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ON THE PRIMARY ORBITS OF STAR MAPS
(SECOND PART: SPIRAL ORBITS)

Abstract. This paper is the second part of [2] and is devoted to the study
of the spiral orbits of self maps of the 4-star with the branching point fixed,
completing the characterization of the strongly directed primary orbits for
such maps.

1. Introduction. In this paper we continue the work done in [2],
in order to complete the characterization of the strongly directed primary
orbits for self maps of the 4-star with the branching point fixed. Recall
that strongly directed are those periodic orbits satisfying the following
condition.

Generalized Directed Rule. Let P be a periodic orbit of a map
f ∈ Xn. For each sequence A0, A1, . . . , Ak−1 of overlapping arrows of P , we
have k ≥ n.

To develop our study, in [2] we have classified the primary strongly di-
rected orbits of the 4-star into several families, paying attention to several
features of their shape. First, we looked at the number of coloured arrows
the orbit has. For twist orbits, having no coloured arrows, and single or-
bits, with just one coloured arrow, a characterization independent of n is
summarized in [2, Theorem A].

In the case n = 4, the Generalized Directed Rule imposes some crucial
restrictions on the coloured arrows a primary strongly directed orbit can
have. Namely, such an orbit cannot have more than three coloured arrows
and it must be colour compatible (see [2, Theorem B]). For a directed orbit,
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to be colour compatible means that for each nonempty set of coloured arrows
the sum of its colours is not a multiple of n. In particular, when n = 4, this
means that the orbit cannot have two red arrows, nor can it have green and
blue arrows simultaneously. Moreover, if it has three coloured arrows, then
these arrows must all be of the same colour, green or blue.

The classification of the primary strongly directed orbits in the 4-star
with more than one coloured arrow also depends on another feature of their
shape: the existence of crossing arrows. We already know that such orbits
with crossing arrows are box orbits (see [2, Theorem C]). Strongly directed
orbits without crossing arrows will be called spiral in this paper.

The goal of this paper is to end the characterization of the primary
strongly directed orbits by classifying the primary spiral orbits with more
than one coloured arrow. They are characterized as double (Definition 4.1)
and triple (Definition 5.3) orbits, in Theorems 4.9 and 5.14 respectively.
This part of the characterization of the primary strongly directed orbits is
far more technical than the previous work done in [2].

This paper is organized as follows. Through Section 2 we describe spiral
orbits in general. In Section 3 we obtain a sufficient condition for spiral
orbits to be primary. Sections 4 and 5 are devoted to the study of double
and triple spiral orbits. Finally, in Section 6 we summarize the main results
of this paper and [2].

2. Spiral orbits. In this section we start the study of the strongly
directed periodic orbits having no crossing arrows, that is, spiral orbits. We
recall that two arrows A and B such that b(A) < b(B) are said to be crossing
if e(A) > e(B). Clearly, single orbits are spiral. On the contrary, directed
orbits having only black arrows obviously have crossing arrows and, hence,
are not spiral.

Since we want to characterize the spiral orbits which are primary, in
view of the First Theorem (Theorem 2.3) of [1] and [2, Theorem B], in what
follows we shall assume that P is a spiral orbit of an EP -adjusted map
f ∈ X4 of period m with ν ≤ 3 coloured arrows. When necessary, we can
also assume that P is colour compatible, again by [2, Theorem B].

We note that since P is directed and has some coloured arrow, m >
n = 4. Since the arrows are not crossing and P is directed, we find that
for each branch, br, either sm(br) = f(sm(σ−1(br))) or sm(br) is the end of
a coloured arrow. Notice that the first condition is not satisfied for every
branch because m > n. Hence there is one branch whose smallest point is
the end of a coloured arrow. In particular, this implies that single orbits
are the only spiral orbits with a unique coloured arrow. Thus, since single
orbits have already been studied, in what follows we only need to study
spiral orbits with ν ≥ 2 coloured arrows. So, from now on, ν ∈ {2, 3}.



Primary orbits of star maps 333

We start by fixing the notation. Let br0 be a branch such that sm0 is
the end of a coloured arrow F0. We label the points of P and the branches
of Xn as follows:

xi = f i(sm0) for each i ∈ Zm, bri = σi(br0) for each i ∈ Zn.
With this notation, we have F0 = (xm−1, x0) and if Fk with k = 1, . . .

ν−1 denote the other coloured arrows, then there exist pk ∈ {2, 3, . . . ,m−1}
such that Fk = (xpk−1, xpk) for each k = 1, . . . , ν−1. For convenience, when
ν = 3, we assume that p1 < p2.

If we denote by Ai the arrow beginning at xi (that is, b(Ai) = xi and
e(Ai) = xi⊕1 for each i ∈ Zm) we see that F0 = Am−1 and Fk = Apk−1 for
k = 1, . . . , ν − 1. Let us set C = {Fk : k ∈ Zν} and, for i, j ∈ Zm, i 6= j,
Cij = C∩{Ai, Ai⊕1, . . . , Aj	1}. Obviously, Cji = C\Cij . The following lemma
is a simple rewriting of [2, Lemma 2.4].

Lemma 2.1. For i, j ∈ Zm, i 6= j, we have

ind(xj) +
∑

F∈Cij
c(F ) ≡ ind(xi) + j 	m i.

Set p0 = 0 and pν = m to unify the notation. Then the strings of P are

Sk = {xi ∈ P : pk ≤ i < pk+1}, k = 0, 1, . . . , ν − 1,

of lengths l(Sk) = pk+1 − pk.
We define q : Zm → Zν as follows:

for each i ∈ Zm, q(i) = k if xi ∈ Sk.
We are going to see that each string of a spiral orbit spirals out, which

justifies the name given to these orbits. Note that, by [2, Proposition 2.10],
this property is satisfied by every directed primary orbit with some coloured
arrow. Since we are only interested in the study of the strongly directed
orbits which are primary, we could have imposed this property on our orbits.
However, as we will see in Lemma 2.3, this would be redundant. We start
by proving that the beginning of each string is not the largest point in its
branch. This fact, which is evident for x0 = sm0 < e(smAn−1), is stated for
the other strings in the following lemma.

Lemma 2.2. We have xp1 < xp1−c(F1) and , if ν = 3, there exists d2 < p2
such that xp2 < xp2−d2.

Proof. Let k ∈ {1, . . . , ν − 1}. If c(Fk) ≤ l(Sk−1), then the c(Fk) arrows

Apk−c(Fk), Apk−c(Fk)+1, . . . , Apk−1 = Fk

are all black but the last one and, by [2, Lemma 4.3], xpk < xpk−c(Fk). In
particular this is what happens when Fk is green and, by [2, Lemma 4.4],
when k = 1. This proves the first statement of the lemma.
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If c(Fk) > l(Sk−1) then, from the above, k = 2 and the arrows

A0, . . . , Ap1−c(F1)−1, Ap1 , . . . , Ap2−1 = F2, Ap2 , . . . , Am−1

are overlapping. Again by [2, Lemma 4.4], we have p2 − 1− c(F1) ≥ c(F2).
That is, p2 > c(F1)+ c(F2). Since c(F2) > p2−p1, we can consider the c(F2)
consecutive arrows

Ap2−c(F1)−c(F2), . . . , Ap1−c(F1)−1, Ap1 , . . . , Ap2−1 = F2

in the above sequence of overlapping arrows. Then, again by [2, Lemma 4.3],
we conclude that xp2 < xp2−c(F1)−c(F2).

The next lemma already shows that each string spirals out.

Lemma 2.3. For each k = 0, 1, . . . , ν − 1, if l(Sk) > n then xpk+i <
xpk+i+n for i = 0, 1, . . . , l(Sk)− n− 1.

Proof. Since the arrows are not crossing, it is enough to see that xpk <
xpk+n. This is immediate for k = 0, because xn ∼ x0 = sm0. Let us see
it for k ∈ {1, . . . , ν − 1}. On the contrary, assume that xpk > xpk+n. Then
we claim that, for each i = 0, 1, . . . , pk − 1, there exists a t ∈ Zn such that
xi < xpk+t and we will get a contradiction.

Now we prove the claim. Clearly, for each branch br here is just one
t ∈ Zn such that xpk+t ∈ br. Hence, the statement is true for i = 0 because
x0 = sm0. Now we will prove that if it is true for i ∈ {0, 1, . . . , pk − 2}, then
it is also true for i+ 1. Indeed, if xi is the beginning of a black arrow, then
since the arrows are not crossing, xi < xpk+t implies that xi+1 < xpk+t+1
and we are done if t 6= n − 1. Otherwise, xi+1 < xpk+n < xpk . If xi is
the beginning of a coloured arrow, then i = p1 − 1 (and k = 2). Thus, by
Lemma 2.2, there exists d1 < p1 such that xi+1 = xp1 < xp1−d1 . Since the
arrows beginning at xj for j = 0, 1, . . . , p1 − d1 − 1 are all black, from the
above, there is a t ∈ Zn such that xp1−d1 < xp2+t. This ends the proof of
the claim.

Then we obtain a contradiction in the following way. By Lemma 2.2,
xpk−dk > xpk , and for all t ∈ Zn \ {0}, xpk−dk ∼ xpk 6∼ xpk+t. That is, the
claim is false for i = pk − dk.

In what follows, for a, b ∈ Z, when we write a �XXX b we mean that a ≤ b and
a ≡ b. The symbol X��� will also be used in the natural way. The next simple
corollary follows from Lemmas 2.1 and 2.3 and summarizes the behaviour
of each string of P .

Corollary 2.4. If q(i) = q(j) then xi ≤ xj if and only if i �XXX j.

To describe the spiral orbits, since we already know how the points of
a string are situated with respect to the other points of the same string,
it remains to study how each string is intertwined with the other ones.
So, in the rest of the section we shall study the relative position of points
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of different strings. To do this we shall define certain numbers which will
determine when and how points of different strings are in the same branch.

For k ∈ Zν , the next string to Sk will be Sk⊕ν1 and the previous one
Sk	ν1. Observe that, since ν ∈ {2, 3}, given two different strings, they are
always consecutive. The arrow Fk separates the string Sk from its previous
one.

Lemma 2.5. Two consecutive strings have points in the same branch if
and only if the sum of their lengths is greater than the colour of the arrow
separating them.

Proof. Assume that xi ∼ xj with q(j) = q(i) ⊕ν 1. Then observe that
xj = f r(xi) with r = j	m i. Set c = c(Fq(j)). By Lemma 2.1 we have r ≡ c.
So, since c ∈ Zn, we get r X��� c. On the other hand, by the definition of r, it
is clear that r < l(Sq(i)) + l(Sq(j)).

Conversely, if l(Sk	1) + l(Sk) > c = c(Fk) then we can find an x ∈ Sk	1
such that f c(x) ∈ Sk. Indeed, if c ≥ l(Sk	1) it is enough to take x = xpk	1

and if c < l(Sk	1) we take the x ∈ Sk	1 such that f c(x) = xpk . Hence,
x ∼ f c(x) by [2, Lemma 2.4].

In order to analyze the relative positions of points of two consecutive
strings, we fix q ∈ Zν and look at the strings Sq and Sq⊕1. Let c be the colour
of the arrow separating these strings, that is, c = c(Fq⊕1). In accordance
with Lemma 2.5, to have points of both strings in the same branch it must
happen that c < l(Sq) + l(Sq⊕1). Moreover, from the proof of the above
lemma, we see that in such a case there is an x ∈ Sq such that f c(x) ∈ Sq⊕1
and x ∼ f c(x). Hence f c(x) < x by the Generalized Directed Rule. With
this in mind we can define the following numbers:

Definition 2.6. Let q ∈ Zν .
(a) If c(Fq⊕1) ≥ l(Sq) + l(Sq⊕1), then we set rq = c(Fq⊕1).
(b) If c(Fq⊕1) < l(Sq) + l(Sq⊕1), then we set:

(b.1) iq = min{i ∈ Zm : q(i) = q and [0, xi] ∩ Sq⊕1 6= ∅}.
(b.2) jq = max{j ∈ Zm : q(j) = q ⊕ν 1 and xj < xiq}.
(b.3) rq = jq 	m iq.

The motivation for this definition will be found in what follows. In the
next lemma we gather the basic properties of the numbers iq, jq and rq when
there are points of both strings in the same branch.

Lemma 2.7. Assume that q ∈ Zν and c(Fq⊕1) < l(Sq) + l(Sq⊕1). Then:

(a) c(Fq⊕1) �XXX rq < l(Sq) + l(Sq⊕1).
(b) iq = pq or jq = pq⊕1.
(c) iq = pq is equivalent to rq ≥ l(Sq).
(d) rq + n < m.
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Proof. (a) This follows immediately from Definition 2.6 and Lemma 2.1
(see the first part of the proof of Lemma 2.5).

(b) If iq > pq and jq > pq⊕1, then the two arrows (xiq−1, xiq) and
(xjq−1, xjq) are black and, since they are not crossing, xiq−1 > xjq−1, in
contradiction with the definition of iq.

(c) If iq = pq, then rq = jq 	 pq and hence rq ≥ l(Sq). Otherwise, by (b),
jq = pq⊕1 and then pq⊕1 	 rq = iq > pq. This implies that rq < l(Sq).

(d) Consider the m− rq overlapping arrows Ajq , Ajq⊕1, . . . , Aiq	1. Since
P is strongly directed, we get m − rq ≥ n. The inequality is strict since at
least one of the arrows is coloured.

Note that, by Definition 2.6(a), the statement rq
X��� c(Fq⊕1) of Lem-

ma 2.7(a) is always true. Thus, the next lemma follows straightforwardly
from Lemma 2.1.

Lemma 2.8. For each q ∈ Zν , if q(i) = q and q(j) = q ⊕ν 1, then

xi ∼ xj if and only if j 	m i ≡ rq.
The following proposition already describes the relative positions of the

points of the strings Sq and Sq⊕1.

Proposition 2.9. For each q ∈ Zν , if q(i) = q and q(j) = q ⊕ν 1, then

xj < xi if and only if j 	m i �XXX rq.

Proof. In the case c(Fq⊕1) ≥ l(Sq) + l(Sq⊕1) there is nothing to prove
because, by Lemma 2.5, for all i, j ∈ Zm such that q(i) = q and q(j) = q⊕1,
we have xi 6∼ xj . Hence, by Lemma 2.8, j 	 i 6≡ rq.

Assume that c(Fq⊕1) < l(Sq)+ l(Sq⊕1) and set w = min(i−pq, j−pq⊕1).
Note that q(i−w) = q, q(j−w) = q⊕1 and either i−w = pq or j−w = pq⊕1.
Since the arrows are not crossing, xj < xi if and only if xj−w < xi−w. On
the other hand, j 	 i �XXX rq is equivalent to (j − w) 	 (i− w) �XXX rq. So it is
enough to prove the proposition when either i = pq or j = pq⊕1.

Consider first the case i = pq. If xj < xpq then clearly iq = pq. Thus,
by Definition 2.6(b.2) and Corollary 2.4, j �XXX jq. Since jq = iq ⊕ rq, we
have j �XXX pq ⊕ rq. Conversely, j �XXX pq ⊕ rq implies l(Sq) ≤ rq because
pq⊕1 ≤ j ≤ pq ⊕ rq. Hence, pq = iq by Lemma 2.7(c) and thus, pq ⊕ rq = jq.
Therefore, xj ≤ xpq⊕rq < xpq by Corollary 2.4 and Definition 2.6(b.2).

Consider now the case j = pq⊕1. If xpq⊕1 < xi then clearly i ≥ iq.
Since also jq ≥ pq⊕1, we have ind(xi) ≡ ind(xiq) + i − iq and ind(xjq) ≡
ind(xpq⊕1) + jq − pq⊕1 by Lemma 2.1. Since xi ∼ xpq⊕1 and xiq ∼ xjq , we
have 0 �XXX jq − pq⊕1 + i− iq. Hence, pq⊕1 	 i �XXX jq 	 iq = rq as required.

Conversely, if pq⊕1	 i �XXX rq, then xpq⊕1 ∼ xi by Lemma 2.8. If we assume
that xi < xpq⊕1, then the pq⊕1 	 i arrows

Ai, Ai+1, . . . , Apq⊕1	1
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are overlapping. Hence, pq⊕1 	 i ≥ n by the Generalized Directed Rule.
Let k ∈ Zn be such that jq − pq⊕1

X��� k. Then pq⊕1 	 i > k and, thus,
q(i + k) = q. Since the arrows are not crossing and pq⊕1 + k �XXX jq, we get
xi+k < xpq⊕1+k ≤ xjq < xiq . Hence iq > i+k ≥ i ≥ pq and, by Lemma 2.7(b),
jq = pq⊕1. Therefore pq⊕1 	 i > pq⊕1 	 iq = rq; a contradiction.

We already know that to have points of Sq above points of Sq⊕1, it must
happen that c(Fq⊕1) < l(Sq)+ l(Sq⊕1). Now we get another condition on the
lengths of these strings in order to have points of Sq below points of Sq⊕1.

Proposition 2.10. Let q ∈ Zν . There exist i, j ∈ Zm such that q(i) = q,
q(j) = q ⊕ν 1 and xi < xj if and only if rq + n < l(Sq) + l(Sq⊕1). For each
i, j ∈ Zm such that q(i) = q and q(j) = q ⊕ν 1 we have

xi < xj if and only if rq + n �XXX j 	m i.

Proof. Assume that there are i, j ∈ Zm with q(i) = q, q(j) = q ⊕ 1
and xi < xj . Then, by Lemma 2.8 and Proposition 2.9, rq + n �XXX j 	 i <
l(Sq)+l(Sq⊕1). Conversely, assume that rq+n < l(Sq)+l(Sq⊕1) (in particular
this gives c(Fq⊕1) < l(Sq) + l(Sq⊕1)). We consider two cases.

If rq +n ≥ l(Sq), then q(pq⊕ (rq +n)) = q⊕1 and, by Lemma 2.8, xpq ∼
xpq⊕(rq+n). When iq > pq, we have xpq < xpq⊕(rq+n) by Definition 2.6(b.1). If
iq = pq, then pq⊕ rq = jq by Definition 2.6(b.3) and hence, xpq < x(pq⊕rq)+n
by Definition 2.6(b.2).

If rq + n < l(Sq), then iq > pq by Lemma 2.7(c) and jq = pq⊕1 by
Lemma 2.7(b). Furthermore, q(pq⊕1 	 (rq + n)) = q and, by Lemma 2.8,
xpq⊕1	(rq+n) ∼ xpq⊕1 . By Definition 2.6(b.3) we have pq⊕1 	 rq = iq. Hence,
xpq⊕1	(rq+n) < xpq⊕1 by Definition 2.6(b.1).

The last statement of the proposition follows trivially from Proposi-
tion 2.9 and Lemma 2.8.

In the next lemma we state some special features of the numbers r0
and rν−1. In particular, statement (a) says that these numbers are (almost)
always defined according to Definition 2.6(b).

Lemma 2.11. (a) c(F1) < l(S0) + l(S1) and , if ν = 2 or P is colour
compatible, then also c(F0) < l(Sν−1) + l(S0).

(b) j0 = p1, r0 < l(S0), i0 = p1 − r0 and xp1 < xp1−r0.
(c) l(Sν−1) < rν−1 + n.

Proof. (a) [2, Lemma 4.4] with j = p1 − 1 shows that l(S0) > c(F1).
Therefore, c(F1) < l(S0)+l(S1). If ν = 2 then c(F0) < n < m = l(S1)+l(S0).
When P is colour compatible and ν = 3, since all the coloured arrows are
of the same colour (see [2, Definition 4.11]), from l(S0) > c(F1) we get
c(F0) = c(F1) < l(Sν−1) + l(S0).
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(b) Since x0 = sm0, we have i0 > p0 = 0 by Definition 2.6(b.1). There-
fore, by Lemma 2.7(b,c), j0 = p1 and r0 < l(S0). Hence, i0 = p1 − r0 and
xp1 < xp1−r0 by Definition 2.6(b).

(c) If rν−1 + n ≤ l(Sν−1), then q(m− rν−1 − n) = ν − 1 and, by Propo-
sition 2.10, xm−rν−1−n < x0, contrary to x0 = sm0.

The relationships between the different numbers rq are given in the next
three propositions.

Proposition 2.12. If ν = 2, then r0 + r1 = m− n.

Proof. By Lemma 2.11(a), Definition 2.6(b.1) and Proposition 2.10, it
is clear that p1 = i1 if and only if r0 + n ≤ l(S0) = p1, and in that case,
xp1−r0−n < xp1 . Therefore, if r0 + n ≤ l(S0), then also by Proposition 2.10
and Definition 2.6(b), we have p1 − r0 − n = j1 = p1 ⊕ r1 = p1 + r1 −m.
That is, m− n = r0 + r1.

Assume now that r0+n > l(S0). Then i1 > p1 and, by Lemma 2.7(b) and
Definition 2.6(b.3), we have j1 = p0 = 0 and i1 = j1 	 r1 = m− r1. On the
other hand, since q(r0 + n) = 1 by Lemma 2.7(d), we also have x0 < xr0+n
by Proposition 2.10. Hence, x0 < xm−r1 ≤ xr0+n by Definition 2.6(b.1).
Then, from x0 < xm−r1 , we get r0 + n �XXX m− r1 by Proposition 2.10. From
xm−r1 ≤ xr0+n, we get m − r1

�XXX r0 + n by Corollary 2.4. This ends the
proof of the proposition.

Proposition 2.13. If ν = 3 then r0 + r1 + r2
�XXX m− n.

Proof. Assume first that c(Fq⊕1) ≥ l(Sq)+l(Sq⊕1) for some q ∈ Zν . Note
that, by Lemma 2.11(a), q ≥ 1. Then, by Definition 2.6, rq = c(Fq⊕1). Since
c(Fq⊕1) > l(Sq), there is an x ∈ P such that x < xpq . Indeed, if such an x
does not exist, then by [2, Lemma 4.4] applied to the sequence

Apq , Apq+1, . . . , Am−1, A0, . . . , Apq−1

with j = l(Sq) − 1 we obtain a contradiction. Moreover, x 6∈ Sq ∪ Sq⊕1 by
Corollary 2.4 and Lemma 2.5. Therefore, there is a point from Sq−1 which
is smaller than xpq . In particular, by Lemma 2.5, c(Fq) < l(Sq−1) + l(Sq).
Moreover, by Proposition 2.10, l(Sq−1) + l(Sq) > rq−1 +n > rq−1 + c(Fq⊕1).
Hence pq⊕1 	 (rq−1 + rq) > pq−1. On the other hand, from c(Fq⊕1) > l(Sq)
we obtain pq > pq⊕1 	 c(Fq⊕1). So we have pq−1 < pq⊕1 	 (rq−1 + rq) < pq,
that is, q(pq⊕1 	 (rq−1 + rq)) = q − 1. Thus, by Lemmas 2.7(a) and 2.1,
xpq⊕1 ∼ xpq⊕1	(rq−1+rq).

Let us show that xpq⊕1 < xpq⊕1	(rq−1+rq). Otherwise, the rq−1+rq arrows

Apq⊕1	(rq−1+rq), . . . , Apq⊕1	1

would be overlapping. By Definition 2.6(b) we have pq⊕1 	 1 ≥ jq−1 ≥ pq >
pq⊕1	c(Fq⊕1) and pq > iq−1 = jq−1−rq−1 > pq⊕1	 (c(Fq⊕1)+rq−1). Hence
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Aiq−1 , . . . , Ajq−1−1 are rq−1 consecutive arrows in the above sequence. Since
xiq−1 > xjq−1 , the rq = c(Fq⊕1) arrows

Apq⊕1	(rq−1+rq), . . . , Aiq−1−1, Ajq−1 , . . . , Apq⊕1	1

would be overlapping, in contradiction with the Generalized Directed Rule.
Hence xpq⊕1 < xpq⊕1	(rq−1+rq) and, by Proposition 2.10, rq⊕1 + n �XXX m −
(rq−1 + rq). That is, rq−1 + rq + rq⊕1

�XXX m− n.
Assume now that c(Fq⊕1) < l(Sq) + l(Sq⊕1) for each q ∈ Zν . If i1 = p1

then, by Lemma 2.7, Definition 2.6(b.3) and Lemma 2.11(b), we have
xp1+r1 < xp1 < xp1−r0 with q(p1 + r1) = 2 and q(p1 − r0) = 0. Hence,
by Proposition 2.10, r2 + n �XXX m− r0 − r1. That is, r0 + r1 + r2

�XXX m− n.
If i1 > p1 then j1 = p2, and we have to consider two more cases. If i2 = p2

then xp2+r2−m < xp2 < xp2−r1 , with q(p2 + r2 −m) = 0 and q(p2 − r1) = 1,
by Lemma 2.7 and Definition 2.6(b). Hence, by Proposition 2.10, r0 + n �XXX
m−r1−r2. That is, r0+r1 +r2

�XXX m−n. If i2 > p2, we have rq < l(Sq) for all
q ∈ Zν , by Lemmas 2.7(c) and 2.11(b). Adding up these three inequalities we
get r0+r1+r2 < m. On the other hand, by [2, Lemma 2.6] and Lemma 2.7(a)
we have r0 + r1 + r2 ≡ m. Thus, r0 + r1 + r2

�XXX m− n.

Whereas the above proposition gives an upper bound on the sum of all
the rq, the following one gives a lower bound for the same sum, valid only
when there are points of each string below points of the next string.

Proposition 2.14. If ν = 3 and rq+n < l(Sq)+ l(Sq⊕1) for all q ∈ Zν ,
then r0 + r1 + r2

X��� m− 2n.

Proof. Assume first that r1 + n ≤ l(S1). Then q(p2 − r1 − n) = 1. By
Lemma 2.11(c), m − p2 = l(S2) < r2 + n < l(S2) + l(S0) = m − p2 + p1
and, hence, q(p2 −m+ r2 + n) = 0. Thus, xp2−r1−n < xp2 < xp2−m+r2+n by
Proposition 2.10. Therefore, m− r1− r2−2n �XXX r0 by Proposition 2.9. That
is, r0 + r1 + r2

X��� m− 2n.
When r1 + n > l(S1), we consider two cases. If r0 + n ≤ l(S0), then

xp1−r0−n < xp1 < xp1+r1+n by Proposition 2.10, with q(p1− r0−n) = 0 and
q(p1 + r1 + n) = 2. Hence, m− r0 − r1 − 2n �XXX r2 by Proposition 2.9. That
is, r0 + r1 + r2

X��� m− 2n. If r0 +n > l(S0), since by Lemma 2.11(c) we have
r2 +n > l(S2), by adding up we get (r0 +n) + (r1 +n) + (r2 +n) > m. That
is, r0 + r1 + r2 > m − 3n. Since r0 + r1 + r2 ≡ m by [2, Lemma 2.6] and
Lemma 2.7(a), we have r0 + r1 + r2

X��� m− 2n.

In view of Proposition 2.9 we can say that, for every xi ∈ Sq, rq is the
maximum number of steps needed to go from xi to any point xj ∈ Sq⊕1
which is below xi (if there is such a point). Actually, Definition 2.6(b) guar-
antees that if there are points of both strings in the same branch, we can find
x ∈ Sq and y ∈ Sq⊕1 such that y < x and f rq(x) = y. Analogously, Propo-
sition 2.10 allows us to give a similar meaning to the number m− (rq + n)
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when we interchange the roles of these strings. Moreover, in the proof of that
proposition we see that if rq + n < l(Sq) + l(Sq⊕1), then there are points
x ∈ Sq⊕1 and y ∈ Sq such that y < x and fm−(rq+n)(x) = y. To simplify the
use of the numbers rq and m− (rq + n) we define the functions χ and d as
follows.

First consider the ν × ν lower triangular matrix χ = (χqk) with entries

χqk = χ(q, k) =
{

0 if q ≤ k,
1 if q > k.

Let i, j ∈ Zm have q(j) = q(i)⊕ν 1. Then, by Proposition 2.9,

xj < xi if and only if j − i+ χ(q(i), q(j)) ·m �XXX rq(i),

and, by Proposition 2.10,

xi < xj if and only if rq(i) + n �XXX j − i+ χ(q(i), q(j)) ·m.
The following definition will help us in dealing with the above two con-

ditions.

Definition 2.15. For q, k ∈ Zν , we set

d(q, k) =





0 if k = q,
χ(q, k) ·m− rq if k = q ⊕ 1 and c(Fk) < l(Sq) + l(Sk),
rk + n− χ(k, q) ·m if k = q 	 1 and rk + n < l(Sk) + l(Sq).

Remark 2.16. Observe that, for k 6= q, we do not define d(q, k) unless
there are points of Sk below points of Sq. Hence, from now on, when we
write d(q, k) we assume that it is defined. From Lemma 2.11(a) we find that
d(0, 1) = −r0 is always defined.

When ν = 2, again by Lemma 2.11(a) we see that d(1, 0) = m − r1
is also defined. Moreover, since l(S0) + l(S1) = m, by Lemma 2.7(d) both
d(0, 1) and d(1, 0) are defined in another way: d(0, 1) = r1 + n − m and
d(1, 0) = r0 + n. Clearly, by Proposition 2.12, both definitions coincide.

The following result summarizes all previous ones about the relative
positions of the points of P .

Proposition 2.17. For each i, j ∈ Zm, xi ≥ xj if and only if

i X��� j + d(q(i), q(j)).

Proof. The statement follows directly from Corollary 2.4, Definition 2.15
and the comments preceding it; we should have in mind that, since ν ≤ 3,
any two different strings are always consecutive.

3. A sufficient condition for primarity. We continue studying spiral
orbits P of EP -adjusted maps f ∈ X4 with ν ∈ {2, 3} coloured arrows. At
the end of this section we shall get a sufficient condition for such orbits to be



Primary orbits of star maps 341

primary. To do this we must obtain some properties of the length of loops
in the EP -graph of the map.

We will use the notation from the previous sections. We take the EP -
basic intervals labelled by their largest endpoint. That is, for each i ∈ Zm,
we set Ii = [a, xi] with a ∈ EP , xi ∈ P , a < xi and (a, xi) ∩ P = ∅.

Since the arrows are not crossing, Ii → Ii⊕1 for each i ∈ Zm. That is,
in the EP -graph of f we can always find the fundamental loop I0 → I1 →
. . .→ Im−1 → I0, which has length m and is associated to P .

Since f is EP -adjusted, if Ii = [a, xi] → Ij = [b, xj] there is a unique
xs ∈ {a, xi}∩P such that xj ≤ xs⊕1. In particular, if s = m− 1 then j = 0.
We now get our first inequality for a single step in the EP -graph of f .

Lemma 3.1. If Ii → Ij then

i+ 1 X��� j + d(q(i), q(s)) + χ(q(s), q(s⊕m 1)) ·m+ d(q(s⊕m 1), q(j)).

Proof. Since xs ≤ xi and xj ≤ xs⊕1, by Proposition 2.17,

i X��� s+ d(q(i), q(s)) and s⊕ 1 X��� j + d(q(s⊕ 1), q(j)).

Since s⊕ 1 = s+ 1− χ(q(s), q(s⊕ 1)) ·m the lemma is proved.

Now, for any path Ii0 → Ii1 → . . .→ Iil−1 → Iil in the EP -graph of f , we
denote by xsk the endpoint of Iik such that xik+1 ≤ xsk⊕1 (k = 0, 1, . . . , l−1).
From the above lemma (applied to each step of the path) we obtain the
fundamental inequality for loops. We restrict ourselves to loops of length m
because these are the only loops relevant to the primarity of P . Certainly
we could easily do a more general work (including any path), but here it
seems unnecessary.

Lemma 3.2. If Ii0 → Ii1 → . . . → Iim−1 → Ii0 is a loop of length m in
the EP -graph of f , then

(1) m X���

m−1∑

k=0

(d(q(ik), q(sk)) + χ(q(sk), q(sk ⊕ 1)) ·m

+ d(q(sk ⊕ 1), q(ik⊕1))).

Proof. By Lemma 3.1, we have

ik + 1 X��� ik⊕1 +d(q(ik), q(sk)) +χ(q(sk), q(sk⊕ 1)) ·m+d(q(sk⊕ 1), q(ik⊕1))

for each k ∈ Zm. Adding up these inequalities proves the lemma.

Formula (1) from the above lemma is basic in our study. However, it is
cumbersome to work with because of its complicated right hand side. To
conveniently handle this expression, we have chosen to make use of a special
combinatorial graph with the strings of P as vertices. To do this we extend
the notion of graph we have been using until now.
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Let V be a finite set whose elements will be called vertices and let S
be a finite set whose elements will be called labels. Then Γ = (V, S, U) is a
generalized oriented labelled graph (gol graph, for short) if U ⊂ V × V × S.
The elements of U are the (labelled ) arrows of the graph. Usually, an element
(u, v, e) ∈ U will be graphically represented by u e→ v.

Now we define the graph which will help us to handle the expression on
the right hand side of (1).

Definition 3.3. The qP -graph of f is the gol graph (Zν , {d, χ}, U) such
that

(i) (i, j, d) ∈ U if and only if d(i, j) is defined.
(ii) (i, j, χ) ∈ U if and only if j = i or j = i⊕ν 1.

The loop 0
χ→ 1

χ→ . . .
χ→ ν − 1

χ→ 0 in the qP -graph of f will be called
fundamental . Any loop of a gol graph of the form i

e→ i with i ∈ V and
e ∈ S will be called trivial .

Definition 3.4. To each arrow of the qP -graph of f there is assigned a
weight in the following way: ψ(i, j, d) = d(i, j) and ψ(i, j, χ) = χij ·m.

For each path λ = i0
e0−→ i1

e1−→ . . .
el−2−→ il−1

el−1−→ il of length l in the
qP -graph of f we define its weight Ψ(λ) as the sum of the weights of all
steps. That is,

Ψ(λ) =
l−1∑

k=0

ψ(ik, ik+1, ek).

Remark 3.5. By the definitions we have ψ(i, j, χ) = 0 except if i = ν−1
and j = 0. In this case ψ(ν−1, 0, χ) = m. Therefore, the fundamental loop in
the qP -graph of f has weight m. Moreover, by straightforward computations
we can obtain Table I, which gives the weights of loops in some qP -graphs
of f .

Now, we are going to study the relation between the EP -graph and the
qP -graph of f .

Definition 3.6. Each arrow Ii → Ij in the EP -graph of f generates
the following path ϕ(i, j) of three arrows in the qP -graph of f :

q(i) d→ q(s)
χ→ q(s⊕m 1) d→ q(j).

Then each path ω = Ii0 → Ii1 → . . . → Iil−1 → Iil of length l in the
EP -graph of f generates a path

Φ(ω) = ϕ(i0, i1)ϕ(i1, i2) . . . ϕ(il−1, il)

of length 3l in the qP -graph of f , which is the concatenation of the l paths
of three arrows generated by the arrows of ω.
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Table I. The weights of the elementary loops of the qP -graphs of f

Case ν = 2:

λ0 = 0
χ→ 1

χ→ 0 Ψ(λ0) = m (fundamental loop)

λ1 = 0
χ→ 1

d→ 0 Ψ(λ1) = r0 + n

λ2 = 0
d→ 1

χ→ 0 Ψ(λ2) = m− r0
λ3 = 0

d→ 1
d→ 0 Ψ(λ3) = n

Case ν = 3:

λ0 = 0
χ→ 1

χ→ 2
χ→ 0 Ψ(λ0) = m (fundamental loop)

λ1 = 0
χ→ 1

χ→ 2
d→ 0 Ψ(λ1) = m− r2

λ2 = 0
χ→ 1

d→ 2
χ→ 0 Ψ(λ2) = m− r1

λ3 = 0
χ→ 1

d→ 2
d→ 0 Ψ(λ3) = m− r1 − r2

λ4 = 0
d→ 1

χ→ 2
χ→ 0 Ψ(λ4) = m− r0

λ5 = 0
d→ 1

χ→ 2
d→ 0 Ψ(λ5) = m− r0 − r2

λ6 = 0
d→ 1

d→ 2
χ→ 0 Ψ(λ6) = m− r0 − r1

λ7 = 0
d→ 1

d→ 2
d→ 0 Ψ(λ7) = m− r0 − r1 − r2

λ8 = 0
d→ 2

d→ 1
d→ 0 Ψ(λ8) = r0 + r1 + r2 + 3n−m

λ9 = 0
χ→ 1

d→ 0 Ψ(λ9) = r0 + n

λ10 = 0
d→ 1

d→ 0 Ψ(λ10) = n

λ11 = 1
χ→ 2

d→ 1 Ψ(λ11) = r1 + n

λ12 = 1
d→ 2

d→ 1 Ψ(λ12) = n

λ13 = 0
d→ 2

χ→ 0 Ψ(λ13) = r2 + n

λ14 = 0
d→ 2

d→ 0 Ψ(λ14) = n

With these definitions we can restate Lemmas 3.1 and 3.2 as follows.

Lemma 3.7. If Ii → Ij , then i+ 1 X��� j + Ψ(ϕ(i, j)).

Lemma 3.8. If ω is a loop of length m of the EP -graph of f , then
m X��� Ψ(Φ(ω)).

Recall that in any graph (in gol graphs too) an elementary loop is a
loop that has no repeated vertices, and that each loop can be obtained as
a concatenation of elementary loops. So we will focus our attention on the
elementary loops of the qP -graph of f .

Remark 3.9. The loops shown in Table I are all the nontrivial elemen-
tary loops in all possible qP -graphs of f .

Lemma 3.10. If λ is an elementary loop of the qP -graph of f , then
Ψ(λ) ≥ 0. Moreover Ψ(λ) = 0 if and only if λ is trivial.
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Proof. If λ is trivial it is clear that Ψ(λ) = 0 because for each i ∈ Zν we
have χ(i, i) = 0 and d(i, i) = 0. Now we show that if λ is not trivial then
Ψ(λ) > 0.

In the case ν = 2, by Remark 3.9 it is enough to look at the list of loops
and weights given in Table I, taking into account Proposition 2.12.

Also, in the case ν = 3 the loops λi (i = 0, 1, . . . , 14) listed in Table I are
all the elementary nontrivial loops that a qP -graph of f can have. In view
of their weights it is clear that Ψ(λi) > 0 for i = 9, 10, . . . , 14 and i = 0.
Proposition 2.13 assures the same for i = 1, 2, . . . , 7 and Proposition 2.14
shows that Ψ(λ8) > 0.

We are, at last, ready to give the promised sufficient condition for the
primarity of P . Let Λ be the set of all elementary nontrivial loops different
from the fundamental one of the qP -graph of f . For a spiral orbit P of
period m we consider the following condition:

Primarity Condition.

m X���/
∑

λ∈Λ
βλΨ(λ) with βλ ∈ Zn.

The name given to the above condition is justified by the following the-
orem.

Theorem 3.11. If P is a spiral orbit of an EP -adjusted map f ∈ X4
of period m with ν ∈ {2, 3} coloured arrows and satisfies the Primarity
Condition, then P is primary.

Proof. Let ω = Ii0 → Ii1 → . . .→ Iim−1 → Ii0 be a loop of length m in
the EP -graph of f . We are going to show that ω must be the fundamental
loop. Since f is EP -adjusted and P is associated to the fundamental loop,
by [1, Proposition 1.10] and the First Theorem (Theorem 2.3 of [1]), this is
enough to prove that P is primary.

We write Φ(ω) as a concatenation of elementary loops. Let n0 be the
number of times that the fundamental loop of the qP -graph of f is repeated
in this expression. For each λ ∈ Λ, let nλ be the number of times that the
loop λ is repeated in this expression. Then, by Lemmas 3.8 and 3.10, we
have

m X��� Ψ(Φ(ω)) = n0m+
∑

λ∈Λ
nλΨ(λ).

Since, for each λ ∈ Λ we can set nλ = n′λn + bλ with n′λ ≥ 0 and bλ ∈ Zn,
we get nλΨ(λ) = n′λΨ(λ) · n+ bλΨ(λ) X��� bλΨ(λ) by Lemma 3.10. Therefore,

m X��� n0m+
∑

λ∈Λ
bλΨ(λ)
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with bλ ∈ Zn. Since Ψ(λ) > 0, we have n0 ≤ 1. On the other hand, the
hypothesis implies n0 > 0. Hence n0 = 1 and, therefore, nλ = 0 for all
λ ∈ Λ.

This means that in Φ(ω) there are no arrows of the form (i, j, d) with
i 6= j, and that there appears one and only one of the form (ν − 1, 0, χ) (of
course, there will also be many trivial loops). That is, from Definition 3.6 it
follows that for each arrow Iik → Iik⊕1 of the loop ω we have q(ik) = q(sk)
and q(sk ⊕ 1) = q(ik⊕1). Also, there is one and only one k′ ∈ Zm for which
sk′ = m− 1. Hence, by Lemma 3.1 (or 3.7), for each k ∈ Zm,

ik⊕1 ≤ ik + 1 if k 6= k′ and ik′⊕1 ≤ ik′ + 1−m.
Neither of these inequalities can be strict, for otherwise, adding them up we
would get 0 < 0. Hence, ik⊕1 = ik + 1 if k 6= k′ and 0 ≤ ik′⊕1 = ik′ + 1−m.
This last relationship implies ik′ = m− 1 and ik′⊕1 = 0. From this, by using
the other equalities in an ordered way, we deduce that {i0, i1, . . . , im−1} is
a cyclic permutation of {0, 1, . . . ,m− 1} (namely, ik = k ⊕ (m− 1− k′) for
each k ∈ Zm) and, hence, ω is the fundamental loop.

In the next sections we shall see that the Primarity Condition is also
necessary for the primarity of P . In fact, in each case (ν = 2 or 3) we obtain
necessary conditions for primarity which are equivalent to (but easier to
handle than) the Primarity Condition.

4. Double orbits. In this section we characterize the primary spiral
orbits with exactly two coloured arrows. To this end we keep the notation
of the previous sections. In particular we assume that P is a spiral orbit of
period m of an EP -adjusted map f with ν = 2 coloured arrows. Remember
that, in this case, both d(0, 1) and d(1, 0) are defined (see Remark 2.16).

We shall show that primary spiral orbits with two coloured arrows are
precisely those defined as follows.

Definition 4.1. A spiral orbit with two coloured arrows is called double
if

m X���/ βq(m− rq) for any q ∈ Z2 and βq ∈ Zn.(2)

The fact that double orbits are primary follows from the following result
and Theorem 3.11.

Lemma 4.2. Let P be a spiral orbit with ν = 2. Then the Primarity
Condition is equivalent to (2).

Proof. For ν = 2, by Remark 3.9, the qP -graph of f has three elementary
nontrivial loops different from the fundamental one, whose weights are n,
m − r0 and, by Proposition 2.12, r0 + n = m − r1. Then the Primarity
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Condition is written as follows:

for any β, β0, β1 ∈ Zn, m X���/ βn+ β0(m− r0) + β1(m− r1).

Setting β = βq⊕1 = 0, we get (2).
Conversely, if (2) holds, we have

m X���/ βn+ β0(m− r0) + β1(m− r1)

when β0 = 0 or β1 = 0. If β0β1 > 0, by Proposition 2.12, we have

β0(m− r0) + β1(m− r1) ≥ m− r0 +m− r1 = m+ n > m.

Hence the Primarity Condition is also satisfied.

To complete the characterization of the primary spiral orbits with two
coloured arrows, we still need some more technical results, which will be
obtained in the following lemmas.

Since, by Proposition 2.12, r0 and r1 determine each other, from now
on we simplify the notation by setting r = r0. Then r1 = m − (n + r).
Remember also that j0 = p1 = l(S0) > r, i0 = p1 − r and xp1 < xp1−r by
Lemma 2.11(b).

In what follows we will use the labelling of EP -basic intervals introduced
in the previous section.

Lemma 4.3. Ip1−r−1 → Ip1.

Proof. Since i0 = p1 − r, we have Ip1−r−1 = [a, xp1−r−1] with a = 0 or
a ∈ S0 by Definition 2.6(b.1). Hence, xp1−r > xp1 > f(a).

Lemma 4.4. If m− r < p1, then Im−r−1 → I0.

Proof. Since m − r < p1, we have q(m − 1 − r) = 0. By Corollary 2.4,
if xm−1 < xi then q(i) = 0 and, by Proposition 2.9, i X��� m − r − 1. Hence,
Im−r−1 = [xm−1, xm−1−r]. Since (xm−r−1, xm−r) is black and (xm−1, x0) is
coloured, the lemma is proved.

Lemma 4.5. Assume that n+r ≤ p1. If Ip1−1 = [a, xp1−1], then Ip1−1 →
Ip1−n−r, except when simultaneously a = xm−1 and p1 = n+ r.

Proof. Since n + r ≤ p1, we have q(p1 − n − r) = 0 and, by Proposi-
tion 2.10, xp1 > xp1−n−r. Furthermore, the arrow Ap1−1 is coloured. There-
fore, Ip1−1 → Ip1−n−r except if the arrow (a, f(a)) has the same colour as
Ap1−1 and f(a) ≥ xp1−n−r. In this case, (a, f(a)) = F0; that is, a = xm−1
and f(a) = x0 = xp1−n−r. Hence, p1 = n+ r.

Lemma 4.6. Assume that n ≤ p1. If Ip1−1 = [a, xp1−1] and (a, f(a)) is
black , then Ip1−1 → Ip1−n.

Proof. If a ∈ S0, then a = xp1−1−n by Corollary 2.4 and so f(a) = xp1−n.
If a ∈ S1, then a = xp1−1+r by Proposition 2.9. Since (a, f(a)) is black,
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f(a) = xp1+r ∈ S1. Therefore, f(a) > xp1−n by Proposition 2.10. Since the
arrow Ap1−1 is coloured, the lemma is proved in both cases.

Lemma 4.7. If r1 < p1, then Im−1 = [xr1−1, xm−1] → Ir1. If , further-
more, m− n ≥ p1, then Im−1 → Im−n.

Proof. By Lemma 2.7(a) we have r1 > 0. Hence q(r1 − 1) = 0. There-
fore, by Proposition 2.10, xr1−1 < xm−1. Then, again by Proposition 2.10
and Corollary 2.4, we infer that (xr1−1, xm−1) ∩ P = ∅. Hence, Im−1 =
[xr1−1, xm−1]. Since (xr1−1, xr1) is black and (xm−1, x0) is coloured,
Im−1 → Ir1 .

If m − n ≥ p1 then, by Proposition 2.9, we have xm−n < xr1 . Hence,
Im−1 → Im−n.

Lemma 4.8. Assume that n + r ≤ p1. If r1 ≥ p1, then Ip1−1+n+r =
[xp1−1, xp1−1+n+r] and Ip1−1+n+r → Ip1−(n+r).

Proof. Since m − n − r = r1 ≥ p1 we get q(p1 + n + r − 1) = 1.
Then, by Proposition 2.10, xp1−1 < xp1−1+n+r and, as above, we obtain
(xp1−1, xp1−1+n+r) ∩ P = ∅. Hence, Ip1−1+n+r = [xp1−1, xp1−1+n+r]. More-
over, Ap1−1+n+r must have a different colour than Ap1−1 (which is coloured)
because, otherwise, e(Ap1−1+n+r) = x0 and then these two arrows would be
crossing. By Proposition 2.10 we have xp1 > xp1−(n+r). Hence, Ip1−1+n+r →
Ip1−(n+r).

Now we can state the main result of this section.

Theorem 4.9. A spiral orbit with two coloured arrows is primary if and
only if it is double.

Proof. Let P be a spiral orbit of a map f ∈ X4 with two coloured
arrows. By the First Theorem (Theorem 2.3 of [1]) we may assume that f
is EP -adjusted. As mentioned before, the fact that (2) is sufficient for P to
be primary follows immediately from Lemma 4.2 and Theorem 3.11. Thus,
double orbits are primary.

Now we will show that if P is primary then it satisfies (2) and so it is
double. Assume then that P is primary.

By Lemma 2.7(a) and Proposition 2.12 we have c(Fq⊕1) ≡ rq ≡ m−rq⊕1
for each q ∈ Z2. Then, by [2, Proposition 4.7], we already know that m 6≡
βq(m− rq) for each q ∈ Z2 and βq ∈ {0, 1}.

Now we shall prove that if for some q ∈ Z2 there is some βq ∈ Zn \{0, 1}
such that m X��� βq(m−rq), then we can find a nonrepetitive loop of length m
in the EP -graph of f , different from the fundamental one and going through
some nonbranching interval. This will end the proof of the theorem because,
by [3, Lemma 2.2] and [1, Proposition 1.11], there exists a periodic orbit
of period m different from P . Hence, by the First Theorem (Theorem 2.3
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of [1]), P is not primary. We shall build the desired loop by concatenation
of suitable elementary loops. We consider two cases:

Case (a): m X��� β0(m − r0) for some β0 ∈ Zn \ {0, 1}. By Lemma 4.3,
we may consider the elementary loop

λ = I0 → . . .→ Ip1−r−1 → Ip1 → . . .→ Im−1 → I0

of length m− r. This loop can be concatenated with the branching loop, α.
If m > β0(m− r), since m ≡ β0(m− r), we have m = β0(m− r) + ln with
l ≥ 1. Hence, the loop λβ0αl has length m and is nonrepetitive. Moreover,
by Lemma 2.7(d), m− r > n, hence λ goes through some basic interval not
containing 0. Thus we are done. Assume now that m = β0(m − r). Since
β0 > 1, it follows that r = (β0 − 1)(m − r). Hence, since p1 > r, we have
p1 > m− r. Therefore, by Lemma 4.4, we also have the elementary loop

γ = I0 → I1 → . . .→ Im−r−1 → I0

of length m− r. Thus, the loop λ(β0−1)γ is the one we are looking for.

Case (b): m X��� β1(m − r1) for some β1 ∈ Zn \ {0, 1}. If xp1 is the
smallest point in its branch we can change the labelling of the points of
the orbit in such a way that xp1 is relabelled as x0 and we are done by
Case (a). Therefore, we may assume that (0, xp1)∩P 6= ∅. By Corollary 2.4,
(0, xp1) ∩ P ⊂ S0. Hence, i1 = p1 and, by Lemma 2.7(c), we see that m −
n − r = r1 ≥ l(S1) = m − p1. Therefore, p1 ≥ n + r. Now we consider two
subcases.

Subcase (b.i): Ip1−1 = [a, xp1−1] with a 6= xm−1. The interval Ip1−1 is
not branching, because xp1−1 is the beginning of a coloured arrow. Hence,
a is the beginning of a black arrow. By Lemmas 4.5 and 4.6 we have the
elementary loops

λp = Ip1−1 → Ip1−(n+r) → . . .→ Ip1−1

and
µp = Ip1−1 → Ip1−n → . . .→ Ip1−1

of lengths n + r = m − r1 and n, respectively. If m > β1(m − r1), since
m ≡ β1(m − r1), there exists l > 0 such that the loop λβ1

p µlp has length m
and, of course, is nonrepetitive. Since this loop obviously goes through Ip1−1
which is not branching, we are done.

Assume now that m = β1(m − r1). We still have two possibilities. If
r1 < p1, then Lemma 4.7 gives the elementary loop

λm = Im−1 → Ir1 → . . .→ Im−1

of length m− r1 = n+ r. This loop is different from λp and can be concate-
nated with it, because r1 ≤ p1− 1 < m− 1. So, we are done by considering,
for instance, the loop λβ1−1

p λm.
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If r1 ≥ p1, then Lemma 4.8 gives the elementary loop

η = Ip1−1+n+r → Ip1−(n+r) → . . .→ Ip1−1+n+r

of length 2(n + r). Since p1 − (n + r) < p1 − 1 < p1 − 1 + n + r, this loop
can be concatenated with λp. Moreover, we have m ≥ p1 +n+ r ≥ 2(n+ r).
If we assume that m = 2(n + r), we get m = p1 + n + r and p1 = n + r
and then, by Proposition 2.10, we infer that xp1−1 < xm−1 and x0 < xp1 .
This contradicts the fact that the arrows are not crossing. Thus, we have
2(n+ r) < m = β1(n+ r). Therefore, β1 = 3 and the loop ηλp is the one we
are looking for.

Subcase (b.ii): Ip1−1 = [xm−1, xp1−1]. By Proposition 2.9, m − 1 −
r �XXX p1 − 1. Hence q(m − 1 − r) = 0 and, again by Proposition 2.9 and
by Corollary 2.4, xm−1 < xm−1−r ≤ xp1−1. That is, p1 = m − r. Hence,
r1 < p1 and, by Lemma 4.7, we have the elementary loop λm of Subcase
(b.i). Moreover, if p1 = n + r, then r1 = m − (n + r) = m − p1 = r, and
we are in Case (a). Therefore, we may assume that p1 > n + r. Thus, by
Lemma 4.5, we also have the elementary loop λp which, as in Subcase (b.i),
is different from λm and can be concatenated with it. So, as above, we are
done if m = β1(m− r1).

When m > β1(m− r1) we still need a suitable loop of length n. If m−n
≥ p1, by Lemma 4.7, we have the elementary loop Im−1 → Im−n → . . . →
Im−1 of length n. If m − n < p1, then r1 ≤ p1 − r − 1. Therefore, since
p1 ≤ m− 1, by Lemmas 4.7 and 4.3, we have the elementary loop

Im−1 → Ir1 → . . .→ Ip1−r−1 → Ip1 → . . .→ Im−1

of length n (Ip1−r−1 → Ip1 is a shortcut of r arrows in the loop λm of length
n + r). These two loops can be concatenated with λm. Since λm also goes
through a nonbranching interval (namely, Ip1−1), we get the required loop
as in Subcase (b.i). This ends the proof of the theorem.

We recall that for maps from Y, double orbits must have the coloured
arrows of the same colour. In that case, we can define numbers r0 and r1 in a
similar way to Definition 2.6. However, these two numbers coincide. Namely,
rq−1 is the number n from [1, Definition 4.27]. We have an analogous result
for double orbits of maps from X4 with coloured arrows of the same colour.

Corollary 4.10. Let P be a spiral orbit with ν = 2 and c(F0) = c(F1).
Then P is primary if and only if r0 = r1 6≡ 2. In that case, r0 = (m−n)/2.

Proof. By Theorem 4.9 it is enough to show that (2) is equivalent to
r0 = r1 6≡ 2.

Set c = c(F0) = c(F1). First of all, by Lemma 2.7(a), we have r = r0 ≡
c(F1) and r1 ≡ c(F0). Hence, r ≡ c ≡ rq for any q ∈ Z2. Thus, for each
q ∈ Z2, m ≡ 2r ≡ 2(rq + n) = 2(m− rq⊕1) by Proposition 2.12.
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Assume that (2) holds. Then m < 2(rq + n) for each q ∈ Z2. That is,
m �XXX 2rq + n. From this and Proposition 2.12 it follows that rq⊕1 ≤ rq for
each q ∈ Z2. Therefore, r0 = r1. Moreover, r 6≡ 2 since (2) implies that
m 6≡ 0.

Assume now that r0 = r1 = r 6≡ 2. Since r ≡ c 6= 0 and r 6≡ 2, we see
that r ≡ c ∈ {1, 3}. Hence m ≡ 2r ≡ 2. Then, since m − r = r + n ≡ r,
clearly m 6≡ β(m− r) if β ∈ {0, 1, 3}. On the other hand, m ≡ 2(m− r) but,
by Proposition 2.12, 2(m− r) = 2r+2n = m+n > m. Thus, (2) is satisfied.

The last statement of the corollary follows immediately from Proposi-
tion 2.12.

5. Triple orbits. In this section we study the last class of orbits we need
to consider to end our characterization of strongly directed primary orbits.
Namely, the spiral orbits P with three coloured arrows. We keep, of course,
the notation of the previous sections and assume that f is EP -adjusted. We
note that if we want P to be primary then it must be colour compatible by
[2, Theorem B]. That is, all three coloured arrows must have the same colour
c ∈ {1, 3} (see [2, Definition 4.11]). We also know, by [2, Theorem 5.10],
that m cannot be a multiple of 3. Moreover, by [2, Lemma 2.6], m must be
congruent to 3c.

Theorem 3.11 gives a sufficient condition for P to be primary. We want
to show that this condition is also necessary. In fact we are going to show
that, under the hypotheses c(F0) = c(F1) = c(F2) = c ∈ {1, 3} and m not a
multiple of 3, there is a simpler condition which is equivalent to primarity
and to the Primarity Condition. To state this new condition we need the
following definition. Note that if m ∈ N is not a multiple of 3 and m ≡ 3c,
we can write m = (3l + k)n+ 3c with l ≥ 0 and k ∈ Z3 \ {0}.

Definition 5.1. For m = (3l + k)n + 3c with l ≥ 0 and k ∈ {1, 2}, we
set µ = (m− kn)/3.

The properties of µ summarized in the next lemma are obvious (see
Lemma 2.7(a) and Definition 2.6(a)).

Lemma 5.2. Let P be a spiral orbit of period m not a multiple of three,
with three coloured arrows of the same colour c. Then µ ≡ c �XXX rq for each
q ∈ Z3 and m− 2n �XXX 3µ �XXX m− n.

We shall show that the primary spiral orbits with three coloured arrows
are precisely those defined as follows.

Definition 5.3. A spiral orbit P of period m will be called triple green
(resp. blue) if it satisfies:
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(i) m is not a multiple of 3.
(ii) P has exactly three coloured arrows, and all arrows are green (resp.

blue).
(iii) r0 = r2 = µ X��� r1.
(iv) If d(2, 1) is defined or d(1, 0) or d(0, 2) are not defined, then r1 = µ.

When the colour of the arrows is irrelevant, we shall call these orbits simply
triple.

We begin by showing that triple orbits are indeed primary.

Proposition 5.4. Triple orbits are primary.

Proof. By Theorem 3.11, we only have to prove that if P is a triple orbit
of colour c, then P satisfies the Primarity Condition. To do it we use the
notation of Definition 5.3 and Table I. By (iii) and (iv) of Definition 5.3,
the weights of the fourteen elementary nontrivial loops different from the
fundamental one which we can find in the qP -graph of f satisfy:

Ψ(λi)
X��� m− µ for i = 1, 2, 4,

Ψ(λi)
X��� m− 2µ for i = 3, 5, 6,

Ψ(λ7) X��� m− 3µ,

Ψ(λ8) = 3(µ+ n)−m,
Ψ(λi) = µ+ n for i = 9, 11, 13,

Ψ(λi) = n for i = 10, 12, 14

(where the first three inequalities are equalities except, maybe, when d(2, 1)
is not defined but d(1, 0) and d(0, 2) are).

If k ∈ Z3 \ {0} is such that m = 3µ + kn then, for each choice of the
numbers βλ ∈ Zn for λ ∈ Λ, we can write∑

λ∈Λ
βλΨ(λ) X��� α(2µ+ kn) + β(µ+ n) = S

for some α, β ∈ Zn. It is enough to see that m X���/ S.
When αβ > 0, since S ≥ 3µ+ (k + 1)n = m+ n > m, we get m X���/ S.
If α > 0 and β = 0, we see that m X���/ S because m 6≡ α(2µ+kn) for each

α ∈ Zn. Indeed, since m ≡ 3c, µ ≡ c and c ∈ {1, 3}, it follows that m ≡ 3
or m ≡ 1, 2µ ≡ 2 and α(2µ+ kn) ≡ l ∈ {0, 2}.

If α = 0, from m ≡ 3c, µ ≡ c and c ∈ {1, 3}, it follows that m 6≡ β(µ+n)
for β ∈ Zn \{3}. When β = 3, we have 3(µ+n) = m+(3−k)n > m. Hence,
m X���/ S.

Now we want to prove the converse of this proposition. Therefore, until
otherwise stated, we assume that P is a primary spiral orbit with three
coloured arrows.

First we have the following result which is already well known.
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Lemma 5.5. If P is a primary spiral orbit with three coloured arrows,
then P satisfies (i) and (ii) of Definition 5.3.

Proof. This follows from [2, Theorem 5.10] and [2, Theorem B] (see also
[2, Definition 4.11]).

In what follows we will denote by c the colour of the three coloured
arrows of P . Now it remains to show that P also satisfies (iii) and (iv) of
Definition 5.3. To do this we will use the following technical lemmas.

Lemma 5.6. min(r0, r1, r2) �XXX µ.

Proof. By Lemma 5.2, µ ≡ min(r0, r1, r2). So, if µ < min(r0, r1, r2),
then µ + n �XXX min(r0, r1, r2). Hence 3(µ + n) �XXX r0 + r1 + r2

�XXX m − n by
Proposition 2.13. However, by Lemma 5.2, we have 3µ+ 3n X��� m+ n.

Recall that rq + n < l(Sq) + l(Sq⊕1) is the condition we need to define
d(q ⊕ 1, q), for each q ∈ Z3 (see Remark 2.16 and Proposition 2.10). The
following lemmas give useful relationships when the numbers d(q⊕ 1, q) are
defined.

Lemma 5.7. If rq + n < l(Sq) + l(Sq⊕1) for some q ∈ Z3, then
there are rq+n−1 = % black arrows, B0, B1, . . . , B%−1, such that B0, B1, . . .
. . . , B%−1, Fq⊕1 are overlapping.

Proof. By Proposition 2.10 we deduce that xpq⊕1	(rq+n) < xpq⊕1 if rq+n
≤ l(Sq) and xpq <xpq⊕(rq+n) if rq+n> l(Sq). Hence the arrows Apq⊕1	(rq+n),
. . . , Apq⊕1	1 in the first case and Apq⊕1 , . . . , Apq⊕(rq+n−1), Apq , . . . , Apq⊕1	1
in the second are overlapping.

Lemma 5.8. If rq + n < l(Sq) + l(Sq⊕1) for some q ∈ Z3, then rq
X��� µ.

Proof. By Lemma 5.2 we have rq ≡ µ. Assume that rq < µ. Then
rq + n �XXX µ. That is, µ = rq + n + k′n for some k′ ≥ 0. Let k ≥ 0 be
such that m = 3µ+ kn. By Lemma 5.7 and [2, Lemma 4.5], f has a single
orbit of period rq+n. Then, by [2, Lemma 3.7(b)], and the Adjusting Lemma
([1, Lemma 1.18]), f has a periodic orbit of period 3(rq+n)+(3k′+k)n = m,
with span strictly included in 〈P 〉. Since f is EP -adjusted, this contradicts
the primarity of P by the First Theorem of [1].

Lemma 5.9. If rq + n < l(Sq) + l(Sq⊕1) for some q ∈ Z3, then rq =
max(r0, r1, r2).

Proof. We will show that for each k ∈ Z3 \ {q} we have rk ≤ rq. If
c ≥ l(Sk) + l(Sk⊕1), then by Definition 2.6(a) and Lemma 5.2 we have
rk = c �XXX rq. So we assume that c < l(Sk) + l(Sk⊕1). By Definition 2.6(b),
the m− rk arrows

Ajk , . . . , Aik	1

are overlapping. Note that we get this sequence of arrows by eliminating the
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arrows Aik , . . . , Ajk	1 from the whole sequence of arrows of P . Hence we
have eliminated exactly one coloured arrow, namely Fk⊕1, which separates
the strings Sk and Sk⊕1. That is, in the remaining sequence all the arrows
are black except Apk	1 = Fk and Apk	1	1 = Fk	1.

Assume that rk > rq. By Lemma 5.2 we have rk = rq+ ln for some l ≥ 1.
We note that since rq

X��� c ≥ 1, it follows that % = rq + n− 1 ≥ n. We claim
that the n black arrows B0, B1, . . . , Bn−1 from Lemma 5.7 are overlapping.
To prove the claim we consider several cases.

From the proof of Lemma 5.7 it follows that if rq + n ≤ l(Sq), then the
arrows B0, B1, . . . , Bn−1 are Apq⊕1	(rq+n), . . . , Apq⊕1	(rq+1). They are over-
lapping because, by Corollary 2.4, xpq⊕1	(rq+n) < xpq⊕1	rq .

Assume now that rq + n > l(Sq). We note that pq ⊕ (rq + n) ≥ pq⊕1 + n
if and only if rq ≥ l(Sq). So, from the proof of Lemma 5.7, we see that the
arrows B0, B1, . . . , Bn−1 are Apq⊕1 , . . . , Apq⊕(rq+n−1), Apq , . . . , Apq⊕1	(rq+1)
when rq < l(Sq) and Apq⊕1 , . . . , Apq⊕1+n−1 when rq ≥ l(Sq). In the first
case they are overlapping because xpq⊕1 < xpq⊕1	rq by Proposition 2.9. In
the second case we have xpq⊕1 < xpq⊕1+n by Corollary 2.4 and the claim is
proved.

From the claim and Lemma 5.7, we obtain the rk overlapping arrows

(B0, B1, . . . , Bn−1)l−1, B0, B1, . . . , B%−1, Fq⊕1,(3)

where (B0, . . . , Bn−1)l−1 means that the sequence B0, B1, . . . , Bn−1 is re-
peated l − 1 times. We note that all of them are black except the last
one, Fq⊕1.

Since q 6= k, we have q⊕ 1 ∈ {k, k	 1}. So we can connect this sequence
of arrows with the one obtained above. In this way we get a sequence of m
overlapping arrows, C0, C1, . . . , Cm−1. We will use it to obtain a contradic-
tion with the primarity of P .

Assume that for some p ∈ {pk 	 1, pk	1 	 1}, Ip = [a, xp] is such that a
is the beginning of a black arrow. Let us label the arrows C0, C1, . . . , Cm−1
in such a way that C0 = Ap. Then we define the intervals Jt = [0, b(Ct)] for
t = 1, . . . ,m − 1 and J0 = Ip. In this way, since xp is the beginning of a
coloured arrow, J0 → J1 → . . .→ Jm−1 → J0. By [1, Lemma 1.12], since J0
is a basic interval, we get a loop

Is0 → Is1 → . . .→ Ism−1 → Is0

of basic intervals, of length m, with Ist ⊂ Jt for each t ∈ Zm (in particular
Is0 = Ip). Moreover, for each t ∈ Zm the step Ist → Ist⊕1 is of the same
colour as Ct. This loop is nonrepetitive since it has three coloured steps and
m is not a multiple of 3. Also it goes through Ip which does not contain 0.
Then, by [3, Lemma 2.2], f has a periodic point y ∈ Is0 of period m such
that f t(y) ∈ Ist for each t ∈ Zm. Let Q be the orbit of this point.
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We claim that Q 6= P . Otherwise, y = xp, because the step Is0 → Is1 is
of the same colour as C0 and, hence, different from the colour of (a, f(a)).
Then we can see inductively that b(Ct) = xp⊕t for all t ∈ Zm. Indeed, since
f t(y) ∈ Ist , Ist ⊂ Jt and the arrows Ct are overlapping, for t ≥ 1 we have

xp⊕t = f t(y) ≤ max Ist ≤ b(Ct) ≤ e(Ct−1) = f(xp⊕(t−1)) = xp⊕t.

Therefore, Ct = Ap⊕t and, hence, b(Ct) = e(Ct	1) for all t ∈ Zm. But this
contradicts the definition of the arrows Ct. Indeed, since there exists j ∈ Zm
such that Cj = Ajk and Cj	1 = Aik	1, for such j we have b(Cj) 6= e(Cj	1).
This ends the proof of the claim. Then, since f is EP -adjusted, the First
Theorem of [1] gives a contradiction with the primarity of P . Up to now we
have proved that rk ≤ rq when some of the intervals Ipk	1 or Ipk	1	1 has
the beginning of a black arrow as its lower endpoint.

Assume now that none of the intervals Ipk	1 and Ipk	1	1 has an endpoint
which is the beginning of a black arrow. Since there are only three coloured
arrows, these two intervals must have a common point. In particular, xm−1
must be the smallest of the three endpoints of these intervals since, oth-
erwise, Am−1 would cross another coloured arrow. Hence, since the upper
endpoints of Ipk	1 and Ipk	1	1 are the beginnings of the arrows Apk	1 = Fk
and Apk	1	1 = Fk	1 respectively, we have Fk⊕1 = Am−1 = F0, that is,
k = 2. Furthermore, Im−1 = [xp, xm−1], where xp is the beginning of a black
arrow, because xm−1 is not one of the smallest points. Moreover, since xp1−1
is the beginning of the coloured arrow F1, we have xm−1 < xp1−1. So, by
Proposition 2.10, r2+n �XXX p1−1−(m−1)+m; that is, r2

�XXX p1−n = l(S0)−n.
Therefore, since 1 ≤ c �XXX r2 < l(S0), it follows that q(r2 − 1) = q(r2) = 0.
Hence, Ar2−1 is also black. Furthermore, r2−1−(m−1)+m�XXX r2. Hence, by
Proposition 2.9, xr2−1 < xm−1. Therefore, xr2−1 ≤ xp and so xr2 ≤ f(xp).
We then have the sequence of m− r2 overlapping arrows

Ar2 , . . . , Ap1−1, . . . , Ap2−1, . . . , Am−2, Ap.

Since q 6= k = 2, Fq⊕1 is either Ap1−1 or Ap2−1. So, with this sequence and
the sequence (3) we can construct a new sequence of m overlapping arrows
which will also be called C0, C1, . . . , Cm−1.

Now the rest of the proof follows as in the previous case upon replacing
Ip by Im−1 and taking Cj = Ap and Cj	1 = Am−2.

In the following lemmas we will see that P satisfies (iii) and (iv) of
Definition 5.3.

Lemma 5.10. If rq + n < l(Sq) + l(Sq⊕1) for all q ∈ Z3, then r0 = r1 =
r2 = µ.

Proof. By Lemma 5.9 we see that max(r0, r1, r2) = r0 = r1 = r2 =
min(r0, r1, r2). On the other hand, by Lemmas 5.6 and 5.8, we have µ =
min(r0, r1, r2).
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Lemma 5.11. If r0 + n ≥ l(S0) + l(S1), then r0 = r1 = r2 = µ = c and
m = 3c+ n.

Proof. From r0+n≥ l(S0)+l(S1) and r2+n> l(S2) (see Lemma 2.11(c)),
it follows that r0+r2+2n > m. That is,m−2n < r0+r2 < r0+r1+r2. Hence,
r0 + r1 + r2 = m− n by Proposition 2.13. Then r1 = m− n− (r0 + r2) < n
and, hence, r1 = c = min(r0, r1, r2) by Lemma 5.2.

If r1+n < l(S1)+l(S2), then, by Lemma 5.9, r1 = max(r0, r1, r2). Hence,
r0 = r1 = r2 = c.

If r1 +n ≥ l(S1)+ l(S2) we have r0 +r1 +2n ≥ m+ l(S1) = r0 +r1 +r2 +
n+ l(S1). That is, r2 ≤ n− l(S1) and, hence, r2 = c = r1. If we now assume
that r2 + n < l(S2) + l(S0), then again by Lemma 5.9, r2 = max(r0, r1, r2).
Hence r0 = r1 = r2 = c. If, on the contrary, r2 + n ≥ l(S2) + l(S0), then
adding this inequality to r0 + n ≥ l(S0) + l(S1) and r1 + n ≥ l(S1) + l(S2),
we get r0 + r1 + r2 + 3n ≥ 2m. Since r0 + r1 + r2 = m − n, we find that
n ≥ r0 + r1 + r2 and, then, r0 = c (in fact r0 = r1 = r2 = c = 1).

Since r0 = r1 = r2 = c, we have m = 3c+ n, and so µ = c.

Lemma 5.12. If r2 + n ≥ l(S2) + l(S0), then r0 = r1 = r2 = µ.

Proof. We may assume that r0 + n < l(S0) + l(S1) since otherwise, by
Lemma 5.11, the conclusion is true. Then by Lemma 5.9 we have r0 =
max(r0, r1, r2) and, by Lemma 5.8, r0

X��� µ.
From the hypothesis it follows that r2 + n > l(S0). Since r0 < l(S0)

by Lemma 2.11(b), we have r2 + n > r0. Thus, r2
X��� r0 since r2 ≡ r0 by

Lemma 5.2. Therefore, r2 = r0 = max(r0, r1, r2).
If r1 + n < l(S1) + l(S2), then also r1 = max(r0, r1, r2) by Lemma 5.9

and r0 = r1 = r2. If, on the contrary, r1 + n ≥ l(S1) + l(S2), then from
Proposition 2.13 it follows that r0+r2

�XXX m−(r1+n) ≤ m−(l(S1)+l(S2)) =
l(S0) < r2 + n. Hence, r0 < n and, therefore, r0 = c = min(r0, r1, r2). Then
also r0 = r1 = r2.

Finally, the inequality µ �XXX r0 = r1 = r2 cannot happen to be strict.
Otherwise, again by Proposition 2.13 and Lemma 5.2, we would obtain
m− n X��� r0 + r1 + r2

X��� 3(µ+ n) X��� m+ n; a contradiction.

Lemma 5.13. If r1 + n ≥ l(S1) + l(S2), then r0 = r2 = µ X��� r1.

Proof. We may assume that rq+n < l(Sq)+ l(Sq⊕1) for q = 0 and q = 2.
Otherwise we already know that r0 = r1 = r2 = µ by Lemmas 5.11 and 5.12.
Then, by Lemmas 5.9, 5.8 and 5.6, we deduce that max(r0, r1, r2) = r0 =
r2
X��� µ X��� min(r0, r1, r2) = r1.
From the hypothesis and from r0+r1 +r2

�XXX m−n (see Proposition 2.13)
it follows that r0 + r2 ≤ l(S0). Let us see that µ = r0 = r2. Otherwise, by
Lemma 5.2, µ + n �XXX r0 = r2 and m − r2 − r0

�XXX m − 2µ − 2n �XXX µ. Then
l(S2) < m− l(S0) ≤ m−r2−r0 ≤ µ < r2. So, xp2 > xp2⊕r2 by Lemma 2.7(c)



356 L. Alsedà and J. M. Moreno

and Definition 2.6(b). Since r2 > l(S2), we have p2 ⊕ r2 = p2 + r2 −m =
l(S0) + l(S1) + r2 −m = r2 − l(S2). So, xp2 > xr2−l(S2). Since xp1−r0 > xp1

by Lemma 2.11(b) and r2− l(S2) < r2 ≤ l(S0)−r0 = p1−r0, the m−r2−r0
arrows

Ar2−l(S2), . . . , Ap1−r0−1, Ap1 , . . . , Ap2−1

are overlapping and are all black except Ap2−1. Then [2, Lemma 4.5] gives
a single orbit of period m − r2 − r0. Let k ∈ {1, 2} and k′ ≥ 0 be such
that m = 3µ + kn and µ = m − r2 − r0 + k′n. By [2, Lemma 3.7(b)] and
the Adjusting Lemma ([1, Lemma 1.18]), we obtain an orbit Q of period
3(m − r2 − r0) + (3k′ + k)n = m with three coloured arrows. This orbit is
different from P since the strings of Q have lengths at least m − r2 − r0
> l(S2). By the First Theorem of [1], this contradicts the primarity of P .
Hence, µ = r0 = r2. This ends the proof of the lemma.

Lastly, we can state the main result of this section. It characterizes the
primary spiral orbits with three coloured arrows and, hence, it ends the
characterization of the primary strongly directed orbits of maps from X4.

Theorem 5.14. A spiral orbit with three coloured arrows is primary if
and only if it is triple.

Proof. Triple orbits are primary by Proposition 5.4. Hence, we only have
to prove the converse. Conditions (i) and (ii) of Definition 5.3 are satisfied
by Lemma 5.5. Conditions (iii) and (iv) of Definition 5.3 are satisfied by
virtue of Definition 2.15, Remark 2.16 and Lemmas 5.10–5.13.

6. Conclusions. With the study of triple orbits, we have finished the
characterization of the strongly directed primary orbits for self maps of the
4-star with the branching point fixed. In this section we summarize the main
results of the two papers where this characterization is carried out. The first
of the statements below is [2, Theorem A] about primary directed orbits
of maps from Xn having at most one coloured arrow. The second one puts
together [2, Theorems B and C], and Theorems 4.9 and 5.14 about primary
strongly directed orbits of maps from X4 with at least two coloured arrows.

Theorem A. Let P be a directed orbit of a map f ∈ Xn with ν ≤ 1
coloured arrows.

(a) If P has only black arrows, then P is primary if and only if it is
twist.

(b) If P has a coloured arrow A, then P is primary if and only if it is
single of colour c(A).

Theorem B. Let P be a strongly directed orbit of a map f ∈ X4 with
ν ≥ 2 coloured arrows.
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(a) If P is primary , then ν ≤ 3 and it is colour compatible.
(b) If P has crossing arrows, then P is primary if and only if it is ν-box.
(c) If P has no crossing arrows and ν = 2, then P is primary if and

only if it is double.
(d) If P has no crossing arrows and ν = 3, then P is primary if and

only if it is triple.
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