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A NOTE ON STOCHASTIC ORDERING OF ESTIMATORS
OF EXPONENTIAL RELIABILITY

Abstract. Recently Balakrishnan and Iliopoulos [Ann. Inst. Statist. Math.
61 (2009)] gave sufficient conditions under which the maximum likelihood
estimator (MLE) is stochastically increasing. In this paper we study test
plans which are not considered there and we prove that the MLEs for those
plans are also stochastically ordered. We also give some applications to the
estimation of reliability.

1. Introduction and preliminaries. Let X = (X1, . . . , Xn) be a ran-
dom sample from the exponential distribution Ex(θ) with density f(x; θ) =
(1/θ)e−x/θ, x > 0, θ > 0. Let X1:n, . . . , Xn:n denote the corresponding order
statistics.

In this paper we consider the problem of estimating the mean θ of the
exponential distribution as well as the reliability function R(t) = e−t/θ,
θ > 0, t > 0 fixed, and then we examine stochastic monotonicity of the
estimators obtained.

Let X and Y be two random variables, F and G their respective proba-
bility distribution functions and f and g their respective density functions,
if they exist. Recall that X is stochastically smaller than Y (X ≤st Y ) if
F (x) ≥ G(x) for every x. We say that X is smaller in the likelihood ra-
tio order (X ≤lr Y ) if g(x)/f(x) is increasing. It is well known that the
likelihood ratio ordering is stronger than the usual stochastic order. For dis-
cussions on properties of those stochastic orderings we refer to Shaked and
Shanthikumar [11].

Definition 1.1. A family of distributions {F (x; θ), θ ∈ Θ} is said to be
stochastically increasing in θ if F (x; θ1) ≥ F (x; θ2) whenever θ1 < θ2, i.e.
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X(θ1) ≤st X(θ2), where X(θi) denotes a random variable with distribution
F (x; θi), i = 1, 2.

Definition 1.2. We say that the estimator γ̂ of the function γ(θ),
θ ∈ Θ, is stochastically increasing in θ if the family of the distributions of
γ̂ is stochastically increasing in θ.

Stochastic orders play an important role in statistics. In particular, sto-
chastic monotonicity of estimators is useful in constructing confidence inter-
vals and testing statistical hypotheses (see Shao [12, p. 475]).

2. Point estimation of the mean based on censored samples.
Assume that n identical units are independently put on test at the initial
time t = 0. Suppose that the failure time distribution is exponential with
mean θ.

The estimation of the mean based on the complete sample X is the sim-
plest one from the theoretical point of view but in practice often impossible
because the units in the sample may not all have failed or the exact times to
failure are not known. In the usual lifetime data analyses, lifetimes are not
always fully observed. For example, some observations will be censored due
to the limited time of the experiment or due to cost.

Below we describe the best known censoring schemes (see Gnedenko et
al. [7], [8]).

1. Plan [n,U, T ]: n identical units are placed under test, failed units are
unrepairable during the testing. The test terminates at time T . This type of
censoring is often called Type I censoring. The number of observed failures
is a random variable D = #{Xi ≤ T} with the binomial distribution b(n, p),
where p = 1 − e−T/θ. The observations obtained are X1:n, . . . , XD:n. The
MLE of θ is

(2.1) θ̂ =
1
D

( D∑
i=1

Xi:n + (n−D)T
)
,

provided D ≥ 1, and it does not exist if D = 0.

2. Plan [n,U, r]: n identical units are placed under test, failed units are
unrepairable during the testing. The test terminates at the time of the rth
failure. This type of censoring is often called Type II censoring. In this case,
the MLE of θ is given by

θ̂ =
1
r

( r∑
i=1

Xi:n + (n− r)Xr:n

)
(2.2)

=
1
r

r∑
i=1

(n− i+ 1)(Xi:n −Xi−1:n) =
1
r

r∑
i=1

Wi,
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whereWi = (n−i+1)(Xi:n−Xi−1:n), i = 1, . . . , r, are independent and identi-
cally distributed exponential randomvariables withmean θ (we putX0:n = 0).
The estimator θ̂ is also the uniformly minimum variance unbiased estimator
(UMVUE) of θ. When r = n we have the experiment based on the complete
sample, and the estimator θ̂ given by (2.2) reduces to the sample mean of X.

3. Plan [n,R, T ]: n identical units are placed under test, failed units are
immediately renewed after failure. The test terminates at time T . This type
of censoring is often called Type I censoring with replacement. In this case
the times of failure are signals of a Poisson process with intensity n/θ. The
MLE of θ has the form

(2.3) θ̂ =
nT

D
,

provided D ≥ 1, and it does not exist if D = 0. The number D of fail-
ures has the Poisson distribution with parameter nT/θ, and the intervals
between successive failures are independent and identically distributed ex-
ponential random variables with mean θ/n. This estimator θ̂ is a function of
the sufficient and complete statistic D.

4. Plan [n,R, r]: n identical units are placed under test, failed units are
immediately renewed after failure. The test terminates at the time X(r) of
the rth failure. This type of censoring is often called Type II censoring with
replacement. In this case, the MLE of θ is given by

(2.4) θ̂ =
n

r
X(r) =

n

r

r∑
i=1

(X(i) −X(i−1)) =
n

r

r∑
i=1

W̃i,

where X(1), . . . , X(r) is the sequence of failure times and W̃i = X(i)−X(i−1),
i = 1, . . . , n, are independent and identically distributed exponential random
variables with mean θ/n (we put X(0) = 0). The estimator θ̂ is also the
UMVUE of θ.

5. Plan [n,U, (r, T )]: n identical units are placed under test, failed units are
unrepairable during the testing. The test terminates at time min{Xr:n, T},
where Xr:n is the time of occurrence of the rth failure. This type of censoring
is often called hybrid censoring. In this case, the MLE of θ is of the form

(2.5) θ̂ =


1
D

( D∑
i=1

Xi:n + (n−D)T
)

if D = 1, . . . , r − 1,

1
r

( r∑
i=1

Xi:n + (n− r)T
)

if D ≥ r.

The random variable D has the binomial distribution b(n, p), where p =
1− e−T/θ.
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6. Plan [n,R, (r, T )]: n identical units are placed under test, failed units are
immediately renewed after failure. The test terminates at time min{X(r), T},
where X(r) denotes the time of occurrence of the rth failure. This type of
censoring is often called hybrid censoring with replacement. In this case, the
MLE of θ is of the form

(2.6) θ̂ =
{
nT/D if D = 1, . . . , r − 1,
nX(r)/r if D ≥ r.

The number D of failures has the Poisson distribution with parameter nT/θ.

7. Plan [n,U, (r,HS0)]: n identical units are placed under test, failed units
are unrepairable during the testing. Recall the definition of S(t) calculated
as the total testing time accumulated until time t,

(2.7) S(t) = nX1:n + (n− 1)(X2:n −X1:n) + · · ·+ (n−D)(t−XD:n),

whereD is the number of failures that occur before time t andX1:n, . . . , XD:n

is the sequence of failure times. The test terminates at time t0 if S(t0) = S0

or at the time of the rth failure if S(Xr:n) < S0. The MLE of θ is given by

(2.8) θ̂ =
{
S0/D if D = 1, . . . , r − 1,
S(Xr:n)/r if D ≥ r.

Here, D has the Poisson distribution with parameter T/θ.

It is easy to verify that estimators (2.3), (2.2) and (2.4) are stochastically
increasing in θ, since the families of the distributions of the estimators have
monotone likelihood ratio.

3. Methods of proving stochastic monotonicity. We consider two
methods of proving stochastic monotonicity. One is based on the coupling
method, and the other on the so-called Three Monotonicities Lemma.

Coupling method. Note that if the random variables X and Y satisfy
P (X ≤ Y ) = 1, then X ≤st Y . The following theorem gives an important
characterization of the usual stochastic order (see Shaked [11] or Lindvall [9]).

Theorem 3.1. X ≤st Y if and only if there exist random variables X ′
and Y ′ defined on the same probability space such that X ′ =st X, Y ′ =st Y
and P (X ′ ≤ Y ′) = 1.

We often use the following version of coupling.

Theorem 3.2. If X ≤st Y then there exists a random variable Z =st X
such that P (Z ≤ Y ) = 1.
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Three Monotonicities Lemma. Balakrishnan and Iliopoulos [3] con-
sidered the case when the MLE of θ has the survival function of the form

(3.1) P (θ̂ > x) =
∑
d∈D

P (D = d)P (θ̂ > x |D = d),

where D is some finite set of natural numbers whereas D is a random vari-
able denoting the number of failures. They established a lemma concerning
the stochastic monotonicity of such estimators, which proves the required
monotonicity of the MLEs in all the above mentioned censoring schemes.

The following lemma gives conditions under which the family of the dis-
tributions of the estimator θ̂ is stochastically increasing in θ.

Lemma 3.3 ([3]). Suppose that the estimator θ̂ has the survival function
(3.1) and the following assumptions are satisfied:

(M1) Pθ(θ̂ > x |D = d) is increasing in θ for all x and d ∈ D,
(M2) Pθ(θ̂ > x |D = d) is decreasing in d ∈ D for all x and θ,
(M3) D is stochastically decreasing in θ.

Then the estimator θ̂ is stochastically increasing in θ.

Balakrishnan et al. [2] proved via the coupling method that the estimator
θ̂ given by (2.1) is stochastically increasing in θ. In the next section, we prove
this property for the estimator obtained from a more general version of the
test plan [n,U, T ] studied by Bartholomew [4].

Using the Three Monotonicities Lemma Balakrishnan and Iliopoulos [3]
proved that the estimator given by (2.5) is stochastically increasing in θ. In
the next section we prove analogous theorems for the MLEs obtained from
the plans [n,R, (r, T )] and [n,U, (r,HS 0)]. Proving this property for the plans
[n,U, r], [n,R, T ] and [n,R, r] is easy, because the MLEs have distributions
with monotone likelihood ratio.

4. Main results

4.1. Stochastic monotonicity of estimators of the mean. In this
section we consider test plans which are not considered in [2] and [3]. We start
from a more general version of the test plan [n,B, T ] (see Bartholomew [4]).

Let T be a time when we stop the experiment and let Ti ≤ T denote the
time that has elapsed since the ith element was installed. Define a random
variable Ci as follows:

Ci =
{

1 if the ith element has failed before time T ,
0 otherwise.

Thus we are observing x = (x1, . . . , xn) and c = (c1, . . . , cn). If the lifetime
of each element is a random variable with cumulative distribution function
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F (x; θ) = 1− e−x/θ then the likelihood function for this plan is

L(θ;x, c, T1, . . . , Tn) =
n∏
i=1

1
θci

exp
(
−cixi

θ
− (1− ci)Ti

θ

)
.(4.1)

Note that Ci has the binomial distribution b(1, F (Ti)), and D =
∑n

i=1Ci
is the number of failures.

From (4.1), we get the MLE of θ

(4.2) θ̂ =
1
D

n∑
i=1

(CiXi + (1− Ci)Ti) if D > 0.

Observe that if Ti = T , i = 1, . . . , n, i.e. all elements start to work
simultaneously, then we have the estimator (2.1).

We now prove the following theorem.

Theorem 4.1. The MLE of θ given by (4.2) is stochastically increasing
in θ.

Proof. We use the coupling method. Let X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) be random samples from the exponential distributions Ex(θ1)
and Ex(θ2) respectively, where θ1 < θ2. Suppose that θ̂1 is the MLE of θ1,
and similarly θ̂2 is the MLE of θ2.

Let D1 =
∑n

i=1C
X
i , where CXi = 1[0,Ti](Xi), be a random variable de-

noting the number of failures on the sample X. Similarly, D2 =
∑n

i=1C
Y
i ,

CYi = 1[0,Ti](Yi).
We know that

θ̂1 =
1
D1

n∑
i=1

(CXi Xi + (1− CXi )Ti),

θ̂2 =
1
D2

n∑
i=1

(CYi Yi + (1− CYi )Ti).

By the coupling method there exist independent random variables Z1, . . . , Zn
such that Zi =st Xi and Zi ≤ Yi pointwise for i = 1, . . . , n. Hence

θ̂1 =st θ̂
?
1 =

1
D?

1

n∑
i=1

(CZi Zi + (1− CZi )Ti),

where D?
1 =

∑n
i=1C

Z
i =

∑n
i=1 1[0,Ti](Zi). Since Zi ≤ Yi pointwise, we have

{Yi ≤ Ti} ⊆ {Zi ≤ Ti} and therefore the following inequalities hold point-
wise:

CZi ≥ CYi , CZi Zi + (1− CZi )Ti ≤ CYi Yi + (1− CYi )Ti, i = 1, . . . , n,
D?

1 ≥ D2.
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It is obvious that θ̂?1 ≤ θ̂2 pointwise. Finally θ̂1 ≤st θ̂2, since

P (θ̂1 ≥ x) = P (θ̂?1 ≥ x) ≤ P (θ̂2 ≥ x).
Theorem 4.2. The MLE of θ given by (2.6) is stochastically increasing

in θ.

Proof. The proof is by verifying the assumptions of Lemma 3.3.
(M1) We show that the distribution of [θ̂ |D = d] does not depend on θ.

If d ∈ {1, . . . , r − 1} this follows immediately from (2.6). Otherwise, we
know that [X(r) |D = d] has the same distribution as Ur:d, i.e. the rth order
statistic from a sample of size d from the uniform distribution on (0, T ) (see,
for example, Bain and Engelhardt [1, p. 99]).

(M2) We must show that [θ̂ |D = d] is decreasing in d. If d ≤ r − 2 then

[θ̂ |D = d]− [θ̂ |D = d+ 1] =
nT

d
− nT

d+ 1
> 0.

Let d = r − 1. Then

[θ̂ |D = d]−[θ̂ |D = d+1] =
nT

r − 1
−
nX(r)

r
=

n

r(r − 1)
[rT−(r−1)X(r)] > 0.

The last inequality holds with probability one, hence the condition (M2) is
satisfied. Finally, if d ≥ r then

[θ̂ |D = d] =st
nUr:d
r

, [θ̂ |D = d+ 1] =st
nUr:d+1

r
.

Since Ur:d ≥st Ur:d+1, we conclude that here (M2) also holds.
(M3) It is obvious that D1 ≥st D2 if θ1 ≤ θ2. This completes the proof.

Theorem 4.3. The MLE of θ given by (2.8) is stochastically increasing
in θ.

Proof. It is well known that the quantities nX1:n, (n − 1)(X2:n −X1:n),
. . . , (n − r + 1)(Xr:n −Xr−1:n) are independent and identically distributed
exponential random variables with mean θ, which actually means that we are
observing a Poisson process with intensity 1/θ. This problem was considered
above for the plan [n,R, (r, T )], where n := 1, X(r) := S(Xr:n), T := S0. So
the theorem follows from Theorem 4.2.

Recall that the estimator θ̂ given by (2.3) is not defined ifD = 0. Consider
now the following modification of that estimator:

(4.3) θ̃ =
{
θ̂ if D ≥ 1,
nT if D = 0.

We now prove the following theorem.

Theorem 4.4. The estimator of θ given by (4.3) is stochastically in-
creasing in θ.
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Proof. Note the following facts:

(1) the random variable Z = I{D ≥ 1} is stochastically decreasing in θ,
(2) [θ̃ |Z = 1] is stochastically increasing in θ (Balakrishnan et al. [2])

and the same is true for [θ̃ |Z = 0],
(3) [θ̃ |Z = 1] ≤st [θ̃ |Z = 0], since θ̂ ≤ nT with probability one.

Applying Lemma 3.3 and the above facts ends the proof.

Similarly, we can put θ̂ = nT if D = 0 for the estimators (2.4), (2.6).
Analogously, we put θ̂ = S0 for the estimator given by (2.8) and θ̂ =

∑n
i=1 Ti

for the estimator given by (4.1) if D = 0. These new estimators are also
stochastically increasing in θ. We omit the proof because it is very similar
to the proof of Theorem 4.4.

4.2. Stochastic monotonicity of estimators of reliability. We now
consider the estimation of reliability R(t) = e−t/θ, i.e. the probability that
the lifetime of an element is not less than a given time t. It is obvious that
the MLE of R(t) is R̂(t) = e−t/θ̂, where θ̂ is the MLE of θ. We observe
that the function R(t) is increasing in θ for any fixed t > 0 and the usual
stochastic order is closed under any increasing operation. So we have the
following theorem.

Theorem 4.5. The MLEs of reliability obtained on the basis of one
of the following plans: [n,U, T ], [n,U, r], [n,R, T ], [n,R, r], [n,U, (r, T )],
[n,R, (r, T )], [n,U, (r, S0)] are stochastically increasing in θ.

Finally, we discuss the stochastic monotonicity of the UMVUEs of relia-
bility. The minimum variance unbiased estimation of reliability was investi-
gated by many authors (see, for example, Basu [6], Pugh [10]). In the cases
described below this estimator is an increasing function of θ̂.

Example 4.6. The UMVUE of reliability on the basis of the plan [n,U, r]
is

(4.4) R̂(t) =
(

1− t

rθ̂

)r−1

+

,

where θ̂ is given by (2.2) and (a)+ = max{a, 0}. Hence the estimator (4.4)
is stochastically increasing in θ.

Example 4.7. TheUMVUE of reliability on the basis of the plan [n,R, T ]
is

(4.5) R̂(t) =
(

1− t

nT

)D
+

,
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where D has the Poisson distribution with parameter nT/θ. Hence the esti-
mator (4.5) is stochastically increasing in θ.

Example 4.8. The UMVUE of reliability on the basis of the plan [n,R, r]
is

(4.6) R̂(t) =
(

1− t

rθ̂

)r−1

+

,

where θ̂ is given by (2.4). Hence the estimator (4.6) is stochastically increas-
ing in θ.

Now, let us consider the test plan [n,U, T ]. The sufficient statistic for θ is
(D(T ), S(T )), where D(T ) denotes the number of failures until time T and
S(T ) is the accumulated observed lifetime of all items. We cannot construct
the UMVUE of reliability, since the sufficient statistic is not complete (see
Bartoszewicz [5]). However, we can give an unbiased estimator of reliability
based on the empirical distribution function, for example

(4.7) R̂(t) =


1− D(t)

n
if t ∈ (0, T ],(

1− D(T )
n

)
· · ·
(

1− D(t− pT )
n− p

)
if t ∈ (pT, (p+ 1)T ],

where p = 1, . . . , n− 1 and D(t) denotes the number of failures until time t,
0 < t ≤ T .

Theorem 4.9. The unbiased estimator of reliability at t ∈ (0, nT ] given
by (4.7) is stochastically increasing in θ.

Proof. First, we prove that the vector (D(T ), D(t)) is stochastically de-
creasing in θ, i.e. (Dθ2(T ), Dθ2(t)) ≤st (Dθ1(T ), Dθ1(t)) if θ1 < θ2. It is
sufficient to verify the following conditions (see Veinott [13]):

(a) Dθ2(T ) ≤st Dθ1(T ),
(b) [Dθ2(t) |Dθ2(T ) = d2] ≤st [Dθ1(t) |Dθ1(T ) = d1],

whenever d2 < d1 and θ1 < θ2.
These follow immediately, since

(1) Dθ(t) has the binomial distribution b(n, p0), where p0 = 1− e−t/θ,
(2) [Dθ(t) |Dθ(T ) = d] has the binomial distribution b(d, p1), where p1 =

(1− e−t/θ)/(1− e−T/θ).

The functions p0 and p1 are decreasing in θ if 0 < t ≤ T , so conditions (a)
and (b) are satisfied. Finally, note that the estimator (4.7) is a decreasing
function of D(t), t ∈ (0, T ], and also a decreasing function of D(T ) and
D(t− pT ), t ∈ (pT, (p+ 1)T ], p = 1, . . . , n− 1. This completes the proof of
the theorem.
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