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ROBUST BAYESIAN ESTIMATION
WITH ASYMMETRIC LOSS FUNCTION

Abstract. The problem of robust Bayesian estimation in some models
with an asymmetric loss function (LINEX) is considered. Some uncertainty
about the prior is assumed by introducing two classes of priors. The most ro-
bust and conditional Γ -minimax estimators are constructed. The situations
when those estimators coincide are presented.

1. Introduction and notation. In Bayesian statistical inference a sta-
tistical problem should be treated specifying a prior distribution over the
parameter space. However the arbitrariness of a unique prior distribution is
a permanent problem. Robust Bayesian inference deals with the problem of
expressing uncertainty of the prior information using a class Γ of priors and
of measuring the range of a posterior quantity while the prior distribution
Π runs over the class Γ . This is of interest not only in calculating the range
but also in constructing optimal procedures.

This paper concerns the problem of optimal estimation of an unknown
real parameter. We consider two notions of optimality: conditional Γ -mini-
max estimators (see DasGupta and Studden (1989), Betro and Ruggeri
(1992)) and stable estimators developed in Męczarski and Zieliński (1991),
Boratyńska and Męczarski (1994). The first concept is connected with the
problem of efficiency of the estimator with respect to the posterior risk when
the priors run over Γ . The second one is connected with the problem of find-
ing the estimator with the smallest oscillation of the posterior risk when the
priors run over Γ . Sometimes those two estimators coincide (see Męczarski
(1993) and Boratyńska (1997)).
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In all papers mentioned above the square loss function was considered.
Being symmetric, the square loss imposes equal penalty on over- and under-
estimation of the same quantity.

In this paper we estimate the unknown parameter θ and consider the
asymmetric loss function (LINEX)

L(θ, d) = exp(c(d− θ))− c(d− θ)− 1,

where c is a known parameter, c > 0, and d is an estimate. For motivations
to use LINEX see Varian (1974), Zellner (1986), Wan, Zou, and Lee (2000)
and references therein. We find the conditional Γ -minimax estimators and
the stable estimators, present the conditions when those estimators coincide,
in a class of models with two classes of conjugate priors given below. For
the square loss, some of the presented models were considered in Boratyńska
(1997). The same problem for a normal model with an unknown mean and
two classes of priors was considered in Boratyńska and Drozdowicz (1999).

Let Gamma(a, b) be Gamma distribution on the space Θ = (0,∞) with
the Lebesgue density

πa,b(θ) =
ba

Γ (a)
θa−1e−bθ,

where a, b > 0 are parameters. Let

R(a, b, d) = EL(θ, d) = Eec(d−θ) + cEθ − cd− 1,

where Ey(θ) denotes the expected value of a function y(θ) when θ has the
Gamma distribution Gamma(a, b). Thus

R(a, b, d) = ecd
(

b

b+ c

)a
+
ac

b
− cd− 1.

The minimum of R as a function of d is attained for

da,b = −1
c

lnEe−cθ = −1
c
a ln

b

b+ c
.

Model. Let {Pθ : θ > 0} be a one-parameter family of probability mea-
sures with densities of the form

l(z, θ) = C(z)θt(z)e−s(z)θ, z ∈ R,
with respect to some σ-finite measure µ on R, where C, t, s are fixed, mea-
surable, nonnegative functions. The popular families like Poisson, Gamma,
Exponential distributions are examples. For more details see Table 1 at the
end of the paper.

Let X1, . . . ,Xn be i.i.d. random variables with a distribution Pθ. We
consider the problem of estimating θ with the LINEX loss function L(θ, d).
Set X = (X1, . . . ,Xn). Let Πα0,β0 = Gamma(α0, β0) be a fixed prior distri-
bution. If X = x then the posterior distribution is Gamma(α0 + T, β0 + S),
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where T = T (x, n) =
∑n
i=1 t(xi) and S = S(x, n) =

∑n
i=1 s(xi). Thus the

Bayes estimator is given by the formula

θ̂Bay
α0,β0

= dα0+T,β0+S = −1
c

(α0 + T ) ln
β0 + S

β0 + S + c
.

Now suppose that the prior distribution is not exactly specified and
consider two classes of priors of θ:

Γα0 = {Πα0,β : Πα0,β = Gamma(α0, β), β ∈ [β1, β2]},
where 0 < β1 < β2 are fixed and β0 ∈ (β1, β2),

Γ ∗β0
= {Πα,β0 : Πα,β0 = Gamma(α, β0), α ∈ [α1, α2]},

where 0 < α1 < α2 are fixed and α0 ∈ (α1, α2). The classes Γα0 and Γ ∗β0

express two types of uncertainty about the elicited prior.
Let Rx(α, β, θ̂(x)) denote the posterior risk of an estimator θ̂ when the

prior is Gamma(α, β). Then

Rx(α, β, θ̂(x)) = R(α+ T, β + S, θ̂(x))

and the ranges of the posterior risk of the estimator θ̂ when the prior runs
over Γα0 and Γ ∗β0

are

rα0(θ̂(x)) = sup
β∈[β1,β2]

R(α0 + T, β+S, θ̂(x))− inf
β∈[β1,β2]

R(α0 + T, β+S, θ̂(x)),

r∗β0
(θ̂(x)) = sup

α∈[α1,α2]
R(α+T, β0 +S, θ̂(x))− inf

α∈[α1,α2]
R(α+T, β0 +S, θ̂(x)),

respectively.
The problem is to find the most stable estimators θ̂α0 and θ̂∗β0

, i.e. those
satisfying

∀x inf
d∈R

rα0(d) = rα0(θ̂α0(x)),

∀x inf
d∈R

r∗β0
(d) = r∗β0

(θ̂∗β0
(x)),

and to find the conditional Γ -minimax estimators θ̃α0 and θ̃∗β0
, i.e. the esti-

mators satisfying

∀x inf
d∈R

sup
β∈[β1,β2]

Rx(α0, β, d) = sup
β∈[β1,β2]

Rx(α0, β, θ̃α0(x)),

∀x inf
d∈R

sup
α∈[α1,α2]

Rx(α, β0, d) = sup
α∈[α1,α2]

Rx(α, β0, θ̃
∗
β0

(x)).

2. Properties of the function R. Let (a0, b0) be a fixed pair such
that a0 > 0 and b0 > 0. Let [a1, a2] and [b1, b2] be two intervals such that
a0 ∈ (a1, a2) and b0 ∈ (b1, b2) and a1, a2, b1, b2 > 0.
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Lemma 1. (1) R(a0, b, ·) is a strictly convex function for every b > 0.
(2) For every d, the minimum point bmin(d) of R(a0, ·, d) is unique and

it is a strictly decreasing function of d.
(3) For any b and d such that bmin(d) = b we have

∀d1 < d2 ≤ d
R(a0, b, d2)−R(a0, b, d1)

d2 − d1
<
R(a0, bmin(d2), d2)−R(a0, bmin(d1), d1)

d2 − d1

and

∀d2 > d1 ≥ d
R(a0, b, d2)−R(a0, b, d1)

d2 − d1
>
R(a0, bmin(d2), d2)−R(a0, bmin(d1), d1)

d2 − d1
.

(4) R(a0, b1, d)−R(a0, b2, d) is a decreasing function of d.
(5) The solution of the equation R(a0, b1, d) = R(a0, b2, d) is

da0 = −a0

c
ln

b2
b2 + c

+
1
c

{
ln
[
a0c

b1b2
(b2 − b1)

]
− ln

[
1−

(
b1(b2 + c)
b2(b1 + c)

)a0
]}

and da0 > 0 for all b2 > b1 > 0.
(6) Let u =

( b1(b2+c)
b2(b1+c)

)a0 . Then

da0,b2 ≤ da0 ≤ da0,b1 iff 1− u ≤ a0c

b1b2
(b2 − b1) ≤ 1

u
− 1.

Proof. For (1), note that

∂2

∂d2R(a0, b, d) = c2ecd
(

b

b+ c

)a0

> 0.

Moreover,
∂

∂b
R(a0, b, d) =

ca0

b2

[
ecd
(

b

b+ c

)a0+1

− 1
]

and the minimum point

bmin(d) =
c

e
cd

a0+1 − 1
is a decreasing function of d.

To check (3) note that

R(a0, b, d) = exp
(
cd− cda0

a0 + 1

)
+ a0 exp

(
cd

a0 + 1

)
− a0 − cd− 1

and

R(a0, bmin(d), d) = (a0 + 1) exp
(

cd

a0 + 1

)
− a0 − cd− 1.

Thus it is enough to show the inequalities
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∀d1 < d2 ≤ d
e
−cda0
a0+1 (ecd2 − ecd1)

d2 − d1
<

(a0 + 1)(e
cd2
a0+1 − e

cd1
a0+1 )

d2 − d1
,

∀d2 > d1 ≥ d
e
−cda0
a0+1 (ecd2 − ecd1)

d2 − d1
>

(a0 + 1)(e
cd2
a0+1 − e

cd1
a0+1 )

d2 − d1
.

Consider the first inequality. It is equivalent to

∀d1 < d2 ≤ d
f(d2)− f(d1)

d2 − d1
< 0,

where

f(d) = exp
(
cd− cda0

a0 + 1

)
− (a0 + 1) exp

(
cd

a0 + 1

)
.

By the Lagrange formula it is enough to show that

f ′(d) = c exp
(
cd− cda0

a0 + 1

)
− c exp

cd

a0 + 1
< 0

for all d < d. And since g(x) = ex is increasing, this is indeed true.
The second inequality is shown the same way.
Since
∂

∂d
(R(a0, b1, d)−R(a0, b2, d)) = cecd

[(
b1

b1 + c

)a0

−
(

b2
b2 + c

)a0
]

and the function g(b) =
(

b
b+c

)a0 is increasing, property (4) is true. Now easy
calculations give (5) and (6).

Lemma 2. (1) R(a, b0, ·) is a strictly convex function for every a > 0.
(2) For every d, the minimum point amin(d) of R(·, b0, d) is unique and

it is a strictly increasing function of d.
(3) For any a and d such that amin(d) = a we have

∀d1 < d2 ≤ d
R(a, b0, d2)−R(a, b0, d1)

d2 − d1
<
R(amin(d2), b0, d2)−R(amin(d1), b0, d1)

d2 − d1

and

∀d2 > d1 ≥ d
R(a, b0, d2)−R(a, b0, d1)

d2 − d1
>
R(amin(d2), b0, d2)−R(amin(d1), b0, d1)

d2 − d1
.

(4) R(a1, b0, d)−R(a2, b0, d) is an increasing function of d.
(5) The solution of the equation R(a1, b0, d) = R(a2, b0, d) is equal to

d∗b0 = −a1

c
ln

b0
b0 + c

+
1
c

{
ln
[
c

b0
(a2 − a1)

]
− ln

[
1−

(
b0

b0 + c

)a2−a1
]}

and d∗b0 > 0 for all a2 > a1 > 0 and b0 > 0.
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(6) Let v =
(
b0+c
b0

)a2−a1 . Then

da1,b0 ≤ d∗b0 ≤ da2,b0 iff
c

b0
(a2 − a1) ≤ v − 1.

Proof. The proof is very similar to the proof of Lemma 1. We show only
properties (3) and (6).

Let b0
b0+c = z. Then z ∈ (0, 1) and b0 = cz

1−z . We have

R(a, b0, d) = g(a, z, d) = ecdza +
a(1− z)

z
− cd− 1.

The minimum point amin(d) of g(·, z, d) is

amin(d) = logz
e−cd(1− z)
−z ln z

=
−cd+ ln(1− z)− ln ln z−1

ln z
− 1.

We have

g(amin(d), z, d) = ecd
(
−e
−cd(1− z)
z ln z

)
+

1− z
z

logz
e−cd(1− z)
−z ln z

− cd− 1

and

g(amin(d), z, d) = −1− z
z ln z

+
1− z
z

(−cd+ ln(1− z)− ln ln z−1

ln z
−1
)
−cd−1.

To prove (3) it is enough to show the inequalities

∀d1 < d2 ≤ d − e−cd(1− z)
z ln z

· e
cd2 − ecd1

d2 − d1
< −c(1− z)

z ln z
,

∀d2 > d1 ≥ d − e−cd(1− z)
z ln z

· e
cd2 − ecd1

d2 − d1
> −c(1− z)

z ln z
.

They are equivalent to the inequalities

∀d1 < d2 ≤ d
ecd2 − ecd1

d2 − d1
< cecd,

∀d2 > d1 ≥ d
ecd2 − ecd1

d2 − d1
> cecd,

which are true by the Lagrange formula for f(d) = ecd.
To prove (6) consider the inequalities

da1,b0 ≤ d∗b0 ≤ da2,b0 .

They are equivalent to

1− 1
v
≤ c

b0
(a2 − a1) ≤ v − 1,
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where v =
(
b0+c
b0

)a2−a1 . The first inequality is equivalent to

1−
(

b0
b0+c

)a2−a1

a2 − a1
≤ c

b0
.

Let f(a) =
(

b0
b0+c

)a2−a. Then f(a2) = 1 and f(a1) =
(

b0
b0+c

)a2−a1 . We have

f ′(a) =
(

b0
b0 + c

)a2−a
ln
(

1 +
c

b0

)

and

f ′(a) ≤ ln
(

1 +
c

b0

)
≤ c

b0

for a ≤ a2, which completes the proof of (6).

3. The most stable and conditional Γ -minimax estimators. We
use the following theorem proved by Męczarski (1993).

Theorem 1 (Męczarski (1993)). Let Γ = {Πγ : γ ∈ [γ1, γ2]} be a set of
prior distributions, where γ is a real parameter. Let %(γ, d) be a posterior
risk of a decision d based on the observation x when the prior is Πγ . Assume
that the function %(γ, d) satisfies the following conditions:

(1) %(γ, ·) is a strictly convex function for any γ;
(2) for any d the minimum point γmin(d) of %(·, d) is unique and γmin is

a strictly monotone function of d;
(3) for any γ and d such that γmin(d) = γ we have

∀d1 < d2 ≤ d
%(γ, d2)− %(γ, d1)

d2 − d1
<
%(γmin(d2), d2)− %(γmin(d1), d1)

d2 − d1

and

∀d2 > d1 ≥ d
%(γ, d2)− %(γ, d1)

d2 − d1
>
%(γmin(d2), d2)− %(γmin(d1), d1)

d2 − d1
;

(4) %(γ1, d)− %(γ2, d) is a monotone function of d.

Then

(i) if there exists d̂ such that

sup
γ∈[γ1,γ2]

%(γ, d̂ ) = %(γ1, d̂ ) = %(γ2, d̂ )

then d̂ is the most stable;
(ii) let LΓ = {d : ∀x ∈ X ∃γ ∈ [γ1, γ2] d(x) = dBay

γ (x)}; if d̂ satisfying

(i) belongs to LΓ then d̂ is conditional Γ -minimax.

We prove the following results.
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Theorem 2. If the class of priors is equal to Γα0 then

θ̂α0 = θ̂Bay
α0,β2

+
1
c

{
ln
∣∣∣∣
c(α0 + T )(β2 − β1)
(β1 + S)(β2 + S)

∣∣∣∣

− ln
∣∣∣∣1−

(
(β2 + S + c)(β1 + S)
(β2 + S)(β1 + S + c)

)α0+T ∣∣∣∣
}

and

θ̃α0 =





θ̂Bay
a0,β1

if
c(α0 + T )(β2 − β1)
(β1 + S)(β2 + S)

>
1
u
− 1,

θ̂α0 if 1− u ≤ c(α0 + T )(β2 − β1)
(β1 + S)(β2 + S)

≤ 1
u
− 1,

θ̂Bay
α0,β2

if
c(α0 + T )(β2 − β1)
(β1 + S)(β2 + S)

< 1− u,

where

u =
[

(β1 + S)(β2 + S + c)
(β2 + S)(β1 + S + c)

]α0+T

.

The most stable estimator in the class

Lα0 = {θ̂ : ∀x ∃β ∈ [β1, β2] θ̂(x) = θ̂Bay
α0,β

(x)}
is equal to the conditional Γ -minimax estimator θ̃α0 .

Proof. The posterior risk of an estimator θ̂ for X = x and the prior
Πα0,β is

Rx(α0, β, θ̂(x)) = R(a0, b, θ̂(x)),

where a0 = α0 +T , b = β+S and b is an increasing, linear function of β. Let
b1 = β1 + S and b2 = β2 + S. By Lemma 1 conditions (1)–(4) of Theorem 1
hold for the function %(b, d) = R(a0, b, d). Thus by Lemma 1(5) we obtain
the most stable estimator.

To find the conditional Γ -minimax estimator we use Lemma 1(4)–(6)
and note that

sup
b∈[b1,b2]

%(b, d) =
{
%(b1, d) for d ≤ θ̂α0(x),
%(b2, d) for d ≥ θ̂α0(x).

Thus if θ̂α0 > θ̂Bay
α0,β1

for X = x then also θ̂α0 > θ̂Bay
α0,β2

, the oscillation rα0(d)

is a decreasing function of d for d < θ̂α0(x) and

inf
d≥θ̂α0 (x)

sup
b∈[b1,b2]

%(b, d) = %(b2, θ̂α0(x)).

But
%(b2, θ̂α0(x)) = %(b1, θ̂α0(x)) ≥ inf

d≤θ̂α0 (x)
sup

b∈[b1,b2]
%(b, d) = %(b1, θ̂

Bay
α0,β1

(x)).

Similarly we consider the case θ̂α0 < θ̂Bay
α0,β2

and complete the proof.
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Theorem 3. If the class of priors is equal to Γ ∗β0
then

θ̂∗β0
= θ̂Bay

α1,β0
+

1
c

{
ln
∣∣∣∣
c(α2 − α1)
β0 + S

∣∣∣∣− ln
∣∣∣∣1−

(
β0 + S

β0 + S + c

)α2−α1
∣∣∣∣
}

and

θ̃∗β0
=





θ̂Bay
α2,β0

if
c(α2 − α1)
β0 + S

> v − 1,

θ̂∗β0
if

c(α2 − α1)
β0 + S

≤ v − 1,

where

v =
(
β0 + S + c

β0 + S

)α2−α1

.

The most stable estimator in the class

L∗β0
= {θ̂ : ∀x ∃α ∈ [α1, α2] θ̂(x) = θ̂Bay

α,β0
(x)}

is equal to the conditional Γ -minimax estimator θ̃∗β0
.

Proof. The posterior risk of an estimator θ̂ for X = x and the prior
Πα,β0 is

Rx(α, β0, θ̂(x)) = R(a, b0, θ̂(x)),

where b0 = β0 + S, a = α + T and a is an increasing, linear function of α.
Let a1 = α1 + T and a2 = α2 + T . Lemma 2 shows that conditions (1)–(4)
of Theorem 1 are satisfied for the function %(a, d) = R(a, b0, d) and

sup
a∈[a1,a2]

%(a, d) =

{
%(a2, d) for d ≤ θ̂∗β0

(x),

%(a1, d) for d ≥ θ̂∗β0
(x).

Analysis similar to that in the proof of Theorem 2 completes the proof.

4. Examples and remarks. Table 1 presents some examples of families
{Pθ : θ ∈ Θ} and functions T (x, n) and S(x, n).

Remark 1. If there exists a constant B1 > 0 such that β1 +S > B1 for
all x, then Theorem 2 is also true for c ∈ (−B1, 0).

Remark 2. If there exists a constant B2 > 0 such that β0 +S > B2 for
all x, then Theorem 3 is also true for c ∈ (−B2, 0).
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Table 1

Distribution T (x, n) S(x, n)

Poisson
∑n
i=1 xi n

P (θ)

Exponential n
∑n
i=1 xi

E(θ)

Gamma(p, θ) np
∑n
i=1 xi

p known

Normal N(µ, 1
θ ) 1

2n
1
2
∑n
i=1(xi − µ)2

µ known

Pareto(λ, θ) n
∑n
i=1 ln λ+xi

λ

λ known
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