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NONLOCAL ROBIN PROBLEM FOR ELLIPTIC SECOND
ORDER EQUATIONS IN A PLANE DOMAIN WITH A

BOUNDARY CORNER POINT

Abstract. We investigate the behavior of weak solutions to the nonlo-
cal Robin problem for linear elliptic divergence second order equations in
a neighborhood of a boundary corner point. We find an exponent of the
solution’s decreasing rate under minimal assumptions on the problem coef-
ficients.

1. Introduction. Our article is devoted to the nonlocal Robin problem
in a plane domain with a boundary corner point. This problem often appears
in different fields of physics and engineering. For example, nonlocal elliptic
boundary value problems have important applications to the theory of dif-
fusion processes and the theory of turbulence. Various problems in this field
have been studied by many mathematicians. We refer to [3, 10] for the his-
tory and extensive literature. Solvability of nonlocal elliptic value boundary
problems was considered by Skubachevskĭı [10]. He also obtained a priori
estimates of solutions in Sobolev spaces, both weighted and unweighted. All
results in [10] relate to equations with infinitely differentiable coefficients.
Gurevich [3] considered the asymptotics of solutions for nonlocal elliptic
problems for equations with constant coefficients in plane angles. A princi-
pal new feature of our work is the consideration of estimates for equations
with coefficients of minimal smoothness.

We establish global and local estimates of weighted and unweighted
Dirichlet integrals as well as the modulus of weak solutions to our prob-
lem, employing methods different from those in [3, 10]: we investigate the
behavior of weak solutions in a neighborhood of the boundary corner point
by means of integro-differential inequalities and Kondratiev’s ring methods.
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For this purpose we derive a new Friedrichs–Wirtinger type inequality, which
is adapted to our problem.

Setting of nonlocal problem. Let G ⊂ R2 be a bounded domain
whose boundary ∂G = Γ+ ∪ Γ− is a smooth curve everywhere except at
the origin O ∈ ∂G, near O the curves Γ± are the lateral sides of an angle
with measure ω0 ∈ [0, 2π) and vertex at O. Let Σ0 = G ∩ {x2 = 0}, where
O ∈ Σ0.

We will use the following notation:

• S1: the unit circle in R2 centered at O;
• (r, ω): the polar coordinates of x = (x1, x2) ∈ R2 with pole O: x1 =
r cosω, x2 = r sinω;
• C: the angle {x1 > r cos (ω0/2), −∞ < x2 <∞} with vertex O;
• ∂C: the lateral sides of C: x1 = r cos (ω0/2), x2 = ±r sin (ω0/2);
• Ω: the arc obtained by intersecting the angle C with S1: Ω = C ∩S1 =

(−ω0/2, ω0/2);
• Gba = {(r, ω) : 0 ≤ a < r < b;ω ∈ Ω} ∩G: a ring domain in R2;
• Γ ba± = {(r, ω) : 0 ≤ a < r < b, ω = ±ω0/2} ∩ ∂G: the lateral sides

of Gba;
• Gd = G \Gd0; Γd± = Γ± \ Γ d0±, d > 0;
• Ωρ = Gd0 ∩ {|x| = %}, 0 < % < d;
• measG: the Lebesgue measure of the set G.

We shall consider an elliptic equation with a nonlocal boundary condition
connecting the values of the unknown function u on the curve Γ+ with its
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values on Σ0:

(L)



L[u] ≡ ∂

∂xi
(aij(x)uxj ) + bi(x)uxi + c(x)u = f(x), x ∈ G;

B+[u] ≡ ∂u

∂ν
+ β+

u(x)
|x|

+
b

|x|
u(γ(x)) = g(x), x ∈ Γ+;

B−[u] ≡ ∂u

∂ν
+ β−

u(x)
|x|

= h(x), x ∈ Γ−;

here:

• ∂/∂ν = aij(x) cos(~n, xi)∂/∂xj , and ~n denotes the unit vector outward
with respect to G normal to ∂G \O (summation over repeated indices
from 1 to 2 is understood);
• γ is a diffeomorphism of Γ+ onto Σ0; we assume that there exists d > 0

such that in the neighborhood Γ d0+ of O the mapping γ is the rotation
by the angle −ω0/2, that is, γ(Γ d0+) = Σd

0 = Gd0 ∩Σ0.

Remark 1.1. We observe that

u(γ(x))|Γ d0+ = u(r, 0), 0 < r < d.

In fact, γ(x) = γ(x1, x2) = γ(r cos (ω0/2), r sin (ω0/2)) = (r, 0), because in
Γ d0+ the mapping γ is the rotation by the angle −ω0/2.

We use also standard function spaces:

• Ck(G) with the norm |u|k,G,
• the Lebesgue space Lp(G), p ≥ 1, with the norm ‖u‖p,G,
• the Sobolev space W k,p(G) with the norm

‖u‖p,k,(G) =
( �

G

k∑
|β|=0

|Dβu|p dx
)1/p

.

We define the weighted Sobolev space V k
p,α(G) for integer k ≥ 0 and real α

as the space of distributions u ∈ D′(G) with the finite norm

‖u‖V kp,α(G) =
( �

G

k∑
|β|=0

rα+p(|β|−k)|Dβu|p dx
)1/p

,

and V
k−1/p
p,α (∂G) as the space of functions ϕ, given on ∂G, with the norm

‖ϕ‖
V
k−1/p
p,α (∂G)

= inf ‖Φ‖V kp,α(G), where the infimum is taken over all functions

Φ such that Φ|∂G = ϕ in the sense of traces. We write W k(G) for W k,2(G),
W̊ k
α(G) for V k

2,α(G), and W̊ k−1/2
α (∂G) for V k−1/2

2,α (∂G).
Let us recall some well known formulae related to polar coordinates (r, ω)

in R2 centered at O:
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• dx = rdrdω, dΩρ = ρdω,

• |∇u|2 =
(
∂u

∂r

)2

+
1
r2

(
∂u

∂ω

)2

,

• ∆u =
∂2u

∂r2
+

1
r

∂u

∂r
+

1
r2

∂2u

∂ω2
,

• ds denotes the length element on ∂G.

C = C(. . .), c = c(. . .) denote constants depending only on the quantities
appearing in parentheses. In what follows, the same letters C, c will be used
to denote various constants depending on the same set of arguments.

Without loss of generality we can assume that there exists d > 0 such
that Gd0 is an angle with vertex O and measure ω0 ∈ (0, 2π), thus

Γ d0± = {(x1, x2) : x1 = ±x2 cot (ω0/2), |x| ≤ d}.

By a direct calculation we obtain

Lemma 1.2.

cos(~n, x1)|Γ d0± = − sin
ω0

2
; xi cos(~n, xi)|Γ d0± = 0; xi cos(~n, xi)|Ω% = %.

Definition 1.3. A function u is called a weak solution of problem (L)
provided that u ∈ C0(G) ∩ W̊ 1

0 (G) and u satisfies the integral identity

(II)
�

G

{aij(x)uxjηxi − bi(x)uxiη(x)− c(x)u(x)η(x)} dx

+ β+

�

Γ+

u(x)/rη(x) ds+ b
�

Γ+

1
r
u(γ(x))η(x) ds+ β−

�

Γ−

u(x)/rη(x) ds

=
�

Γ+

g(x)η(x) ds+
�

Γ−

h(x)η(x) ds−
�

G

f(x)η(x) dx

for all η ∈ C0(G) ∩ W̊ 1
0 (G).

Lemma 1.4. Let u be a weak solution of (L). For any η ∈ C0(G)∩W̊ 1
0 (G),

and a.e. % ∈ (0, d), we have

(II)loc

�

G%0

{aij(x)uxjηxi + (f(x)− bi(x)uxi − c(x)u(x))η(x)} dx

=
�

Ω%

aij(x)uxjη(x) cos(r, xi)dΩ% +
�

Γ %0−

(
h(x)− β−

u(x)
r

)
η(x) ds

+
�

Γ %0+

(
g(x)− β+u(x)/r − b

r
u(γ(x))

)
η(x) ds.
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Proof. Let χ% be the characteristic function of G%0. Replacing in (II) the
function η(x) by η(x)χ%(x), we obtain

�

G%0

{aij(x)uxjηxi + (f(x)− bi(x)uxi − c(x)u(x))η(x)} dx

= −
�

G%0

aij(x)uxjη(x)∂χ%/∂xi dx

+
%�

Γ0+

(
g(x)− β+

u(x)
r
− b

r
u(γ(x))

)
η(x) ds

+
�

Γ %0−

(
h(x)− β−

u(x)
r

)
η(x) ds.

By [2, Ch. 3, §1, Subsect. 3, formula (7′)] ∂χ%
∂xi

= −xi
r δ(% − r), where

δ(%− r) is the Dirac distribution lumped on the circle r = %, we get (see [2,
Ch. 3, §1, Subsect. 3, Example 4])

−
�

G%0

aij(x)uxjη(x)
∂χ%
∂xi

dx =
�

G%0

aij(x)uxjη(x)
xi
r
δ(%− r) dx

=
�

Ω%

aijuxjη(x) cos(r, xi) dΩ%.

Hence the required statement follows.

We will make the following assumptions:

(a) (uniform ellipticity)

νξ2 ≤ aij(x)ξiξj ≤ µξ2, ∀x ∈ G, ∀ξ ∈ R2; ν, µ = const > 0

(without loss of generality we can assume that ν ≤ 1),

aij(x) = aji(x), ∀x ∈ G, aij(0) = δji (i, j = 1, 2),

where δji is the Kronecker symbol;
(b) aij ∈ C0(G), bi ∈ Lp(G), c ∈ Lp/2(G) ∩ L2(G) for all p > ñ > 2; the

inequality( 2∑
i,j=1

|aij(x)−aij(0)|2
)1/2

+ |x|
( 2∑
i=1

|bi(x)|2
)1/2

+ |x|2|c(x)| ≤ A(|x|)

holds for all x ∈ G, where A(r) is an increasing nonnegative function,
continuous at 0 and A(0) = 0;

(c) c(x) ≤ 0 in G; b ≥ 0, β± > 0;
(d) f ∈ Lp/2(G) ∩ L2(G), g ∈ L∞(Γ+), h ∈ L∞(Γ−);
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(e) there exist numbers f0 ≥ 0, g0 ≥ 0, h0 ≥ 0, s > max{1; 2 − 4/p}
such that

|f(x)| ≤ f0|x|s−2, |g(x)| ≤ g0|x|s−1, |h(x)| ≤ h0|x|s−1;

(f) M0 = maxx∈G |u(x)| (see e.g. Section 3).

Our main results are the following theorems.

Theorem 1.5. Let u be a weak solution of problem (L) and let assump-
tions (a)–(f) be satisfied with A(r) Dini-continuous at zero. Let λ = λ∗,
where λ∗ is defined by Lemma 2.6. Suppose, in addition,

(1.1)
0 < b < min

√2 ·
π2

4ω2
0
− β+β−

π
2ω0

+ β−
;

1
ω0

(ν +
√
ν2 + 2νω0β+)

 ,

β+β− <

(
π

2ω0

)2

.

Then there are d ∈ (0, 1/e), where e is the Euler number, and a constant
C > 0 depending only on ν, µ, p, ‖

∑n
i=1 |bi(·)|2‖p/2,G, ω0, b, β+, β−, M0,

f0, h0, g0, s, measG, measΓ+, measΓ− and the quantity
	1/e
0 (A(r)/r) dr

such that for all x ∈ Gd0,

(1.2) |u(x)| ≤ C


|x|λk if s > λk,
|x|λk ln(1/|x|) if s = λk,
|x|s if s < λk,

where

(1.3) k =
B + β+ + b−

√
(β+ + b−B)2 +Bb2ω0

2B
∈ (0, 1],

and B = B(λ) is as in (2.6).

Remark 1.6. Because of (2.4), we can observe that if b = 0, then k = 1.

Theorem 1.7. Let u ≥ 0 be a weak solution of problem (L), and let
assumptions (a)–(f) be satisfied with A(r) Dini-continuous at zero. Let β− =
β+ = β, b > b∗, where b∗ is defined by (2.9) and let λ ∈ (π/ω0, 2π/ω0) be
a root of equation (2.10). Then there are d ∈ (0, 1/e) and a constant C > 0
depending only on ν, µ, p, ‖

∑n
i=1 |bi(x)|2‖p/2,G, ω0, b, β, f0, h0, g0, s, M0,

measG, measΓ+, measΓ− and
	1/e
0 (A(r)/r) dr such that for all x ∈ Gd0,

|u(x)| ≤ C


|x|λ if s > λ,
|x|λ ln(1/|x|) if s = λ,
|x|s if s < λ.
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Theorem 1.8. Let u be a weak solution of problem (L), and let assump-
tions (a)–(f) be satisfied with A(r) Dini-continuous at zero. Suppose, in ad-
dition, that

β+u
2(x)|Γ+ + β−u

2(x)|Γ− + bu(x)|Γ+ · u(γ(x))|Γ+ = 0,

b =
π

ω0
· β+ + β−

β−
and u2(x)|Γ+ = u2(x)|Γ− .

Then there are d ∈ (0, 1/e) and a constant C > 0 depending only on ν, µ, p,
ω0, b, β, f0, h0, g0, s, M0, measG, measΓ+, measΓ− and

	1/e
0 (A(r)/r) dr

such that for all x ∈ Gd0,

|u(x)| ≤ C


|x|π/ω0 if s > π/ω0,
|x|π/ω0 ln(1/|x|) if s = π/ω0,
|x|s if s < π/ω0.

2. Preliminaries

2.1. Eigenvalue problem. In what follows we need some statements
and inequalities. We consider the following eigenvalue problem:

(EVP)


ψ′′(ω) + λ2ψ(ω) = 0, ω ∈ Ω,
ψ′(ω0/2) + β+ψ(ω0/2) + bψ(0) = 0,
−ψ′(−ω0/2) + β−ψ(−ω0/2) = 0,

with β± > 0, b ≥ 0, which consists in determining all values λ2 (eigenvalues)
for which (EVP) has nonzero weak solutions (eigenfunctions) ψ(ω).

Definition 2.1. A function ψ is called a weak solution of problem (EVP)
provided that ψ ∈W 1(Ω) ∩ C0(Ω) and

(2.1)
�

Ω

(ψ′(ω)η′(ω)− λ2ψ(ω)η(ω)) dω + β+ψ(ω0/2)η(ω0/2)

+ bψ(0)η(ω0/2) + β−ψ(−ω0/2)η(−ω0/2) = 0 for all η ∈W 1(Ω)∩C0(Ω).

We are interested in the smallest positive eigenvalue of (EVP). Solving
the equation of (EVP) we find

(2.2) ψ(ω) = β− sinλ(ω + ω0/2) + λ cosλ(ω + ω0/2)

and λ is defined by the transcendental equation

f(λ) := λ(β+ + β−) cosλω0 + (β+β− − λ2) sinλω0(2.3)

+ b

(
λ cos

λω0

2
+ β− sin

λω0

2

)
= 0.

Remark 2.2. From (2.2) it follows that in fact ψ ∈ C∞(Ω).
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Remark 2.3. Let λ = π/ω0. Then

f(π/ω0) = 0 ⇔

b =
π

ω0
· β+ + β−

β−
, ψ(0) = β−, ψ

(
ω0

2

)
= − π

ω0
, ψ

(
−ω0

2

)
=

π

ω0
.

2.2. The Friedrichs–Wirtinger type inequality

Theorem 2.4. Let λ2 be the smallest positive eigenvalue of problem
(EVP) and ψ the corresponding eigenfunction. Then for any u ∈ W 1(Ω) ∩
C0(Ω), u 6≡ const 6= 0, we have

(2.4) λ2
�

Ω

u2(ω) dω ≤
�

Ω

u′2(ω) dω +Bu2(ω0/2) + β−u
2(−ω0/2),

where
B = b

ψ(0)
ψ(ω0/2)

+ β+.

Proof. At first, we assume that u ∈ C2(Ω) ∩W 1(Ω) ∩ C0(Ω). Setting
u(ω) = ψ(ω)v(ω) we obtain

[u′(ω)]2 = [(ψ(ω)v(ω))′]2

= ψ′2(ω)v2(ω) + 2ψ′(ω)ψ(ω)v(ω)v′(ω) + ψ2(ω)v′2(ω)

= ψ2(ω)v′2(ω) + [v2(ω)ψ(ω)ψ′(ω)]′ − v2(ω)ψ(ω)ψ′′(ω)

≥ [v2(ω)ψ(ω)ψ′(ω)]′ − v2(ω)ψ(ω)ψ′′(ω).
Integrating over Ω and recalling that ψ is an infinitely differentiable solution
of (EVP) we have

�

Ω

u′2(ω) dω ≥ v2(ω)ψ(ω)ψ′(ω)|ω=ω0/2
ω=−ω0/2

−
�

Ω

v2(ω)ψ(ω)ψ′′(ω) dω(2.5)

= u2(ω)
ψ′(ω)
ψ(ω)

∣∣∣∣ω=ω0/2

ω=−ω0/2

+ λ2
�

Ω

u2(ω) dω

= u2(ω0/2)
(
−β+ − b

ψ(0)
ψ(ω0/2)

)
− β−u2(−ω0/2) + λ2

�

Ω

u2(ω) dω.

Then from (2.5) we get (2.4). The extension of (2.4) to u ∈W 1(Ω)∩C0(Ω)
follows directly by approximation.

Further, for λ = π/ω0, by Remark 2.3, from (2.4) it follows that B = −β−
and therefore inequality (2.4) is false for u ≡ const 6= 0.

Remark 2.5. Inequality (2.4) is the best possible, i.e. the constant λ2

in this inequality is sharp.
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In fact, putting η = ψ in (2.1) we obtain

λ2
�

Ω

ψ2(ω) dω =
�

Ω

ψ′2(ω) dω

+ β+ψ
2(ω0/2) + β−ψ

2(−ω0/2) + bψ(0)ψ(ω0/2)

for any solution (λ2, ψ) of (EVP). Now we see that the equality sign in (2.4)
is attained for u = ψ, i.e. for the eigenfunction of (EVP).

Now we establish under what conditions the parameter B is positive.
From the first boundary condition of (EVP) and (2.2) we get

B = b
ψ(0)

ψ(ω0/2)
+ β+ =

−ψ′(ω0/2)− β+ψ(ω0/2)
ψ(ω0/2)

+ β+ = −ψ
′(ω0/2)
ψ(ω0/2)

(2.6)

=
λ(λ sinλω0 − β− cosλω0)
β− sinλω0 + λ cosλω0

≡ B(λ).

Lemma 2.6. Let (λ2, ψ) be a weak solution of (EVP) and let f(λ) be
defined by (2.3). Suppose that

(2.7) β± > 0, 0 < b <
√

2 ·
π2

4ω2
0
− β+β−

π
2ω0

+ β−
, β+β− <

(
π

2ω0

)2

,

and let λ ∈ (0, π/(2ω0)) be a solution of

(2.8) tan(λω0) =
β−

λ
.

Then the interval (λ, π/(2ω0)) contains the least positive zero λ∗ of the func-
tion f(λ) for which B(λ∗) > 0. Moreover, (λ∗)2 is the least eigenvalue of
(EVP) and the corresponding eigenfunction ψ is nonnegative.

Proof. Let λ ∈ (0, π/(2ω0)]. Then from (2.6) it follows that B(λ) > 0
if λ sinλω0 − β− cosλω0 > 0. From (2.8) for all λ ∈ (0, λ) we have (by the
graphical method)

tanλω0 ≤
β−
λ
, so cosλω0 ≥

λ

β−
sinλω0.

Therefore from (2.3) we get

f(λ) >
(
β+

β−
λ2 + β+β−

)
sinλω0 > 0, ∀λ ∈ (0, λ].

Further,

f

(
π

2ω0

)
= β+β− −

(
π

2ω0

)2

+
b√
2

(
π

2ω0
+ β−

)
< 0,

by (2.7). Hence, by (2.2) and because f(λ) is continuous, the statement of
the lemma follows.
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Remark 2.7. λ2 = 0 is not an eigenvalue of (EVP). In fact, the solution
of problem (EVP) with λ2 = 0 has the form ψ(ω) = A1ω + A2, where
A1, A2 are unknown constants. From the boundary conditions we obtain a
homogeneous algebraic system for A1, A2,{

A1 + β+(A1ω0/2 +A2) + bA2 = 0,
A1 + β−(A1ω0/2−A2) = 0.

The determinant of this system is∣∣∣∣∣1 + β+
ω0
2 β+ + b

1 + β−
ω0
2 −β−

∣∣∣∣∣ 6= 0,

since β+, β− > 0 and b ≥ 0. Thus ψ(ω) ≡ 0 for any ω ∈ Ω.
Lemma 2.8. Let λ2 be the smallest positive eigenvalue of problem (EVP)

with β+ = β− = β and let ψ be the corresponding eigenfunction. Let b > b∗,
where

(2.9) b∗ = 2
ω0(λ̃2 + β2) + 2β√

ω2
0(λ̃2 + β2) + 4βω0 + 4

and λ̃ ∈ (π/ω0, 2π/ω0) is a root of tan (λω0/2) = −λω0/(2 + βω0). Then λ
satisfies the transcendental equation

(2.10) β sin
λω0

2
+ λ cos

λω0

2
= 0, λ ∈

(
π

ω0
,
2π
ω0

)
,

and B(λ) = β.

Proof. By the assumption β+ = β− = β and trigonometrical properties
we can rewrite (2.3) in the form

f(λ) = 2λβ cosλω0 + (β2 − λ2) sinλω0 + b

(
λ cos

λω0

2
+ β sin

λω0

2

)
= 2λβ

(
cos2 λω0

2
− sin2 λω0

2

)
+ 2(β2 − λ2) sin

λω0

2
cos

λω0

2

+ b

(
λ cos

λω0

2
+ β sin

λω0

2

)
=
(
λ cos

λω0

2
+ β sin

λω0

2

)(
b+ 2β cos

λω0

2
− 2λ sin

λω0

2

)
= 0.

We now establish that

χ(λ) := b+ 2β cos
λω0

2
− 2λ sin

λω0

2
> 0

for all λ ∈ (0, 2π/ω0). In fact, by calculation, we find that χ′(λ̃) = 0 and
χ′′(λ̃) > 0 for λ̃ ∈ (π/ω0, 2π/ω0) satisfying tan(λω0/2) = −λω0/(βω0 + 2).
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Therefore

inf
λ∈(0,2π/ω0)

χ(λ) = χ(λ̃) = b− 2
ω0(λ̃2 + β2) + 2β√

ω2
0(λ̃2 + β2) + 4βω0 + 4

> 0,

by assumption. Thus (2.10) is proved.
Now, we calculate B(λ) for λ satisfying (2.10). By (2.2),

ψ(0) = λ cos
λω0

2
+ β sin

λω0

2
= 0,

ψ(ω0/2) = β sinλω0 + λ cosλω0

= 2β sin
λω0

2
cos

λω0

2
+ λ cos2 λω0

2
− λ sin2 λω0

2

= β sin
λω0

2
cos

λω0

2
+ λ cos2 λω0

2
+ β sin

λω0

2
cos

λω0

2
− λ sin2 λω0

2

= −λ cos2 λω0

2
− λ sin2 λω0

2
+ cos

λω0

2

(
β sin

λω0

2
+ λ cos

λω0

2

)
= −λ 6= 0.

Hence we get the desired result: B = b ψ(0)
ψ(ω0/2) + β = β.

Taking into account Lemmas 2.6, 2.8 and Remark 2.3 we get the following
formulations of Theorem 2.4 for the Friedrichs–Wirtinger type inequality:

Corollary 2.9. Let the assumptions of Lemma 2.6 be satisfied, and
λ = λ∗, where λ∗ is defined by that lemma. Then

(2.11)
�

Ω

u2(ω) dω ≤ 1
λ2

{ �

Ω

(
∂u

∂ω

)2

dω +Bu2(ω0/2) + β−u
2(−ω0/2)

}
for all u ∈W 1(Ω) ∩ C0(Ω) with B = B(λ∗) defined by (2.6).

Corollary 2.10. Let β+ = β− = β > 0 and b > b∗, where b∗ is defined
by (2.9). Then

(2.12)
�

Ω

u2(ω) dω ≤ 1
λ2

{ �

Ω

(
∂u

∂ω

)2

dω + βu2(ω0/2) + βu2(−ω0/2)
}

for all u ∈W 1(Ω)∩C0(Ω), where λ ∈ (π/ω0, 2π/ω0) is the smallest positive
root of equation (2.10).

Corollary 2.11. Let b = π
ω0
· β++β−

β−
. Then

(2.13)
π2

ω2
0

�

Ω

u2(ω) dω + β−u
2(ω0/2) ≤

�

Ω

(
∂u

∂ω

)2

dω + β−u
2(−ω0/2)

for all u ∈W 1(Ω) ∩ C0(Ω), u 6≡ const 6= 0.

Now using the well known Hardy inequality (see Theorem 330 of [4]) we
get:
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Proposition 2.12 (The Hardy–Friedrichs–Wirtinger inequality). Let
u ∈ C0(Gd0)∩W̊ 1

α−2(Gd0), α ≤ 2, and let λ2 be the smallest positive eigenvalue
of problem (EVP) and ψ ∈W 1(Ω)∩C0(Ω) the corresponding eigenfunction.
Then

(2.14)
�

Gd0

rα−4u2(x) dx ≤ 1
(2− α)2/4 + λ2

{ �

Gd0

rα−2|∇u|2 dx

+B
�

Γ d0+

rα−3u2(x) ds+ β−
�

Γ d0−

rα−3u2(x) ds
}

with B defined by (2.4).

Proof. For the proof we refer to [1, Theorem 2.34].

Corollary 2.13. Let the assumptions of Lemma 2.6 be satisfied, and
let λ = λ∗, where λ∗ is defined by that lemma. Let u ∈ C0(Gd0)∩ W̊ 1

α−2(Gd0),
α ≤ 2. Then
�

Gd0

rα−4u2(x) dx ≤ 1
(2− α)2/4 + λ2

{ �

Gd0

rα−2|∇u|2 dx

+B
�

Γ d0+

rα−3u2(x) ds+ β−
�

Γ d0−

rα−3u2(x) ds
}

with B = B(λ∗) defined by (2.6).

Proof. Apply [1, Theorem 2.34] together with Corollary 2.9.

Corollary 2.14. Let β+ = β− = β > 0, b > b∗, where b∗ is defined
by (2.9), and u ∈ C0(Gd0) ∩ W̊ 1

α−2(Gd0), α ≤ 2. Then we can rewrite the
Hardy–Friedrichs–Wirtinger inequality (2.14) as

(2.15)
�

Gd0

rα−4u2(x) dx ≤ 1
(2− α)2/4 + λ2

{ �

Gd0

rα−2|∇u|2 dx

+ β
�

Γ d0+

rα−3u2(x) ds+ β
�

Γ d0−

rα−3u2(x) ds
}
,

where λ ∈ (π/ω0, 2π/ω0) is the smallest positive root of equation (2.10).

Proof. Apply [1, Theorem 2.34] together with Corollary 2.10.

Corollary 2.15. Let b = π
ω0
· β++β−

β−
and u ∈ C0(Gd0) ∩ W̊ 1

α−2(Gd0),
α ≤ 2. Then we can rewrite the Hardy–Friedrichs–Wirtinger inequality (2.14)
as
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(2.16)
�

Gd0

rα−4u2(x) dx ≤ 1
(2− α)2/4 + π2/ω2

0

{ �

Gd0

rα−2|∇u|2 dx

− β−
�

Γ d0+

rα−3u2(x) ds+ β−
�

Γ d0−

rα−3u2(x) ds
}
.

Proof. Apply [1, Theorem 2.34] together with Corollary 2.11.

Lemma 2.16. Let the assumptions of Lemma 2.6 be satisfied, let λ = λ∗,
where λ∗ is defined by that lemma, and let B be defined by (2.6). Let u ∈
C0(Gd0) ∩ W̊ 1

0 (Gd0). Set

(2.17) U(%) =
�

G%0

|∇u|2 dx+B
�

Γ %0+

u2(x)
r

ds+ β−
�

Γ %0−

u2(x)
r

ds <∞

for % ∈ (0, d). Then

%
�

Ω

(
u
∂u

∂r

)∣∣∣∣
r=%

dω ≤ %

2λ
U ′(%).

Proof. Writing U(%) in polar coordinates,

U(%) =
%�

0

r
�

Ω

(∣∣∣∣∂u∂r
∣∣∣∣2 +

1
r2

∣∣∣∣∂u∂ω
∣∣∣∣2) dω dr +B

%�

0

u2(r, ω0/2)
r

dr

+ β−

%�

0

u2(r,−ω0/2)
r

dr

and differentiating with respect to % we obtain

U ′(%) =
�

Ω

(
%

∣∣∣∣∂u∂r
∣∣∣∣2 +

1
%

∣∣∣∣∂u∂ω
∣∣∣∣2)∣∣∣∣

r=%

dω(2.18)

+B
u2(%, ω0/2)

%
+ β−

u2(%,−ω0/2)
%

.

Moreover, by Cauchy’s inequality, we have

ρu
∂u

∂r
≤ ε

2
u2 +

1
2ε
ρ2

(
∂u

∂r

)2

for all ε > 0. Thus, choosing ε = λ we obtain, by the Friedrichs–Wirtinger
inequality (2.11),

%
�

Ω

(
u
∂u

∂r

)∣∣∣∣
r=%

dω

≤ ε

2λ2

{ �

Ω

∣∣∣∣∂u∂ω
∣∣∣∣2
r=%

dω+Bu2(%, ω0/2) +β−u
2(%,−ω0/2)

}
+
%2

2ε

�

Ω

∣∣∣∣∂u∂r
∣∣∣∣2
r=%

dω
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=
%

2λ

{
B
u2(%, ω0/2)

%
+ β−

u2(%,−ω0/2)
%

+
�

Ω

(
1
%

∣∣∣∣∂u∂ω
∣∣∣∣2 + %

∣∣∣∣∂u∂r
∣∣∣∣2)∣∣∣∣

r=%

dω

}
=

%

2λ
U ′(%).

Applying Corollaries 2.10, 2.11 and repeating word for word the proof of
Lemma 2.16 we derive the following corollaries:

Corollary 2.17. Let β+ = β− = β > 0, b > b∗, where b∗ is defined by
(2.9), and u ∈ C0(Gd0) ∩ W̊ 1

0 (Gd0). Set

(2.19) U+(%) =
�

G%0

|∇u|2 dx+ β
�

Γ %0+

u2(x)
r

ds+ β
�

Γ %0−

u2(x)
r

ds <∞

for % ∈ (0, d). Then

%
�

Ω

(
u
∂u

∂r

)∣∣∣∣
r=%

dω ≤ %

2λ
U ′+(%),

where λ ∈ (π/ω0, 2π/ω0) is the smallest positive root of (2.10).

Corollary 2.18. Let b = π
ω0
· β++β−

β−
and u ∈ C0(Gd0) ∩ W̊ 1

0 (Gd0). Set

(2.20) U−(%) =
�

G%0

|∇u|2 dx− β−
�

Γ %0+

u2(x)
r

ds+ β−
�

Γ %0−

u2(x)
r

ds <∞

for % ∈ (0, d). Then

%
�

Ω

(
u
∂u

∂r

)∣∣∣∣
r=%

dω ≤ %ω0

2π
U ′−(%).

We also need the well known inequalities (see e.g. [5, Chapter I, (6.23),
(6.24)] or [7, Lemma 6.36])�

Γ

υ ds ≤ C
�

G

(|υ|+ |∇υ|) dx, ∀υ ∈W 1,1(G), ∀Γ ⊆ ∂G,

�

∂G

υ2 ds ≤
�

G

(
δ|∇υ|2 +

1
δ
c0υ

2

)
dx, ∀υ ∈W 1,2(G), ∀δ > 0,(2.21)

and the following lemma.

Lemma 2.19. Let u ∈ C0(Gd0) ∩ W̊ 1
α−2(Gd0). Then

�

Γ d0+

rα−3u(x)u(γ(x)) ds =
�

Γ d0+

rα−3u2(x) ds(2.22)

−
d�

0

rα−3u(r, ω0/2)
( ω0/2�

0

∂u(r, ω)
∂ω

dω

)
dr
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and
d�

0

rα−3u(r, ω0/2)
( ω0/2�

0

∂u(r, ω)
∂ω

dω

)
dr ≤ ε

2

�

Gd0

rα−2|∇u|2 dx

+
ω0

2ε

�

Γ d0+

rα−3u2(x) ds, ∀ε > 0.

Proof. Because u(x)|Γ d0+ = u(r, ω0/2), and u(γ(x))|Γ d0+ = u(r, 0) by Re-

mark 1.1, using the representation u(r, 0) = u(r, ω0/2) −
	ω0/2
0

∂u(r,ω)
∂ω dω we

obtain (2.22).
Next, by the Cauchy inequality, we have

d�

0

rα−3u(r, ω0/2)
( ω0/2�

0

∂u(r, ω)
∂ω

dω

)
dr

≤
�

Gd0

rα−4

∣∣∣∣∂u(r, ω)
∂ω

∣∣∣∣ |u(r, ω0/2)| dx

≤ ε

2

�

Gd0

rα−4

∣∣∣∣∂u(r, ω)
∂ω

∣∣∣∣2 dx+
1
2ε

�

Gd0

u2(r, ω0/2) dx

≤ ε

2

�

Gd0

rα−2|∇u|2 dx+
1
2ε

d�

0

ω0/2�

−ω0/2

rα−3u2(r, ω0/2) dω dr

≤ ε

2

�

Gd0

rα−2|∇u|2 dx+
ω0

2ε

�

Γ d0+

rα−3u2(x) ds, ∀ε > 0.

2.3. The Cauchy problem for a differential inequality

Theorem 2.20. Let U be an increasing, nonnegative differentiable func-
tion defined on [0, d] and satisfying

(CP)
{
U ′(%)− P(%)U(%) +Q(%) ≥ 0, 0 < % < d,
U(d) ≤ U0,

where P,Q are nonnegative continuous functions defined on [0, d], and U0 is
a constant. Then

(2.23) U(%) ≤ U0 exp
(
−
d�

%

P(τ) dτ
)

+
d�

%

Q(τ) exp
(
−
τ�

%

P(σ) dσ
)
dτ.

Proof. For the proof we refer to [1, §1.10, Theorem 1.57].
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3. Maximum principle. The goal of this section is to derive an a priori
L∞(G)-estimate of a weak solution to problem (L).

Theorem 3.1. Let u be a weak solution of (L) and let assumptions
(a)–(c) be satisfied. In addition, suppose that j > 1, t > p/2, p > 2,
h2 ∈ Lj/(j−1)(Γ+), g2 ∈ Lj/(j−1)(Γ−), f2 ∈ Lt(G), and c(x) ≤ −c0 < 0
for all x ∈ G, where c0 is large enough, positive and depends only on ν,
p, and ‖

∑2
i=1 |bi(·)|2‖p/2,G. Then there exists a constant M0 > 0, depend-

ing only on measG, measΓ+,measΓ−, ν, p, ‖h2‖j/(j−1),Γ+
, ‖g2‖j/(j−1),Γ−,

‖f2‖t,G, b, β+, β−, ω0, such that ‖u‖∞,G ≤M0.

Proof. Set A(k) = {x ∈ G : u > k} for k ≥ k0 > 0 (without loss
of generality, we can assume k0 ≥ 1). We note that A(k + d) ⊆ A(k) for
all d > 0. Taking η(x) = max(u(x) − k, 0) as a test function in (II), by
assumption we get

(3.1) ν
�

A(k)

|∇u|2 dx+ c0
�

A(k)

u(x)(u(x)− k) dx

+ β+

�

Γ+∩A(k)

u(x)(u(x)− k)
r

ds

+ b
�

Γ+∩A(k)

1
r
u(γ(x))(u(x)− k) ds+ β−

�

Γ−∩A(k)

u(x)(u(x)− k)
r

ds

≤
�

A(k)

√√√√ 2∑
i=1

|bi(x)|2 · |∇u|(u(x)− k) dx+
�

A(k)

|f(x)|(u(x)− k) dx

+
�

Γ+∩A(k)

|g(x)|(u(x)− k) ds+
�

Γ−∩A(k)

|h(x)|(u(x)− k) ds.

Now, we estimate the first integral on the right of (3.1). By assumption (b),
the Cauchy inequality and the Hölder inequality with exponents q = p/2
and q′ = p

p−2 , p > 2,

(3.2)
�

A(k)

√√√√ 2∑
i=1

|bi(x)|2 · |∇u|(u(x)− k) dx

≤ ν

4

�

A(k)

|∇u|2 dx+
1
ν

�

A(k)

2∑
i=1

|bi(x)|2(u(x)− k)2 dx

≤ ν

4

�

A(k)

|∇u|2 dx+
1
ν

( �

A(k)

( 2∑
i=1

|bi(x)|2
)p/2

dx
)2/p

· ‖u(x)− k‖22p/(p−2),A(k).
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Next we apply the inequality
‖u‖22p

p−2
,G
≤ δ‖∇u‖22,G + c(δ, p,G)‖u‖22,G, p > 2, ∀δ > 0,

(see for example [6, Ch. II, §2, (2.19)]). From (3.2) it follows that

(3.3)
�

A(k)

√√√√ 2∑
i=1

|bi(x)|2 · |∇u|(u(x)− k) dx ≤ ν

4

�

A(k)

|∇u|2 dx

+
1
ν

∥∥∥ 2∑
i=1

|bi(·)|2
∥∥∥
p/2,G

�

A(k)

(δ|∇u|2 + c(δ, p,G)(u(x)− k)2) dx, ∀δ > 0.

We choose

δ =
ν2

4‖
∑2

i=1 |bi(·)|2‖p/2,G
.

Since b
	
Γ+∩A(k) (1/r)u(γ(x))(u(x) − k) ds > 0, from (3.1)–(3.3) it follows

that

ν

2

�

A(k)

|∇u|2 dx+
[
c0 − c

(
ν, p,G,

∥∥∥ 2∑
i=1

|bi(·)|2
∥∥∥
p/2,G

)]
×

�

A(k)

u(x)(u(x)− k) dx+ β+

�

Γ+∩A(k)

u(x)(u(x)− k)
r

ds

+ β−
�

Γ−∩A(k)

u(x)(u(x)− k)
r

ds

≤
�

A(k)

|f(x)|(u(x)− k) dx

+
�

Γ+∩A(k)

|g(x)|(u(x)− k) ds+
�

Γ−∩A(k)

|h(x)|(u(x)− k) ds.

Next, since c0 is large enough and positive, we can rewrite the above inequal-
ity as

(3.4)
ν

2

�

A(k)

|∇u|2 dx+ β+

�

Γ+∩A(k)

u(x)(u(x)− k)
r

ds

+ β−
�

Γ−∩A(k)

u(x)(u(x)− k)
r

ds

≤
�

A(k)

|f(x)|(u(x)− k) dx

+
�

Γ+∩A(k)

|g(x)|(u(x)− k) ds+
�

Γ−∩A(k)

|h(x)|(u(x)− k) ds.
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Now we estimate every term on the right hand side of (3.4) by the Cauchy
inequality:
�

A(k)

|f(x)|(u(x)− k) dx =
�

A(k)

(
u(x)− k

r

)
(r|f(x)|) dx

≤ ε

2

�

A(k)

(u(x)− k)2

r2
dx+

(diamG)2

2ε

�

A(k)

f2(x) dx, ∀ε > 0,

�

Γ+∩A(k)

|g(x)|(u(x)− k) ds ≤
�

Γ+∩A(k)

(u(x)− k√
r

)
(
√
r|g(x)|) ds

≤ diamG

2ε1

�

Γ+∩A(k)

g2(x) ds+
ε1
2

�

Γ+∩A(k)

(u(x)− k)2

r
ds

≤ diamG

2ε1

�

Γ+∩A(k)

g2(x) ds+
ε1
2

�

Γ+∩A(k)

u(x)(u(x)− k)
r

ds

for all ε1 > 0. In the same way
�

Γ−∩A(k)

|h(x)|(u(x)− k) ds ≤ diamG

2ε2

�

Γ−∩A(k)

h2(x) ds

+
ε2
2

�

Γ−∩A(k)

u(x)(u(x)− k)
r

ds

for all ε2 > 0. Then if we choose ε1 = β+ and ε2 = β−, inequality (3.4) takes
the form

(3.5)
ν

2

�

A(k)

|∇u|2 dx+
1
2
β+

�

Γ+∩A(k)

u(x)(u(x)− k)
r

ds

+
1
2
β−

�

Γ−∩A(k)

u(x)(u(x)− k)
r

ds

≤ ε

2

�

A(k)

(u(x)− k)2

r2
dx

+
(diamG)2

2ε

�

A(k)

f2(x) dx+ c1
�

Γ+∩A(k)

g2(x) ds+ c2
�

Γ−∩A(k)

h2(x) ds

for all ε > 0, with c1 = diamG/(2β+), c2 = diamG/(2β−).
Now we estimate the first integral on the right of (3.5). First we use the

representation G = Gd0 ∪ Gd. The integral over Gd0 is estimated by (2.14)
with α = 2; to estimate the integral over Gd we use the Friedrichs inequality
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(see [9, (30.5)])

(3.6)
�

G

η2(x) dx ≤ K1

{ �

G

|∇η|2 dx+
�

∂G

η2(x) ds
}
,

whereK1 depends on measG and diamG. Then from (3.5) and the definition
of η we obtain

ν

2

�

A(k)

|∇η|2 dx+
β+

2

�

Γ+∩A(k)

1
r
η2(x) ds+

β−
2

�

Γ−∩A(k)

1
r
η2(x) ds

≤ ε

2λ2

{ �

A(k)

|∇η|2 dx+B
�

A(k)∩Γ+

1
r
η2(x) ds+ β−

�

A(k)∩Γ−

1
r
η2(x) ds

}

+
ε

2
K1d

−2

{ �

A(k)

|∇η|2 dx+ diamG
�

∂G∩A(k)

1
r
η2(x) ds

}

+
(diamG)2

2ε

�

A(k)

f2(x) dx+ c1
�

Γ+∩A(k)

g2(x) ds+ c2
�

Γ−∩A(k)

h2(x) ds

for all ε > 0, where B, λ are defined according to Proposition 2.12. Now, if
we choose

0 < ε ≤ min
{

ν

2( 1
λ2 +K1d−2)

;
1
2
· β+

B
λ2 + K1 diamG

d2

;
1
2
· β−
β−
λ2 + K1 diamG

d2

}
,

then we get

(3.7)
�

A(k)

|∇η|2 dx+
�

∂G∩A(k)

η2(x)
r

ds

≤ C
{ �

A(k)

f2(x) dx+
�

Γ+∩A(k)

g2(x) ds+
�

Γ−∩A(k)

h2(x) ds
}
,

where C depends only on λ, b, β+, β−, ω0, d, ν,measG and diamG. Further,
because

	
∂G η

2(x) ds ≤ diamG ·
	
∂G (η2(x)/r) ds, from (3.6) and (3.7) it

follows that

(3.8)
�

A(k)

(|∇η|2 + η2(x)) dx

≤ C̃
{ �

A(k)

f2(x) dx+
�

Γ+∩A(k)

g2(x) ds+
�

Γ−∩A(k)

h2(x) ds
}
.

By the Sobolev embedding theorem (see [6, §2, Ch. II] or [11])( �

A(k)

η
2p
p−2 dx

) p−2
p +

( �

∂G∩A(k)

ηj
∗
ds
)2/j∗

≤ c̃
�

A(k)

(|∇η|2 + η2(x)) dx
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for all j∗ > 1 and p > 2; from (3.8) we obtain

(3.9)
( �

A(k)

η
2p
p−2 dx

) p−2
p +

( �

∂G∩A(k)

ηj
∗
ds
)2/j∗

≤ c̃C̃
{ �

A(k)

f2(x) dx

+
�

Γ+∩A(k)

g2(x) ds+
�

Γ−∩A(k)

h2(x) ds
}
, ∀j∗ > 1, p > 2.

Let now l > k > k0. By the definitions of η(x) and A(k) we have
�

A(k)

η
2p
p−2 dx ≥

�

A(l)

η
2p
p−2 dx ≥ meas[A(l)] · (l − k)

2p
p−2 ,

�

∂G∩A(k)

ηj
∗
ds ≥

�

∂G∩A(l)

ηj
∗
ds ≥ meas[∂G ∩A(l)] · (l − k)j

∗
.

Further by the Hölder inequality we get
�

A(k)

f2(x) dx ≤ (meas[A(k)])1−1/t · ‖f2‖t,A(k), t > 1,

�

Γ+∩A(k)

g2(x) dx ≤ (meas[Γ+ ∩A(k)])1/j · ‖g2‖j′,Γ+∩A(k),

�

Γ−∩A(k)

h2(x) dx ≤ (meas[Γ− ∩A(k)])1/j · ‖h2‖j′,Γ−∩A(k),

for all j, j′ > 1 (with 1/j + 1/j′ = 1). From these inequalities and (3.9) we
get

(3.10) (meas[A(l)])
p−2
p · (l − k)2 + (meas[∂G ∩A(l)])2/j

∗ · (l − k)2

≤ c̃C̃{‖f2‖t,A(k) · (meas[A(k)])1−1/t + (meas[Γ+ ∩A(k)])1/j

× ‖g2‖j′,Γ+∩A(k) + (meas[Γ− ∩A(k)])1/j · ‖h2‖j′,Γ−∩A(k)}, ∀p > 2.

Now, by the Jensen inequality ([4, Theorem 65]), from (3.10) it follows that

(3.11) meas[A(l)] + (meas[∂G ∩A(l)])
2p

j∗(p−2)

≤ C̃

(l − k)
2p
p−2

{(measA(k))
(t−1)p
t(p−2)

+ (meas[Γ+ ∩A(k)])
p

j(p−2) + (meas[Γ− ∩A(k)])
p

j(p−2) }, ∀p > 2,

where C̃ depends only on b, β+, β−, ω0, ν, t, p, ‖f2‖t,G, ‖g2‖j′,Γ+ , ‖h2‖Lj′ (Γ−),
λ, d, measG and diamG. Now we set

ψ(k) = meas[A(k)] + (meas[A(k) ∩ ∂G])
2p

j∗(p−2) .
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Then from (3.11) we obtain

(3.12) ψ(l) ≤ C̃ 1

(l − k)
2p
p−2

(
[ψ(k)]

(t−1)p
t(p−2) + [ψ(k)]

j∗
2j
)

for all l > k ≥ k0, p > 2 and t > 1. Choosing j∗ > 2j, we observe that
min

(p(t−1)
t(p−2) ,

j∗

2j

)
> 1, since t > p/2 by assumption. Then from (3.12) we get

ψ(l) ≤ C

(l − k)
2p
p−2

[ψ(k)]β, β > 1, l > k ≥ k0, p > 2,

and therefore, by the Stampacchia Lemma (see Lemma 3.11 of [8]), ψ(k0 +δ)
= 0 with δ depending only on the quantities in the formulation of Theo-
rem 3.1. This means that u(x) < k0 + δ for almost all x ∈ G.

Similarly, we derive u(x) > −k0−δ if we set A(k) = {x ∈ G : u(x) < −k}
for all k ≥ k0 > 0 and choose in (II) η(x) = min(u(x)+k, 0) as a test function.
Thus, Theorem 3.1 is proved.

4. Local estimate at the boundary

Theorem 4.1. Let u be a weak solution of problem (L) and let assump-
tions (a)–(d) be satisfied. Suppose, in addition, that either

(i) 0 < b < 1
ω0

(ν +
√
ν2 + 2νω0β+), or

(ii) u(x) ≥ 0 for x ∈ G, or
(iii) β+u

2(x)|Γ+ + β−u
2(x)|Γ− + bu(x)|Γ+ · u(γ(x))|Γ+ = 0.

Then

(4.1) sup
κ∈Gκ%

0

|u(x)| ≤ C

(1− κ)en/2 {%−1‖u‖2,G%0 + %2(1−2/p)‖f‖p/2,G%0
+ %(‖g‖∞,Γ %0+ + ‖h‖∞,Γ %0−)}

for any ñ > 2, p > ñ, κ ∈ (0, 1) and % ∈ (0, d), where C is a constant
depending on µ, ν, p, ‖

∑2
i=1 |bi(·)|2‖p/2,G and the domain G.

Proof. We apply the Moser iteration method. We consider the integral
identity (II) and make the coordinate transformation x = %x′. Let G′ be the
image of G, Γ ′+ the image of Γ+, and Γ ′− the image of Γ−. Then dx = %2dx′,
ds = %ds′. In addition, we denote

v(x′) = u(%x′), v(γ(x′)) = u(γ(%x′)), η(x′) = η(%x′),

F(x′) = %2f(%x′), G(x′) = %g(%x′), H(x′) = %h(%x′).

Then from (II) we get
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(II)′
�

G′

{aij(%x′)vx′jηx′i − %b
i(%x′)vx′iη(x′)− %2c(%x′)v(x′)η(x′)} dx′

+
�

Γ ′+

(
β+

|x′|
v(x′) +

b

|x′|
v(γ(x′))

)
η(x′) ds′ + β−

�

Γ ′−

v(x′)
|x′|

η(x′) ds′

=
�

Γ ′+

G(x′)η(x′) ds′ +
�

Γ ′−

H(x′)η(x′) ds′ −
�

G′

F(x′)η(x′) dx′

for all η ∈ C0(G′) ∩ W̊ 1
0 (G′). We define

(4.2) m = m(%) =
1
ν

(‖F‖p/2,G1
0

+ ‖G‖∞,Γ 1
0+

+ ‖H‖∞,Γ 1
0−

)

and

(4.3) v(x′) = |v(x′)|+m.

We observe that

(4.4)

|F(x′)|v(x′) =
1
m
|F(x′)| ·mv(x′) =

1
m
|F(x′)|(v(x′)− |v(x′)|) · v(x′)

=
1
m
|F(x′)| · v2(x′)− 1

m
|F(x′)| · |v(x′)|v(x′)

≤ 1
m
|F(x′)| · v2(x′);

|H(x′)|v(x′) ≤ 1
m
|H(x′)| · v2(x′); |G(x′)|v(x′) ≤ 1

m
|G(x′)| · v2(x′)

in the same way. As a test function in (II)′ we choose η(x′) = ζ2(|x′|)v(x′),
where ζ(| · |) ∈ C∞0 ([0, 1]) is a nonnegative function to be further specified.
By the chain and product rules, η is a valid test function in (II)′ and also
ηx′i = vx′iζ

2(|x′|) + 2ζ(|x′|)ζx′iv(x′), so that by substitution into (II)′, in view
of c(%x′) ≤ 0 in G′ and v ≤ |v| ≤ v, we obtain

�

G1
0

aij(%x′)vx′ivx′jζ
2(|x′|) dx′ + β+

�

Γ 1
0+

v2(x′)
|x′|

ζ2(|x′|) ds′

+ b
�

Γ 1
0+

v(x′)
|x′|

v(γ(x′))ζ2(|x′|) ds′ + β−
�

Γ 1
0−

v2(x′)
|x′|

ζ2(|x′|) ds′

≤ %
�

G1
0

|bi(%x′)vxi |v(x′)ζ2(|x′|) dx′ + 2
�

G1
0

|aij(%x′)ζx′ivx′j |v(x′)ζ(|x′|) dx′

+
�

Γ 1
0−

H(x′)v(x′)ζ2(|x′|) ds′ +
�

Γ 1
0+

G(x′)v(x′)ζ2 ds′ +
�

G1
0

F(x′)v(x′)ζ2 dx′.

By ellipticity and (4.4) it follows that
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(4.5)
�

G1
0

ν|∇′v|2ζ2(|x′|) dx′ + β+

�

Γ 1
0+

v2(x′)
|x′|

ζ2(|x′|) ds′

+ b
�

Γ 1
0+

v(x′)
|x′|

v(γ(x′))ζ2(|x′|) ds′ + β−
�

Γ 1
0−

v2(x′)
|x′|

ζ2(|x′|) ds′

≤
�

G1
0

%
( 2∑
i=1

|bi(%x′)|2
)1/2
|∇′v|v(x′)ζ2(|x′|) dx′

+ 2µ
�

G1
0

|∇′v| · |∇′ζ|v(x′)ζ(|x′|) dx′ + 1
m
‖G‖∞,Γ 1

0+

�

Γ 1
0+

v2(x′)ζ2(|x′|) ds′

+
1
m
‖H‖∞,Γ 1

0−

�

Γ 1
0−

v2(x′)ζ2(|x′|) ds′ + 1
m

�

G1
0

|F(x′)|v2(x′)ζ2(|x′|) dx′.

It is obvious that if assumption (ii) or (iii) is satisfied, then

β+

�

Γ 1
0+

v2(x′)
|x′|

ζ2(|x′|) ds′ + β−
�

Γ 1
0−

v2(x′)
|x′|

ζ2(|x′|) ds′

+ b
�

Γ 1
0+

v(x′)
|x′|

v(γ(x′))ζ2(|x′|) ds′ ≥ 0.

We now estimate the last integral on the left hand side of (4.5) in case (i).
Because v(x′)|Γ 1

0+
= v(r′, ω0/2) and, by Remark 1.1, v(γ(x′))|Γ 1

0+
= v(r′, 0),

using the representation v(r′, 0) = v(r′, ω0/2)−
	ω0/2
0

∂v(r′,ω)
∂ω dω we obtain

(4.6)
�

Γ 1
0+

v(x′)
|x′|

v(γ(x′))ζ2(|x′|) ds′ =
1�

0

v2(r′, ω0/2)
r′

ζ2(r′) dr′

−
1�

0

v(r′, ω0/2)
r′

ζ2(r′)
( ω0/2�

0

∂v(r′, ω)
∂ω

dω

)
dr′.

Next, by the Cauchy inequality,

(4.7)
1�

0

v(r′, ω0/2)
r′

ζ2(r′)
( ω0/2�

0

∂v(r′, ω)
∂ω

dω

)
dr′

≤
�

G1
0

ζ2(r′)
r′2

∣∣∣∣∂v(r′, ω)
∂ω

∣∣∣∣|v(r′, ω0/2)| dx′

≤ ε

2

�

G1
0

ζ2(r′)
r′2

∣∣∣∣∂v(r′, ω)
∂ω

∣∣∣∣2 dx′ + 1
2ε

�

G1
0

v2(r′, ω0/2) dx′
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≤ ε

2

�

G1
0

|∇′v|2ζ2(|x′|) dx′ + 1
2ε

1�

0

ζ2(r′)
r′

ω0/2�

−ω0/2

v2(r′, ω0/2) dω dr′

≤ ε

2

�

G1
0

|∇′v|2ζ2(|x′|) dx′ + ω0

2ε

�

Γ 1
0+

v2(x′)
|x′|

ζ2(|x′|) ds′, ∀ε > 0.

Choosing ε = ν/b in (4.7), from (4.5)–(4.7) it follows that

1
2
ν

�

G1
0

|∇′v|2ζ2(|x′|) dx′ +
(
β+ + b− b2ω0

2ν

) �

Γ 1
0+

v2(x′)
|x′|

ζ2(|x′|) ds′

+ β−
�

Γ 1
0−

v2(x′)
|x′|

ζ2(|x′|) ds′

≤
�

G1
0

%
( 2∑
i=1

|bi(%x′)|2
)1/2
|∇′v|v(x′)ζ2(|x′|) dx′

+ 2µ
�

G1
0

|∇′v| · |∇′ζ|v(x′)ζ(|x′|) dx′ + 1
m
‖G‖∞,Γ 1

0+

�

Γ 1
0+

v2(x′)ζ2(|x′|) ds′

+
1
m
‖H‖∞,Γ 1

0−

�

Γ 1
0−

v2(x′)ζ2(|x′|) ds′ + 1
m

�

G1
0

|F(x′)|v2(x′)ζ2(|x′|) dx′.

By (i), we can easily verify that β+ + b − b2ω0
2ν > . Therefore, in any case,

from (4.5) we get

(4.8)
1
2
ν

�

G1
0

|∇′v|2ζ2(|x′|) dx′

≤
�

G1
0

%
( 2∑
i=1

|bi(%x′)|2
)1/2
|∇′v|v(x′)ζ2(|x′|) dx′

+ 2µ
�

G1
0

|∇′v| · |∇′ζ|v(x′)ζ(|x′|) dx′ + 1
m
‖G‖∞,Γ 1

0+

�

Γ 1
0+

v2(x′)ζ2(|x′|) ds′

+
1
m
‖H‖∞,Γ 1

0−

�

Γ 1
0−

v2(x′)ζ2(|x′|) ds′ + 1
m

�

G1
0

|F(x′)|v2(x′)ζ2(|x′|) dx′.

We estimate every term by the Cauchy inequality for any ε > 0:

2µ|∇′v| |∇′ζ|ζ(|x′|)v(x′) = 2(|∇′v| · ζ(|x′|))(µv(x′)|∇′ζ|)

≤ ε|∇′v|2ζ2(|x′|) +
µ2

ε
v2(x′)|∇′ζ|2;
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%
( 2∑
i=1

|bi(%x′)|2
)1/2
|∇′v|v(x′)ζ2(|x′|)

= ζ2(|x′|)
(
%v(x′)

( 2∑
i=1

|bi(%x′)|2
)1/2)

|∇′v|

≤ %2

2ε
v2(x′)ζ2(|x′|) ·

( 2∑
i=1

|bi(%x′)|2
)

+
ε

2
|∇′v|2ζ2(|x′|).

To estimate the boundary integrals on the right in (4.8) we apply (2.21) to
get

(4.9)
1
2
ν

�

G1
0

|∇′v|2ζ2(|x′|) dx′

≤ 3ε
2

�

G1
0

|∇′v|2ζ2(|x′|) dx′ + µ2

ε

�

G1
0

|∇′ζ|2v2(x′) dx′

+
%2

2ε

�

G1
0

( 2∑
i=1

|bi(%x′)|2
)
v2(x′)ζ2(|x′|) dx′

+
1
m

�

G1
0

|F(|x′|)|v2(x′)ζ2(|x′|) dx′

+
1
m

(‖G‖∞,Γ 1
0−

+ ‖H‖∞,Γ 1
0+

)
�

G1
0

(
δ|∇′(ζv)|2 +

1
δ
c0v

2(x′)ζ2(|x′|)
)
dx′

for all ε, δ > 0. From
(4.10) |∇′(ζv)|2 ≤ 2(ζ2|∇′v|2 + v2(x′)|∇′ζ|2), |∇′v|2 = |∇′v|2

it follows that
(4.11) |∇′(ζv)|2 ≤ 2|∇′v|2ζ2 + 2v2(x′)|∇′ζ|2.
Now, by (4.9)–(4.11), choosing ε = ν/6 in (4.9) and using (4.2), we find that
ν

4

�

G1
0

|∇′v|2ζ2(|x′|) dx′ ≤ 6µ2

ν

�

G1
0

|∇′ζ|2v2(x′) dx′

+
3%2

ν

�

G1
0

( 2∑
i=1

|bi(%x′)|2
)
v2(x′)ζ2(|x′|) dx′ + 2δν

�

G1
0

|∇′v|2ζ2(|x′|) dx′

+ 2δν
�

G1
0

v2(x′)|∇′ζ|2 dx′ + c0ν

δ

�

G1
0

v2(x′)ζ2(|x′|) dx′

+
1
m

�

G1
0

|F(x′)|v2(x′)ζ2(|x′|) dx′, ∀δ > 0.
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Now we choose δ = 1/16. Then by (4.10), the last estimate yields
�

G1
0

|∇′v|2ζ2(|x′|) dx′ ≤ 48µ2

ν2

�

G1
0

|∇′ζ|2v2(x′) dx′

+
24%2

ν2

�

G1
0

( 2∑
i=1

|bi(%x′)|2
)
v2(x′)ζ2(|x′|) dx′ +

�

G1
0

v2(x′)|∇′ζ|2 dx′

+ 128c0
�

G1
0

v2(x′)ζ2(|x′|) dx′ + 8
mν

�

G1
0

|F(x′)|v2(x′)ζ2(|x′|) dx′.

The above inequality can be rewritten as

(4.12)
�

G1
0

|∇′v|2ζ2(|x′|) dx′ ≤ C1

�

G1
0

(|∇′ζ|2 + ζ2(|x′|))v2(x′) dx′

+ C2

�

G1
0

(
%2

2∑
i=1

|bi(%x′)|2 +
|F(x′)|
m

)
v2(x′)ζ2(|x′|) dx′,

where the constants C1, C2 depend only on c0, µ, ν. The desired itera-
tion process can now be developed from (4.12). By the Sobolev imbedding
theorem (see [6, Ch. II, §2]) we have

(4.13) ‖ζv‖22enen−2
,G1

0
≤ C∗

�

G1
0

((|∇′ζ|2 + ζ2)v2(x′) + ζ2|∇′v|2) dx′, ñ > 2,

where the constant C∗ depends only on ñ and the domain G. The Hölder
inequality yields

(4.14)
�

G1
0

(
%2

2∑
i=1

|bi(%x′)|2 +
|F(x′)|
m

)
· v2(x′)ζ2(x′) dx′

≤
∥∥∥∥%2

2∑
i=1

|bi(% ·)|2 +
|F(·)|
m

∥∥∥∥
p/2,G1

0

‖ζv‖22p
p−2

,G1
0
, p > 2,

and from (4.12)–(4.14) we get

(4.15) ‖ζv‖22enen−2
,G1

0
≤ C3

�

G1
0

(|∇′ζ|2 + ζ2(|x′|))v2(x′) dx′

+ C4

∥∥∥∥%2
2∑
i=1

|bi(% ·)|2 +
|F(·)|
m

∥∥∥∥
p/2,G1

0

· ‖ζv‖22p
p−2

,G1
0
, p > ñ > 2.

By the interpolation inequality for Lp-norms,

‖ζv‖ 2p
p−2

,G1
0
≤ ε‖ζv‖ 2enen−2

,G1
0

+ c̃ε
enen−p ‖ζv‖2,G1

0
, p > ñ > 2, ∀ε > 0,
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where c̃ = p−en
p

( en
p

) en
p−en , and by (4.2) from (4.15) it follows that

(4.16) ‖ζv‖ 2enen−2
,G1

0
≤
√
C3 · ‖(ζ + |∇′ζ|)v‖2,G1

0

+
√
C4

(∥∥∥%2
2∑
i=1

|bi(% ·)|2
∥∥∥
p/2,G1

0

+ ν
)1/2

(ε‖ζv‖ 2enen−2
,G1

0
+ c̃ε

enen−p ‖ζv‖2,G1
0
)

for all p > ñ and ε > 0. Choosing

ε =
1

2
√
C4

(∥∥∥%2
2∑
i=1

|bi(% ·)|2
∥∥∥
p/2,G1

0

+ ν
)−1/2

in (4.16) we obtain

(4.17) ‖ζv‖ 2enen−2
,G1

0
≤ C‖(ζ + |∇′ζ|)v‖2,G1

0
, ñ > 2,

where C depends only on c0, µ, ν, p, diamG, ‖
∑2

i=1 |bi(·)|2‖p/2,G. This
inequality can now be iterated to yield the desired estimate.

For κ ∈ (0, 1) we define G′(j) ≡ G
κ+(1−κ)2−j

0 , j = 0, 1, 2 . . . . It is easy
to verify that Gκ

0 ≡ G′(∞) ⊂ · · · ⊂ G′(j+1) ⊂ G′j ⊂ · · · ⊂ G′(0) ≡ G1
0.

Now we consider the sequence of cut-off functions ζj ∈ C∞(G′(j)) such that
0 ≤ ζj ≤ 1 in G′(j), ζj ≡ 1 in G′(j+1), and ζj(x

′) ≡ 0 for |x′| > κ +2−j(1−κ).
Hence

|∇′ζj(x′)| ≤
2j+1

1− κ
for κ + 2−j−1(1− κ) < |x′| < κ + 2−j(1− κ).

We also define tj = 2
( enen−2

)j , j = 0, 1, . . . . Now we rewrite (4.17) replacing
ζ(|x′|) by ζj(x′) to obtain

(4.18) ‖v‖ 2enen−2
,G′

(j+1)
≤ C 2j+2

1− κ
‖v‖2,G′

(j)
.

Putting w = |v|(
enen−2

)j , by (4.18) and the definition of tj , we get

‖v‖tj+1,G′(j+1)
=
( �

G(j+1)′

w
2enen−2 dx′

) en−2
2en ·( en−2en )j

≤
(
C

2j+2

1− κ

)( en−2en )j

‖w‖(
en−2en )j

2,G′
(j)

=
(

C

1− κ

)2/tj

4
j+2
tj ‖v‖tj ,G′(j) .

After iteration, we find that

(4.19) ‖v‖tj+1,G′(j+1)
≤
{

C

1− κ

}2
P∞
j=0

1
tj

· 4
P∞
j=0

j+2
tj ‖v‖2,G1

0
.

Notice that the series
∑∞

j=0 (j + 2)/tj is convergent by the d’Alembert ratio
test, and

∑∞
j=0 1/tj = ñ/4 as a geometric series. Therefore from (4.19) we
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get

‖v‖tj+1,G′(j+1)
≤ C

(1− κ)en/2 ‖v‖2,G1
0
.

Consequently, letting j →∞, we have

sup
x′∈Gκ

0

|v(x′)| ≤ C

(1− κ)en/2 ‖v‖2,G1
0
.

Hence, by the definitions (4.3) and (4.2), we get

sup
x′∈Gκ

0

|v(x′)| ≤ C

(1− κ)en/2 (‖v‖2,G1
0

+ ‖F‖p/2,G1
0

+ ‖G‖∞,Γ 1
0+

+ ‖H‖∞,Γ 1
0−

).

Returning to the variables x and u we obtain the required estimate (4.1).

5. Global integral estimate. Now we shall obtain a global estimate
for the weighted Dirichlet integral.

Theorem 5.1. Let u be a weak solution of problem (L), λ2 be the smallest
positive eigenvalue of problem (EVP) and let assumptions (a)–(d), (f) be
satisfied. Suppose, in addition, that 0 < b < (1/ω0)(ν +

√
ν2 + 2νω0β+).

Then

(5.1)
�

G

|∇u|2 dx+
�

G

u2(x)
r2

dx+
�

∂G

u2(x)
r

ds

≤ C
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
,

where the constant C > 0 depends only on b, ω0, β±, ‖
∑2

i=1 |bi(·)|2‖Lp/2(G),
p, ν and the domain G.

Proof. Setting η(x) = u(x) in (II) and using the Hölder inequality, by
assumptions (a), (c) we get

(5.2) ν
�

G

|∇u|2 dx+
�

Γ+

(
β+

u2(x)
r

+ b
u(x)
r

u(γ(x))
)
ds+ β−

�

Γ−

u2(x)
r

ds

≤
�

G

√√√√ 2∑
i=1

|bi(x)|2 |u| |∇u| dx

+
�

Γ+

|u| |g(x)| ds+
�

Γ−

|u| |h(x)| ds+
�

G

|u| |f(x)| dx.

Now, by assumption (b), the Cauchy inequality with ε = ν/2 and the Hölder
inequality with q = p/2, q′ = p/(p− 2), p > 2 we have
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�

G

√√√√ 2∑
i=1

|bi(x)|2 |u| |∇u| dx =
�

G

|∇u|
(√√√√ 2∑

i=1

|bi(x)|2 |u|
)
dx

≤ ν

4

�

G

|∇u|2 dx+
1
ν

�

G

2∑
i=1

|bi(x)|2u2 dx

≤ ν

4

�

G

|∇u|2 dx+
1
ν

( �

G

( 2∑
i=1

|bi(x)|2
)p/2

dx
)2/p

· ‖u‖22p
p−2

,G
.

Further, we apply the Sobolev inequality
‖u‖22p

p−2
,G
≤ δ‖∇u‖22,G + c(δ, p,G)‖u‖22,G, p > 2, ∀δ > 0

(see for example [6, Ch. II, §2, (2.19)]); hence

(5.3)
�

G

√√√√ 2∑
i=1

|bi(x)|2 |u| |∇u| dx ≤ ν

4

�

G

|∇u|2 dx+
1
ν

∥∥∥ 2∑
i=1

|bi(·)|2
∥∥∥
p/2,G

×
�

G

(δ|∇u|2 + c(δ, p,G)u2(x)) dx, ∀δ > 0.

We choose δ = ν2/(8‖
∑2

i=1 |bi(·)|2‖p/2,G). As a result from (5.2)–(5.3) we
obtain

(5.4)
5ν
8

�

G

|∇u|2 dx+ β+

�

Γ+

u2(x)
r

ds

+ b
�

Γ+

u(x)
r

u(γ(x)) ds+ β−
�

Γ−

u2(x)
r

ds

≤ C
�

G

u2(x) dx+
�

Γ+

|u| |g(x)| ds+
�

Γ−

|u| |h(x)| ds+
�

G

|u| |f(x)| dx,

where C = C(p, ν, ‖
∑2

i=1 |bi(·)|2‖p/2,G, G). Now we consider Γ+ = Γ d0+∪Γd+
and estimate the third integral on the left hand side of (5.4). We estimate
the integral over Γ d0+ by Lemma 2.19 with α = 2 and ε = ν/b. And, by
assumption (f), we estimate the integral over Γd+ as follows:

b
�

Γd+

u(x)
r

u(γ(x)) ds ≤ bmeasΓ+

d
|u|2

0,G
.

Thus from (5.4) we get

(5.5)
ν

8

�

G

|∇u|2 dx+
(
β+ −

b2ω0

2ν
+ b

) �

Γ+

u2(x)
r

ds+ β−
�

Γ−

u2(x)
r

ds

≤ C
{
|u|2

0,G
+

�

Γ+

|u| |g(x)| ds+
�

Γ−

|u| |h(x)| ds+
�

G

|u| |f(x)| dx
}
.
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From 0 < b < 1
ω0

(ν+
√
ν2 + 2νω0β+), we can easily verify that β+− b2ω0

2ν +b

> 0. Now, by the Cauchy inequality with ε = β+− b2ω0
2ν +b and assumption (c)

we obtain
�

Γ+

|u| |g(x)| ds =
�

Γ+

(
|u|√
r

)
(
√
r |g(x)|) ds

≤ 1
2

(
β+ −

b2ω0

2ν
+ b

) �

Γ+

u2(x)
r

ds+
diamG

2(β+ − b2ω0
2ν + b)

�

Γ+

g2(x) ds;

in the same way we have
�

Γ−

|u| |h(x)| ds ≤ 1
2
β−

�

Γ−

u2(x)
r

ds+
diamG

2β−

�

Γ−

h2(x) ds;

�

G

|u| |f(x)| dx ≤ 1
2

�

G

|u|2 dx+
1
2

�

G

|f |2 dx.

Hence and from (5.5) we get the inequality

(5.6)
�

G

|∇u|2 dx+
�

∂G

u2(x)
r

ds

≤ C
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
.

Finally, by the Hardy–Friedrichs–Wirtinger inequality (2.14) with α = 2, we
get the desired estimate (5.1).

Theorem 5.2. Let u ≥ 0 be a weak solution of problem (L), let λ ∈
(π/ω0, 2π/ω0) be the smallest positive root of (2.10) and let assumptions
(a)–(d), (f) be satisfied. Suppose, in addition, that β+ = β− = β and b > b∗,
where b∗ is defined by (2.9). Then

(5.7)
�

G

|∇u|2 dx+
�

G

u2(x)
r2

dx+
�

∂G

u2(x)
r

ds

≤ C
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
,

where the constant C > 0 depends only on b, ω0, β, ‖
∑2

i=1 |bi(·)|2‖Lp/2(G),
p, ν and the domain G.

Proof. As in Theorem 5.1, we get (5.4) with β+ = β− = β. By assump-
tion u(x) ≥ 0 and estimating integrals on the right (5.4), by the Cauchy
inequality with ε = 1, we obtain (5.6). Next, by the Hardy–Friedrichs–
Wirtinger inequality (2.15) with α = 2, we get (5.7).
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Theorem 5.3. Let u be a weak solution of problem (L) and let assump-
tions (a)–(d), (f) be satisfied. Suppose, in addition, that b = π

ω0
· β++β−

β−
and

β+u
2(x)|Γ+ + β−u

2(x)|Γ− + bu(x)|Γ+ · u(γ(x))|Γ+ = 0, u2(x)|Γ+ = u2(x)|Γ− .
Then

(5.8)
�

G

|∇u|2 dx+
�

G

u2(x)
r2

dx

≤ C
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
,

where the constant C > 0 depends only on b, ω0, β±, ‖
∑2

i=1 |bi(·)|2‖Lp/2(G),
p, ν and the domain G.

Proof. As in Theorem 5.1, we get (5.4). Further, by β+u
2(x)|Γ+ +

β−u
2(x)|Γ− + bu(x)|Γ+ · u(γ(x))|Γ+ = 0 and estimating the integrals on the

right of (5.4) using the Cauchy inequality with ε = 1 we obtain

(5.9)
�

G

|∇u|2 dx ≤ C
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
.

Next, by u2(x)|Γ+ = u2(x)|Γ− and the Hardy–Friedrichs–Wirtinger inequal-
ity (2.16) with α = 2, we get (5.8).

6. Local integral weighted estimates

Theorem 6.1. Let u be a weak solution of problem (L), let λ = λ∗, where
λ∗ is defined in Lemma 2.6, and let B be defined by (2.6). Let assumptions
(a)–(f) be satisfied with A(r) Dini-continuous at zero. Suppose, in addition,
that (1.1) is satisfied. Then there are d ∈ (0, 1/e) and a constant C > 0
depending only on s, λ, ν, b, β+, β−, d, the domain G and

	1/e
0 (A(r)/r) dr

such that for a.e. % ∈ (0, d),

�

G%0

(|∇u|2 +
u2(x)
r2

) dx+B
�

Γ %0+

u2(x)
r

ds+ β−
�

Γ %0−

u2(x)
r

ds

≤ C
(
|u|2

0,G
+ ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0 + ‖f‖22,G + ‖g‖2∞,Γ+

+ ‖h‖2∞,Γ−

)

×


%2λk if s > λk,
%2λk ln2(1/%) if s = λk,
%2s if s < λk,

where k is defined by (1.3).
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Proof. Setting η(x) = u(x) in (II)loc, we obtain

(6.1)
�

G%0

|∇u|2 dx+ β+

�

Γ %0+

u2(x)
r

ds+ β−
�

Γ %0−

u2(x)
r

ds

= %
�

Ω

(
u(x)

∂u

∂r

)∣∣∣∣
r=%

dω +
�

Ω%

(aij(x)− aij(0))u(x)uxj cos(r, xi) dΩ%

+
�

Γ %0+

u(x)g(x) ds− b
�

Γ %0+

u(x)
r

u(γ(x)) ds+
�

Γ %0−

u(x)h(x) ds

+
�

G%0

{
−(aij(x)−aij(0))uxiuxj+b

i(x)u(x)uxi+c(x)u2(x)−u(x)f(x)
}
dx.

We estimate the integral
	
Γ %0+

(u(x)/r)u(γ(x)) ds by Lemma 2.19 with α = 2.
Thus we get

(6.2)
(

1− bε

2

) �

G%0

|∇u|2 dx

+B

(
β+ + b− bω0

2ε

B

) �

Γ %0+

u2(x)
r

ds+ β−
�

Γ %0−

u2(x)
r

ds

≤ %
�

Ω

(
u(x)

∂u

∂r

)∣∣∣∣
r=%

dω +
�

Ω%

(aij(x)− aij(0))u(x)uxj cos(r, xi)dΩ%

+
�

Γ %0+

u(x)g(x) ds+
�

Γ %0−

u(x)h(x) ds

+
�

G%0

{−(aij(x)−aij(0))uxiuxj+b
i(x)u(x)uxi+c(x)u2(x)−u(x)f(x)} dx.

Now, if we choose

ε =

√
(β+ + b−B)2 +Bb2ω0 − β+ − b+B

Bb

in (6.2), then since ν ≤ 1 we can verify that

1− bε

2
=
β+ + b− bω0

2ε

B
> 0 for 0 < b <

1
ω0

(ν +
√
ν2 + 2νω0β+).

From definitions (2.17), (1.3) we obtain

(6.3) kU(%) ≤ %
�

Ω

(
u(x)

∂u

∂r

)∣∣∣∣
r=%

dΩ

+
�

Ω%

(aij(x)− aij(0))u(x)uxj cos(r, xi) dΩ%
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+
�

G%0

{−(aij(x)− aij(0))uxiuxj + bi(x)u(x)uxi + c(x)u2(x)} dx

−
�

G%0

u(x)f(x) dx+
�

Γ %0+

u(x)g(x) ds+
�

Γ %0−

u(x)h(x) ds.

Now we estimate the integrals on the right hand side of (6.3). The first one is
estimated by Lemma 2.16; and the next, by assumption (b) and the Cauchy
inequality:

(6.4)

�

Ω%

(aij(x)− aij(0))u(x)uxj cos(r, xi) dΩ% ≤ %A(%)
�

Ω

|u(x)| |∇u| dω,
�

G%0

{(aij(x)− aij(0))uxiuxj + bi(x)uxiu(x) + c(x)u2(x)} dx

≤ A(%)
�

G%0

{
|∇u|2 +

u2(x)
r2

}
dx.

Thus, from (6.3)–(6.4) it follows that

(6.5) kU(%) ≤ %

2λ
U ′(%) + %A(%)

�

Ω

|u(x)| |∇u| dω

+A(%)
�

G%0

(
|∇u|2 +

u2(x)
r2

)
dx

+
�

Γ %0+

|u(x)| |g(x)| ds+
�

Γ %0−

|u(x)| |h(x)| ds+
�

G%0

|u(x)| |f(x)| dx.

Further we bound the integrals on the right of (6.5). First, applying the
Cauchy and Friedrichs–Wirtinger inequalities (see (2.11)) with the use of
(2.18), we have

(6.6) A(%)
�

Ω

%|u(x)| |∇u| dω ≤ 1
2
A(%)

�

Ω

(%2|∇u|2 + |u(x)|2) dω

≤ 1
2
A(%)

�

Ω

%2

[∣∣∣∣∂u∂r
∣∣∣∣2 +

1
%2

∣∣∣∣∂u∂ω
∣∣∣∣2]∣∣∣∣

r=%

dω

+
1
2
A(%)

1
λ2

{ �

Ω

∣∣∣∣∂u∂ω
∣∣∣∣2 dω +Bu2

(
%,
ω0

2

)
+ β−u

2

(
%,−ω0

2

)}
≤ 1

2
%A(%)

(
1 +

1
λ2

){ �

Ω

[
%

∣∣∣∣∂u∂r
∣∣∣∣2 +

1
%

∣∣∣∣∂u∂ω
∣∣∣∣2]∣∣∣∣

r=%

dω

+B
u2(%, ω0/2)

%
+ β−

u2(%,−ω0/2)
%

}
≤ c1(b, β±, ω0, λ)%A(%)U ′(%).
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Next, using the Cauchy and the Hardy–Friedrichs–Wirtinger inequalities (see
(2.14) for α = 2), by (2.17) we obtain

(6.7) A(%)
�

G%0

(
|∇u|2 +

|u|2

r2

)
dx

≤
(

1 +
1
λ2

)
A(%)

{ �

G%0

|∇u|2 dx+B
�

Γ %0+

u2(x)
r

ds+ β−
�

Γ %0−

u2(x)
r

ds

}
≤ c2(b, β±, ω0, λ)A(%)U(%),

and for all δ > 0 we get

(6.8)

�

Γ %0+

|u(x)| |g(x)| ds =
�

Γ %0+

(√
β+

r
|u(x)|

)(√
r

β+
|g(x)|

)
ds

≤ δβ+

2

�

Γ %0+

u2(x)
r

ds+
1

2δβ+

�

Γ %0+

rg2(x) ds;

�

Γ %0−

|u(x)| |h(x)| ds =
�

Γ %0−

(√
β−
r
|u(x)|

)(√
r

β−
|h(x)|

)
ds

≤ δβ−
2

�

Γ %0−

u2(x)
r

ds+
1

2δβ−

�

Γ %0−

rh2(x) ds;

�

G%0

|u(x)| |f(x)| dx ≤ δ

2

�

G%0

u2(x)
r2

dx+
1
2δ

�

G%0

r2f2(x) dx(6.9)

≤ δ

2
c3(b, β±, ω0, λ)U(%) +

1
2δ

�

G%0

r2f2(x) dx

by (2.14) and (2.17). Thus from (6.5)–(6.9) we get

(6.10) 〈k − c4(δ +A(%))〉U(%) ≤ %

2λ
(1 + c5A(%))U ′(%)

+
1
2δ

{ �

G%0

r2f2(x) dx+
1
β+

�

Γ %0+

rg2(x) ds+
1
β−

�

Γ %0−

rh2(x) ds
}
, ∀δ > 0.

But, by condition (e),

(6.11)
�

G%0

r2f2(x) dx+
1
β+

�

Γ %0+

rg2(x) ds+
1
β−

�

Γ %0−

rh2(x) ds

≤ 1
2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· %2s.
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Now we take into account that, by (1.3), we have 0 < k < 1 and therefore
k − c4(δ +A(%))

1 + c5A(%)
= 1− 1− k + c4(δ +A(%)) + c5A(%)

1 + c5A(%)
≥ k[1− c6δ − c7A(%)], ∀δ > 0.

Thus, from (6.10), we have the differential inequality (CP) of Subsection 2.3
with

P(%) =
2λk
%
· [1− c6δ − c7A(%)],

Q(%) =
λ

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· δ−1%2s−1, ∀δ > 0,(6.12)

U0 = C(1 +B + β−)

×
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
,

by (2.17) and (5.1). We shall consider three cases:

Case 1: s > λk. Choosing δ = %ε with ε > 0 we obtain

P(%) =
2λk
%
· [1− c6%ε − c7A(%)],

Q(%) =
λ

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· %2s−1−ε.

Since P(%) = 2λk/% − K(%)/%, where K(%) satisfies the Dini condition at
zero, we have

−
τ�

%

P(s) ds = −2λk ln
(
τ

%

)
+
τ�

%

K(s)
s

ds ≤ ln
(
%

τ

)2λk

+
d�

0

K(s)
s

ds,

so

exp
(
−
τ�

%

P(σ) dσ
)
≤
(
%

τ

)2λk

exp
(d�

0

K(σ)
σ

dσ

)
= K0

(
%

τ

)2λk

;

exp
(
−
d�

%

P(τ) dτ
)
≤
(
%

d

)2λk

exp
(d�

0

K(τ)
τ

dτ

)
= K0

(
%

d

)2λk

.

Moreover,
d�

%

Q(τ) exp
(
−
τ�

%

P(σ) dσ
)
dτ

≤ λK0

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
%λk

d�

%

τ2s−2λk−ε−1 dτ

≤ λK0

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· d

s−λk

s− λk
%2λk,

since s > λk and we can choose ε = s− λk.
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Now we apply Theorem 2.20; then from (2.23), by the above inequalities
and (2.14) for α = 2, we obtain the statement of Theorem 6.1 for s > λk.

Case 2: s = λk. Taking in (6.12) any function δ(%) > 0 instead of δ > 0,
we obtain problem (CP) with

P(%) =
2λk(1− c6δ(%))

%
− c8
A(%)
%

,

Q(%) =
λ

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· δ−1(%)%2λk−1.

We choose δ(%) = 1/(2c6λk ln(ed/%)), 0 < % < d, to obtain

−
τ�

%

P(σ) dσ ≤ −2λk ln
τ

%
+
τ�

%

dσ

σ ln(ed/σ)
+ c8

d�

0

A(σ)
σ

dσ

= ln
(
%

τ

)2λk

+ ln
( ln ed

%

ln ed
τ

)
+ c8

d�

0

A(σ)
σ

dσ.

Then

exp
(
−
τ�

%

P(σ) dσ
)
≤
(
%

τ

)2λk

·
ln ed

%

ln ed
τ

· exp
(
c8

d�

0

A(σ)
σ

dσ

)
,

exp
(
−
d�

%

P(τ) dτ
)
≤
(
%

d

)2λk

· ln ed
%
· exp

(
c8

d�

0

A(τ)
τ

dτ

)
.

In this case we also have
d�

%

Q(τ) exp
(
−
τ�

%

P(σ) dσ
)
dτ ≤ λ

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)

×%2λk exp
(
c8

d�

0

A(σ)
σ

dσ

)
ln
ed

%
·
d�

%

δ−1(τ)τ−1 1
ln( edτ )

dτ

≤ c9
(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· %2λk ln2

(
ed

%

)
.

Now we apply Theorem 2.20, and from (2.23), by the above inequalities,
we obtain

U(%) ≤ c10

(
U0 + ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
%2λk ln2 1

%
, 0 < % < d <

1
e
.

Thus we have proved the statement of Theorem 6.1 for s = λk.
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Case 3: 0 < s < λk. Now as in Case 1, using (6.12) we have

exp
(
−
τ�

%

P(σ) dσ
)
≤ c11

(%
τ

)2λk(1−c6δ)
exp
(d�

0

A(σ)
σ

dτ
)

= c12

(
%

τ

)2λk(1−c6δ)

and

exp
(
−
d�

%

P(τ) dτ
)
≤ c13

(
%

d

)2λk(1−c6δ)
exp
(d�

0

A(τ)
τ

dτ
)

= c14

(%
d

)2λk(1−c6δ)
.

In this case we also have
d�

%

Q(τ) exp
(
−
τ�

%

P(σ) dσ
)
dτ

≤ λ

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· δ−1%2λk(1−c6δ)

d�

%

τ2s−2λk(1−c6δ)−1 dτ

≤ c15

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· %2s,

if we choose δ ∈ (0, 1
c6

(1− s
λk )).

Now we apply Theorem 2.20, and then from (2.23), by the above inequal-
ities,

U(%) ≤ c16

{
U0%

2λk(1−c5δ) +
(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· %2s

}
≤ c17

(
U0 + f2

0 +
1
β+

g2
0 +

1
β−

h2
0

)
%2s.

Thus we have proved the statement of Theorem 6.1 for 0 < s < λk.

Theorem 6.2. Let β+ = β− = β and b > b∗, where b∗ is defined by (2.9),
and let u ≥ 0 be a weak solution of problem (L). Let assumptions (a)–(f) be
satisfied with A(r) Dini-continuous at zero. Then there are d ∈ (0, 1/e) and
a constant C > 0 depending only on s, ω0, ν, b, β, d, G and

	1/e
0 (A(r)/r) dr

such that for a.e. % ∈ (0, d),
�

G%0

(
|∇u|2 +

u2(x)
r2

)
dx+ β

�

∂G%0

u2(x)
r

ds

≤ C
(
|u|2

0,G
+ ω0f

2
0 +

1
β

(g2
0 + h2

0) + ‖f‖22,G + ‖g‖2∞,Γ+
+ ‖h‖2∞,Γ−

)

×


%2λ if s > λ,
%2λ ln2(1/%) if s = λ,
%2s if s < λ,

where λ ∈ (π/ω0, 2π/ω0) is the smallest positive root of (2.10).
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Proof. As in Theorem 6.1, we get equality (6.1) with β = β+ = β−. By
the assumption u(x) ≥ 0 and definition (2.19) we obtain

(6.13) U+(%)

≤ %
�

Ω

(
u(x)

∂u

∂r

)∣∣∣∣
r=%

dΩ +
�

Ω%

(aij(x)− aij(0))u(x)uxj cos(r, xi) dΩ%

+
�

G%0

{−(aij(x)− aij(0))uxiuxj + bi(x)u(x)uxi + c(x)u2(x)} dx

−
�

G%0

u(x)f(x) dx+
�

Γ %0+

u(x)g(x) ds+
�

Γ %0−

u(x)h(x) ds.

Now as in Theorem 6.1 we estimate the integrals on the right of (6.13). The
first one is estimated by Corollary 2.17; the next one, by (6.4). Thus from
(6.13) it follows that

U+(%) ≤ %

2λ
U ′+(%) + %A(%)

�

Ω

|u(x)| |∇u| dω +
�

Γ %0+

|u(x)| |g(x)| ds(6.14)

+
�

Γ %0−

|u(x)| |h(x)| ds+A(%)
�

G%0

(
|∇u|2 +

u2(x)
r2

)
dx

+
�

G%0

|u(x)| |f(x)| dx.

Further we bound each integral on the right of (6.14). First, applying the
Cauchy and Friedrichs–Wirtinger inequalities (see (2.12)) similarly to (6.6),
we have

(6.15) A(%)
�

Ω

%|u(x)| |∇u| dω ≤ c1(b, β, ω0, λ)%A(%)U ′+(%).

Next, using the Cauchy and the Hardy–Friedrichs–Wirtinger inequalities (see
(2.15) for α = 2), by (2.19), similarly to (6.7) we obtain

(6.16) A(%)
�

G%0

(
|∇u|2 +

|u|2

r2

)
dx ≤ c2(b, β, ω0, λ)A(%)U+(%).

Thus from (6.14)–(6.16) and (6.8), we get

(6.17) 〈1− c4(δ +A(%))〉U+(%) ≤ %

2λ
(1 + c5A(%))U ′+(%)

+
1
2δ

{ �

G%0

r2f2(x) dx+
1
β

�

Γ %0+

rg2(x) ds+
1
β

�

Γ %0−

rh2(x) ds
}
, ∀δ > 0.

Then by (6.11) from (6.17) we deduce the differential inequality (CP) of
Subsection 2.3 for the function U+(%), with
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P(%) =
2λ
%
· [1− c6δ − c7A(%)];

Q(%) =
λ

2s

(
ω0f

2
0 +

1
β

(g2
0 + h2

0)
)
· δ−1%2s−1, ∀δ > 0;

U0 = C(1 + β)
{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
,

by (2.19) and (5.7). Next, repeating the proof of Theorem 6.1 for the Cauchy
problem (CP) with the function U+(%) we get the desired result.

Theorem 6.3. Let b = π
ω0
· β++β−

β−
, β+u

2(x)|Γ+ + β−u
2(x)|Γ− +

bu(x)u(γ(x))|Γ+ = 0, u2(x)|Γ+ = u2(x)|Γ− and let u be a weak solution of
problem (L). Let assumptions (a)–(f) be satisfied with A(r) Dini-continuous
at zero. Then there are d ∈ (0, 1/e) and a constant C > 0 depending
only on s, ω0, ν, b, β+, β−, d, G and

	1/e
0 (A(r)/r) dr such that for a.e.

% ∈ (0, d),
�

G%0

(
|∇u|2 +

u2(x)
r2

)
dx

≤ C
(
|u|2

0,G
+ ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0 + ‖f‖22,G + ‖g‖2∞,Γ+

+ ‖h‖2∞,Γ−

)

×


%2λ if s > λ,
%2λ ln2(1/%) if s = λ,
%2s if s < λ,

where λ = π/ω0.

Proof. As in Theorem 6.1, we get (6.1). By our assumptions and (2.20)
we obtain

(6.18) U−(%) ≤ %
�

Ω

(
u(x)

∂u

∂r

)∣∣∣∣
r=%

dΩ

+
�

Ω%

(aij(x)− aij(0))u(x)uxj cos(r, xi) dΩ%

+
�

G%0

{−(aij(x)− aij(0))uxiuxj + bi(x)u(x)uxi + c(x)u2(x)} dx

−
�

G%0

u(x)f(x) dx+
�

Γ %0+

u(x)g(x) ds+
�

Γ %0−

u(x)h(x) ds.

Now similar to Theorem 6.1 we estimate the integrals on the right hand side
of (6.18). The first integral is estimated by Corollary 2.18; the next one, by
(6.4). Thus, from (6.18) it follows that
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(6.19) U−(%) ≤ %

2λ
U ′−(%) + %A(%)

�

Ω

|u(x)| |∇u| dω +
�

Γ %0+

|u(x)| |g(x)| ds

+
�

Γ %0−

|u(x)| |h(x)| ds+A(%)
�

G%0

(
|∇u|2 +

u2(x)
r2

)
dx+

�

G%0

|u(x)| |f(x)| dx,

where λ = π/ω0. Further we bound the integrals on the right of (6.19).
First, applying the Cauchy and Friedrichs–Wirtinger inequalities (see (2.13))
similarly to (6.6), we have

(6.20) A(%)
�

Ω

%|u(x)| |∇u| dω ≤ c1(b, β±, ω0)%A(%)U ′−(%).

Next, using the Cauchy and the Hardy–Friedrichs–Wirtinger inequalities (see
(2.16) for α = 2), by (2.20), similarly to (6.7) we obtain

(6.21) A(%)
�

G%0

(
|∇u|2 +

|u|2

r2

)
dx ≤ c2(b, β±, ω0)A(%)U−(%).

Thus from (6.19)–(6.21) and (6.8) we get

(6.22) 〈1− c4(δ +A(%))〉U−(%) ≤ %

2λ
(1 + c5A(%))U ′−(%)

+
1
2δ

{ �

G%0

r2f2(x) dx+
1
β+

�

Γ %0+

rg2(x) ds+
1
β−

�

Γ %0−

rh2(x) ds
}
, λ =

π

ω0
,

for all δ > 0. Then by (6.11) from (6.22) we have the differential inequality
(CP) of Subsection 2.3 for the function U−(%) with

P(%) =
2λ
%
· [1− c6δ − c7A(%)], λ =

π

ω0
,

Q(%) =
λ

2s

(
ω0f

2
0 +

1
β+

g2
0 +

1
β−

h2
0

)
· δ−1%2s−1, λ =

π

ω0
, δ > 0,

U0 = C

{
|u|2

0,G
+

�

G

f2(x) dx+
�

Γ+

g2(x) ds+
�

Γ−

h2(x) ds
}
,

by (2.20) and (5.8). Next, repeating the proof of Theorem 6.1 for the Cauchy
problem (CP) with the function U−(%) we get the desired result.

7. The power modulus of continuity at a conical point for weak
solutions

Proof of Theorem 1.5. We define

ψ(%) =


%λk if s > λk,
%λk ln(1/%) if s = λk,
%s if 1 < s < λk,

for 0 < % < d.
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By Theorem 4.1, we have

(7.1) sup
x∈G%/20

|u(x)| ≤ C{%−1‖u‖2,G%0 + %2(1−2/p)‖f‖p/2,G%0
+ %(‖g‖∞,Γ %0+ + ‖h‖∞,Γ %0−)},

where C = C(ν, µ, p, ‖
∑2

i=1 |bi(·)|2‖p/2,G, G) and p > 2. Then, by Theo-
rem 6.1,

(7.2) %−1‖u‖2,G%0 ≤
( �

G%0

u2(x)
r2

dx

)1/2

≤ C
(
‖f‖2,G + ‖g‖∞,Γ+ + ‖h‖∞,Γ− +

√
ω0f0 +

1√
β+

g0 +
1√
β−

h0

)
ψ(%).

Further, by assumption (e) and s > 2− 4/p, we get

(7.3) %2(1−2/p)‖f‖p/2,G%0 + %(‖g‖∞,Γ %0+ + ‖h‖∞,Γ %0−)

≤ c
(
f0 +

1√
β+

g0 +
1√
β−

h0

)
ψ(%)

for p > ñ > 2. From (7.1)–(7.3) it follows that

sup
x∈G%/2

%/4

|u(x)|

≤ C
(
‖f‖2,G + ‖g‖∞,Γ+ + ‖h‖∞,Γ− + f0 +

1√
β+

g0 +
1√
β−

h0

)
ψ(%).

Then putting |x| = 1
3% we obtain the desired estimate (1.2).

Proof of Theorem 1.7. We repeat the proof of Theorem 1.5 by taking

ψ(%) =


%λ if s > λ,
%λ ln(1/%) if s = λ,
%s if 1 < s < λ,

and applying Theorem 6.2 instead of Theorem 6.1.

Proof of Theorem 1.8. We repeat the proof of Theorem 1.7, applying
Theorem 6.3 instead of Theorem 6.2.

8. Example. We consider the corner
G0 = {(r, ω) : r > 0, −ω0/2 < ω < ω0/2, ω0 ∈ (0, π)} ⊂ R2

with ∂G = O∪Γ+∪Γ−, where Γ± = {r > 0, ω = ±ω0/2}. Let b = π
ω0
· β++β−

β−
.

Then the function

u(r, ω) = rλ
(

ln
1
r

)λ−1
λ+1

ψ(ω),
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where ψ(ω) = β− cos(λω) − λ sin(λω) and λ = π/ω0, is a solution of the
problem 

∂

∂xi
(aij(x)uxj ) + c(x)u = 0, x ∈ G0,

∂u

∂ν
+ β+

u(x)
|x|

+
b

|x|
u(γ(x)) = g(x), x ∈ Γ+,

∂u

∂ν
+ β−

u(x)
|x|

= h(x), x ∈ Γ−,

where

a11(x) = 1− 2
λ+ 1

· x2
2

r2 ln 1
r

,

a12(x) = a21(x) =
2

λ+ 1
· x1x2

r2 ln 1
r

,

a22(x) = 1− 2
λ+ 1

· x2
1

r2 ln 1
r

,

aij(0) = δji (i, j = 1, 2),

c(x) = − 2
1 + λ

· 1
r2 ln2 1

r

(
λ ln

1
r
− λ− 1
λ+ 1

)
,

g(x) = h(x) =
2πβ−

(λ+ 1)ω0

rλ−1

ln
2

λ+1 1
r

for r > 0. In the domain Gd0, d < e−4, the equation is uniformly ellip-
tic with ellipticity constants µ = 1 and ν = 1 − 4

ln(1/d) . Further, A(r) =
2

λ+1 ln−1(1/r), i.e., A(r) does not satisfy the Dini condition at zero. More-
over, aij(x) are continuous at the point O, c(x) ≤ 0 and the conditions
β+u

2(x)|Γ+ + β−u
2(x)|Γ− + bu(x)|Γ+ · u(γ(x))|Γ+ = 0, u2(x)|Γ+ = u2(x)|Γ−

of Theorem 1.8 are fulfilled. This example shows that the Dini-continuity
condition in Theorem 1.8 is essential.
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