−
√
d2

1 + d2
2 + 2d1d2 cos θk, k = m, . . . , 2m− 2,

b+
(α+ β) +

√
(α− β)2 + 4d2

1

2
, k = n− 1,

b+
(α+ β)−

√
(α− β)2 + 4d2

1

2
, k = n.

The corresponding eigenvectors u(k)(σ) = (u(k)
1 (σ), . . . , u(k)

n (σ))t, k = 1, . . . ,
n− 2, where t is the transposition symbol, are given by

u
(k)
j (σ)

= %j(σ)


(b− λk − β) sin

(
n− j − 1

2

)
θk − β

d1

d2
sin
(
n− j − 1

2

)
θk

when j is odd,
1√
d1d2

[
d1d2 sin

(
n− j

2
+ 1
)
θk + (d2

2 − β(b− λk)) sin
n− j

2
θk

]
when j is even,

where
%j(σ) = (−

√
d1d2)n−jaσ1 . . . aσj−1 , j = 1, . . . , n,

and
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θk =
{

2kπ/n, k = 1, . . . ,m− 1,
2(k −m+ 1)π/n, k = m, . . . , 2m− 2.

The eigenvectors u(n−1)(σ) and u(n)(σ) associated respectively with the
eigenvalues λn−1 and λn are given by another formula. The matrices studied
by J. F. Elliott [1], R. T. Gregory and D. Carney [2] and W. C. Yueh [7] are
special cases of those considered by S. Kouachi [6] which are, in their turn,
special cases of those considered in this paper since we allow unequal entries
on the principal diagonal. All the conditions imposed in the above papers
are very restrictive and the techniques used are complicated and are not (in
general) applicable to tridiagonal matrices considered in this paper, even for
small n. For example our techniques are applicable to the 6× 6 matrices

A6 =



5− 4
√

3 6 0 0 0 0
6 3 18 0 0 0
0 2 5 −4 0 0
0 0 −9 3 5 + i

√
11 0

0 0 0 5− i
√

11 5 −18i
0 0 0 0 2i 3− 3

√
3


,

A′6 =



5− 4
√

3 9 0 0 0 0
4 3 36 0 0 0
0 1 5 12i 0 0
0 0 −3i 3 4 + 2i

√
5 0

0 0 0 4− 2i
√

5 5 −6
0 0 0 0 −6 3− 3

√
3


and guarantee that they possess the same eigenvalues and in addition they
give their exact expressions (formulas (9.b) below) since conditions (2) and
(3) are satisfied:

λ1, λ4 = 4± 1
2

√
4 + 16(36) cos2

(
π

6

)
= 4±

√
109,

λ2, λ5 = 4± 1
2

√
4 + 16(36) cos2

(
π

3

)
= 4±

√
37,

λ3, λ6 = 4−
(

2 +
3
2

)√
3

± 1
2

√
(5− 3)2 + (4

√
3 + 3

√
3)2 − 2(5− 3)(4

√
3− 3

√
3)

= 4−
(

2 +
3
2

)√
3± 1

2

√
151− 4

√
3,
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whereas the previous techniques are restricted to the case when the entries
on each diagonal are equal and the direct calculation only gives the charac-
teristic polynomial

P (λ) = λ6 + λ5(7
√

3− 24) + λ4(93− 139
√

3)

+ λ3(82
√

3 + 1072) + λ2(7734
√

3− 6093)

+ λ(−10 953
√

3− 1944)− 52 731
√

3 + 29 295

whose roots are difficult to calculate.

2. The eigenvalues. When α = β = 0, the matrix An(σ) and its
characteristic polynomial will be denoted respectively by A0

n(σ) and ∆0
n(σ),

and in the general case they will be denoted by An and ∆n. We put

(4) Y1Y2 = 4d2 cos2 θ,

where

(4.1) Y1 = b1 − λ and Y2 = b2 − λ.

The main result of this paper is

Theorem 1. The eigenvalues of the matrices A0
n(σ) are independent of

the entries (ai, ci, i = 1, . . . , n − 1) and of the mapping σ provided that
conditions (2) and (3) are satisfied and their characteristic determinants
are given by

∆0
n(σ) = d2mY1 sin (2m+ 2)θ

sin 2θ
when n = 2m+ 1,(5.a)

∆0
n(σ) = d2m sin (2m+ 1)θ

sin θ
when n = 2m.(5.b)

Proof. Since the right hand sides of formulas (5.a) and (5.b) are inde-
pendent of σ, to prove that so also is ∆0

n, it suffices to prove these formulas
for σ = id. Then, by expanding ∆0

n in terms of its last column and using
(2), (3) and (4.1), we get

∆0
n = Y1∆

0
n−1 − d2∆0

n−2, n = 3, 4, . . . ,when n = 2m+ 1,(6.a.1)

∆0
n = Y2∆

0
n−1 − d2∆0

n−2, n = 3, 4, . . . ,when n = 2m.(6.b.1)

Let us begin by proving (5.b). By writing the expressions of ∆0
n for n =

2m+2, 2m+1 and 2m, multiplying∆0
2m+1 and∆0

2m by Y2 and d2 respectively
and adding the three resulting equations, we get

(6.b.2) ∆0
2m+2 = (Y1Y2 − 2d2)∆0

2m − d4∆0
2m−2.

We now prove (5.b) by induction on m. For m = 0 and m = 1 the formula is
satisfied. Suppose that it is satisfied for all integers < m. Then from (6.b.2)
and using (4), we get
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∆0
2m+2 = d2m+2

[
(4 cos2 θ − 2) sin (2m+ 1)θ − sin (2m− 1)θ

sin θ

]
= d2m+2

[
2 cos 2θ sin (2m+ 1)θ − sin (2m− 1)θ

sin θ

]
.

Using the well known trigonometric formula

(∗) 2 sin η cos ζ = sin(η + ζ) + sin (η − ζ)

for η = (2m+ 1)θ and ζ = 2θ, we deduce (5.b) for n = 2m+ 2.
When n = 2m+ 1, applying (6.b.1) for n = 2m+ 2, we get

(6.a.2) ∆0
2m+1 =

∆0
2m+2 + d2∆0

2m

Y2
.

By direct application of (5.b) twice, for n = 2m + 2 and n = 2m, to the
right hand side of the last expression, we get

∆0
2m+1 = d2m+2 sin (2m+ 3)θ + sin (2m+ 1)θ

Y2 sin θ
.

Using again the trigonometric formula (∗) for η = (2m + 3)θ and ζ =
(2m+ 1)θ, we deduce that

∆0
2m+1 = 2d2m+2 sin (2m+ 2)θ cos θ

Y2 sin θ
.

By (4), the last expression becomes

∆0
2m+1 = d2mY1 sin (2m+ 2)θ

2 sin θ cos θ
,

which gives (5.a) by applying (∗) for η = ζ = θ.

Theorem 2. When conditions (2) and (3) are satisfied , the eigenvalues
of A0

n(σ) are given by

(7) λk =


(b1 + b2)−

√
(b1 − b2)2 + 16d2 cos2 θk

2
, k = 1, . . . ,m,

(b1 + b2) +
√

(b1 − b2)2 + 16d2 cos2 θk
2

, k = m+ 1, . . . , 2m,
b1 k = n,

where

θk =


kπ

2m+ 2
, k = 1, . . . ,m,

(k −m)π
2m+ 2

, k = m+ 1, . . . , 2m,
when n = 2m+ 1,(7.a)

θk =


kπ

2m+ 1
, k = 1, . . . ,m,

(k −m)π
2m+ 1

, k = m+ 1, . . . , 2m,
when n = 2n.(7.b)
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Proof. In formulas (7), the symbol √ denotes any concrete branch of the
square root. When n = 2m + 1, the eigenvalues are trivial consequences of
formula (5.a) by putting Y1 sin (2m+ 2)θ = 0, which gives, by using (4) and
(4.1),

λ2 − (b1 + b2)λ+ b1b2 − 4d2 cos2 θk = 0, k = 1, . . . ,m,

where θk = kπ/(2m+ 2), k = 1, . . . ,m and λn = b1.

When n = 2m, the same reasoning with sin (2m+ 1)θ = 0 yields (7).

If we suppose that α 6= 0 or β 6= 0, then following the same reasoning
as in S. Kouachi [4] and [5] by expanding ∆n in terms of the first and
last columns and using the linearity of determinants with respect to their
columns, we get

∆n = ∆0
n − α|E2

n−1| − β|E1
n−1|+ αβ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Y2 c2 0 . . . 0

a2 Y3
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . cn−2

0 . . . 0 an−2 Yn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where E1
n−1 and E2

n−1 are (n− 1)× (n− 1) matrices of the form (1),

Ein−1 =



Yi ci 0 . . . 0

ai Yi+1
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . cn+i−3

. . . . . . 0 an+i−3 Yn+i−2


, i = 1, 2.

Since all the entries ai on the subdiagonal and ci on the superdiagonal
satisfy conditions (2) and (3), using formulas (5.a) and (5.b) and taking
into account the order of the entries ai, ci and Yi, we deduce

∆n = d2m Y1 sin (2m+ 2)θ
sin 2θ

− (α+ β)d2m sin (2m+ 1)θ
sin θ

+ αβd2m−2 Y2 sin 2mθ
sin 2θ

= d2m Y1 sin (2m+ 2)θ − 2(α+ β) cos θ sin (2m+ 1)θ + αβ
d2
Y2 sin 2mθ

sin 2θ
.

Applying the trigonometric formula (∗) for η = (2m+ 1)θ and ζ = θ, we get

(8.a) ∆n = d2m [Y1 − (α+ β)] sin(2m+ 2)θ +
[αβ
d2
Y2 − (α+ β)

]
sin 2mθ

sin 2θ
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when n = 2m+ 1, and

∆n = d2m sin (2m+ 1)θ
sin θ

− αd2m−2 Y2 sin 2mθ
sin 2θ

− βd2m−2 Y1 sin 2mθ
sin 2θ

+ αβd2m−2 sin (2m− 1)θ
sin θ

= d2m−2 2d2 sin(2m+1)θ cos θ−(αY2+βY1) sin 2mθ+2αβ sin(2m−1)θ cos θ
sin 2θ

when n = 2m. Applying (∗) twice, first for η = (2m + 1)θ and ζ = θ and
then for = (2m− 1)θ and ζ = θ, we get

(8.b) ∆n =

d2m−2d
2 sin (2m+ 2)θ−(αY2+βY1−αβ−d2) sin 2mθ+αβ sin (2m−2)θ

sin 2θ
.

If αβ = d2, then by application of (∗) for η = 2mθ and ζ = 2θ, we get

∆n = d2m−2 (2d2 cos 2θ − αY2 − βY1 + 2d2) sin 2mθ
sin 2θ

.

Using (4) and the formula cos 2θ = 2 cos2 θ − 1, we deduce

(8.b.1) ∆n = d2m−2 (Y1Y2 − αY2 − βY1) sin 2mθ
sin 2θ

.

Before proceeding further, let us deduce from formulas (8) a proposition for
the matrix Bn(σ) which is obtained from An(σ) by changing α and β to b1
and b2 respectively.

Proposition 1. When n is even, the eigenvalues of Bn(σ) are the same
as those of An(σ).

We have

Theorem 3. When n = 2m and αβ = d2, if conditions (2) and (3) are
satisfied , then the eigenvalues of all the matrices An(σ) are given by

(9.b) λk =

(b1 + b2)−
√

(b1 − b2)2 + 16d2 cos2 θk
2

, k = 1, . . . ,m− 1,

(b1 + b2) +
√

(b1 − b2)2 + 16d2 cos2 θk
2

, k = m, . . . , 2m− 2,

(b1 + b2−α−β)−
√

(b1 + b2)2 +(α+β)2−2(b1− b2)(α−β)
2

, k = n− 1,

(b1 + b2 − α− β) +
√

(b1 + b2)2 + (α+ β)2 − 2(b1 − b2)(α− β)
2

, k = n,
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where

θk =


kπ

2m
, k = 1, . . . ,m− 1,

(k −m+ 1)π
2m

, k = m, . . . , 2m− 2.

Proof. By (4.1), the characteristic determinant (8.b.1) becomes

∆n = d2m−2 [λ2 − (b1 + b2 − α− β)λ− (αb2 + βb1 − b1b2)] sin 2mθ
sin 2θ

.

Then the eigenvalues λk, k = 1, . . . , 2m − 2, are trivial by putting 2mθ =
kπ, k = 1, . . . ,m− 1, and using (4). This gives

λ2 − (b1 + b2)λ+ b1b2 − 4d2 cos2 θk = 0, k = 1, . . . ,m− 1.

The eigenvalues λn−1 and λn are deduced by solving the equation

λ2 − (b1 + b2 − α− β)λ− (αb2 + βb1 − b1b2) = 0.

Let us see what formulas (8) say and what they do not say. They say
that if a′i, c

′
i, i = 1, . . . , n− 1, are other constants satisfying conditions (2)

and (3) and

(1.2) A′n =



−α+ b1 c′1 0 0 . . . 0
a′1 b2 c′2 0 . . . 0

0 a′2 b3
. . . . . .

...

0 0
. . . . . . . . . 0

...
...

. . . . . . . . . c′n−1

0 . . . . . . 0 a′n−1 −β + bn


,

then the matrices An, A′n and An(σ) possess the same characteristic poly-
nomial and hence the same eigenvalues. Therefore we have this immediate
consequence of formulas (4):

Corollary 1. The matrices An, A′n and An(σ) are all similar provided
that all the entries satisfy conditions (2) and (3).

3. The eigenvectors. The components of the eigenvector u(k)(σ), k =
1, . . . , n, associated to the eigenvalue λk, k = 1, . . . , n, which we denote by
u

(k)
j , j = 1, . . . , n, are solutions of the linear system of equations

(10)


(−α+ ξ

(k)
1 )u(k)

1 + cσ1u
(k)
2 = 0,

aσ1u
(k)
1 + ξ

(k)
2 u

(k)
2 + cσ2u

(k)
3 = 0,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
aσn−1u

(k)
n−1 + (−β + ξ

(k)
n )u(k)

n = 0,
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where

ξ
(k)
i = Y

(k)
i = bi − λk(4.2)

=
{
b1 − λk if i is odd,
b2 − λk if i is even,

i = 1, . . . , n− 1, k = 1, . . . , n,

given by formulas (4), and θk, k = 1, . . . , n, are solutions of

(11.a) [ξ(k)1 − (α+ β)] sin (2m+ 2)θk +
[
αβ

d2
ξ
(k)
2 − (α+ β)

]
sin 2mθk = 0

when n = 2m+ 1, and

(11.b) d2 sin (2m+ 2)θk − (αξ(k)2 + βξ
(k)
1 − αβ − d2) sin 2mθk

+ αβ sin (2m− 2)θk = 0

when n = 2m.
Since these n equations are linearly dependent, by eliminating the first

equation we obtain a system of n− 1 equations in n− 1 unknowns, written
in matrix form as

(12)



ξ
(k)
2 cσ2 0 . . . 0

aσ2 ξ
(k)
3

. . . . . .
...

0
. . . . . . . . . 0

...
. . . . . . . . . cσn−1

0 . . . 0 aσn−1 −β + ξ
(k)
n





u
(k)
2

u
(k)
3
...
...

u
(k)
n


=



−aσ1u
(k)
1

0
...
...
0


.

The determinant of this system is given by formulas (8) for α = 0 and n
replaced by n− 1 and equals

(13.a) ∆
(k)
n−1 = d2m−2 d

2 sin (2m+ 2)θk − (βξ(k)2 − d2) sin 2mθk
sin 2θk

when n = 2m+ 1, and

(13.b) ∆
(k)
n−1 = d2m−2 (ξ(k)2 − β) sin 2mθk − β sin (2m− 2)θk

sin 2θk
when n = 2m, and for all k = 1, . . . , n.

(14) u
(k)
j (σ) =

Γ
(k)
j (σ)

∆
(k)
n−1

, j, k = 1, . . . , n,

where
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Γ
(k)
j (σ)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ξ
(k)
2 cσ2 0 . . . −aσ1u

(k)
1 0 . . . 0

aσ2 ξ
(k)
3

. . . . . . 0 0 . . .
...

0
. . . . . . cσj−2

...
... . . .

...

0 0 aσj−2 ξ
(k)
j−1 0 0 . . .

...
...

...
. . . aσj−1 0 cσj

. . .
...

...
...

. . . . . . 0 ξ
(k)
j+1

. . . 0
...

... . . .
. . .

... aσj+1
. . . . . . cσn−1

0 . . . . . . . . . 0 0 aσn−1 −β + ξ
(k)
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

j = 2, . . . , n, k = 1, . . . , n. By permuting the first j − 2 columns with the
(j − 1)th one and using the properties of determinants, we get

(15) u
(k)
j (σ) = (−1)j−2

Λ
(k)
j (σ)
∆n−1

, j = 2, . . . , n,

where Λ(k)
j (σ) is the determinant of the matrix

C
(k)
j (σ) =

(
T

(k)
j−1(σ) 0

0 S
(k)
n−j(σ)

)
,

where

T
(k)
j−1(σ) =



−aσ1u
(k)
1 ξ

(k)
2 cσ2 0 · · · 0

0 aσ2

. . . . . . . . .
...

...
. . . . . . . . . . . . 0

... 0
. . . . . . . . . cσj−2

... 0 0
. . . . . . ξ

(k)
j−1

0 · · · · · · · · · 0 aσj−1


is a supertriangular (j−1)×(j−1) matrix with diagonal (−aσ1u

(k)
1 , aσ2 , . . . ,

aσj−1) and

S
(k)
n−j(σ) =



ξ
(k)
j+1 cσj+1 0 · · · 0

aσj+1
. . . . . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . . . . cσn−1

0 · · · 0 aσn−1 −β + ξ
(k)
n


,
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is an (n − j) × (n − j) tridiagonal matrix of the form (1.1) and satisfying
conditions (2) and (3). Thus

|C(k)
j (σ)| = |T (k)

j−1(σ)| |S(k)
n−j(σ)|(16)

= −aσ1 . . . aσj−1u
(k)
1 ∆

(k)
n−j , j = 2, . . . , n and k = 1, . . . , n,

where ∆(k)
n−j(σ) is given by formulas (8) for α = 0 and n replaced by n− j:

(17.a) ∆
(k)
n−j =

 dn−j−2 d
2 sin (n−j+2)θk−(βξ

(k)
2 −d2) sin (n−j)θk

sin 2θk
for j odd,

dn−j−1 [ξ
(k)
1 −β] sin (n−j+1)θk−β sin(n−j−1)θk

sin 2θk
for j even,

when n is odd, and

(17.b) ∆
(k)
n−j =

 dn−j−1 [ξ
(k)
2 −β] sin (n−j+1)θk−β sin (n−j−1)θk

sin 2θk
for j odd,

dn−j−2 d
2 sin (n−j+2)θk−(βξ

(k)
1 −d2) sin (n−j)θk

sin 2θk
for j even,

when n is even, for all j = 2, . . . , n and k = 1, . . . , n. Using formulas (13)–
(17), we get

(18) u
(k)
j (σ) = (−1)j−1aσ1 . . . aσj−1u

(k)
1

∆
(k)
n−j

∆
(k)
n−1

, j = 2, . . . , n, k = 1, . . . , n.

Finally,

(18.a) u
(k)
j (σ) =

µj(σ)u(k)
1


d1−j d2 sin (n−j+2)θk−(βξ

(k)
2 −d2) sin (n−j)θk

d2 sin (n+1)θk−(βξ
(k)
2 −d2) sin (n−1)θk

for j odd,

d2−j (ξ
(k)
1 −β) sin(n−j+1)θk−β sin(n−j−1)θk

d2 sin (n+1)θk−(βξ
(k)
2 −d2) sin (n−1)θk

for j even,

when n is odd, and

(18.b) u
(k)
j (σ) =

µj(σ)u(k)
1


d1−j (ξ

(k)
2 −β) sin(n−j+1)θk−β sin(n−j−1)θk

(ξ
(k)
2 −β) sinnθk−β sin(n−2)θk

for j odd,

d−j
d2 sin(n−j+2)θk−(βξ

(k)
1 −d2) sin(n−j)θk

(ξ
(k)
2 −β) sinnθk−β sin(n−2)θk

for j even,

for all j = 2, . . . , n and k = 1, . . . , n, when n is even, where

(†) µj(σ) = (−1)1−jaσ1 . . . aσj−1 , j = 2, . . . , n,

ξ
(k)
1 , ξ(k)2 and θk, k = 1, . . . , n, are given by formulas (4) and (11). If we

choose
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u
(k)
1 (σ) = (−d)n−1

{
d2 sin(n+ 1)θk − (βξ(k)2 − d2) sin(n− 1)θk for n odd,
(ξ(k)2 − β) sinnθk − β sin(n− 2)θk for n even,

and put

(‡) %j(σ) = (−d)n−jaσ1 . . . aσj−1 , j = 2, . . . , n,

we get

Theorem 4. The eigenvectors u(k)(σ) = (u(k)
1 (σ), . . . , u(k)

n (σ))t, k =
1, . . . , n of the matrices An(σ) are given by

(19.a) u
(k)
j (σ) = %j(σ)


d2 sin(n− j + 2)θk − (βξ(k)2 − d2) sin(n− j)θk

for j odd ,
(ξ(k)1 − β)d sin(n− j + 1)θk − βd sin(n− j − 1)θk

for j even,

when n is odd , and

(19.b) u
(k)
j (σ) = %j(σ)


(ξ(k)2 − β) sin(n− j + 1)θk − β sin(n− j − 1)θk

for j odd ,
d sin(n− j + 2)θk − (βξ(k)1 /d− d) sin(n− j)θk

for j even,

when n is even. Here %j(σ), j = 2, . . . , n, is given by (‡) and θk, ξ
(k)
1 and

ξ
(k)
2 , k = 1, . . . , n, are given by formulas (4) and (11).
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