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ESTIMATES FOR PERTURBATIONS
OF GENERAL DISCOUNTED MARKOV

CONTROL CHAINS

Abstract. We extend previous results of the same authors ([11]) on the
effects of perturbation in the transition probability of a Markov cost chain for
discounted Markov control processes. Supposing valid, for each stationary
policy, conditions of Lyapunov and Harris type, we get upper bounds for
the index of perturbations, defined as the difference of the total expected
discounted costs for the original Markov control process and the perturbed
one. We present examples that satisfy our conditions.

1. Introduction. This paper deals with discounted Markov control pro-
cesses (DMCPs) with discrete time, general space of states X and (possibly)
unbounded one-step cost functions (see [6–8]). The main problem in the the-
ory of DMCPs is to determine an optimal policy (see [6, 7]) with respect to
an objective function equal to the total expected discounted cost Vα(x, π),
where α ∈ (0, 1) is a discount factor, x is an initial state of the process
and π is a policy that we apply (see Section 2 for definitions). But in a lot
of cases, the transition probability Q of the given DMCP is incompletely
known because it may be obtained through estimation or approximation
(see [3]). Actually, we only have a theoretical approximation Q̃ of Q. In this
case, if we know that the approximating process with transition probability
Q̃ has an optimal policy π̃∗, we may, in a natural way, use this policy to
control the original process (corresponding to Q). As a consequence, we will
have an increase of the total expected discounted cost, because π̃∗ is not an
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optimal policy for the original DMCP. We measure the increment by the
following value (see [4, 5]):

∆∗∗α (x) ≡ Vα(x, π̃∗)− inf
π∈Π

Vα(x, π)(1)

where Π is the set of all possible policies. The value ∆∗∗α (·) was called in
[4] and [5] the stability index, but we will name it the index of perturbations
because the word “stability” has several meanings.

Now a natural task is to obtain upper bounds for ∆∗∗α (x). Under some
conditions such estimates were obtained in [1] for DMCPs with bounded
one-step cost functions and in [5] for DMCPs with nonnegative unbounded
one-step cost functions. Note that [5] essentially used results for uncontrolled
Markov chains given by Kartashov [9] and Zolotarev [12].

The first aim of this work was to obtain bounds for ∆∗∗α (x) better than
those in [1, 4, 5], using more elementary estimates, obtained earlier by the
authors in [11] for uncontrolled Markov chains.

Now let F denote the set of all stationary control policies and suppose
that there exists a stationary optimal policy f̃∗, corresponding to Q̃ (see
Section 2 for definitions). In this case we may define the value

∆∗α(x) := Vα(x, f̃∗)− inf
f∈F

Vα(x, f).(2)

which may be called the stationary index of perturbations.
Under certain assumptions proposed in the literature (see, for instance,

Assumptions 1 and 2 in [4]), the following basic equalities hold:

∀x ∈ X inf
π∈Π

Vα(x, π) ≡ inf
f∈F

Vα(x, f),

Ṽα(x, π̃∗) ≡ inf
π∈Π

Ṽα(x, π) ≡ inf
f∈F

Ṽα(x, f) ≡ Ṽα(x, f̃∗),
(3)

where Ṽα(x, π) is the total expected discounted cost defined for the approx-
imating DMCP corresponding to Q̃. Thus, under (3), we have the following
identity:

∀x ∈ X ∆∗α(x) ≡ ∆∗∗α (x).(4)

The main goal of this work is to obtain estimates for the value ∆∗α(x),
defined in (2), under more general assumptions than those used in [1, 5]. We
aim at estimates which should contain only explicitly defined functions and
constants, and should have simple proofs.

These goals are achieved in Theorem 1 below. Note that if the equalities
(3) and (4) are valid then our estimate from Theorem 1 is sharper and
simpler than the ones for ∆∗α(x) ≡ ∆∗∗α (x) obtained in [1] and [5].

The paper is organized as follows. Section 2 presents several general
definitions concerning DMCPs. The main results are stated in Section 3
and their proofs are gathered in Section 4. In Sections 5 and 6 we give two
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examples of DMCPs that satisfy our assumptions. Note that in the second
example we use a condition of the Harris type with a small set (see [10] for
definitions) which is not an ordinary atom.

2. General definitions

2.1. Basic definitions. Let

M = (X, B(X), A, B(A), A(·), Q(·|·, ·), c(·, ·))(5)

be a standard Markov control model (see [6–8]). Here the state space X and
the control set A are measurable spaces with the σ-algebras B(X) and B(A),
respectively. For each x ∈ X, the set A(x) ⊂ A is the measurable subset of
admissible controls at state x ∈ X and, in addition, the set

K := {(x, a) : x ∈ X, a ∈ A(x)} ⊂ X× A
is assumed to be a measurable subset of X × A endowed with the product
σ-algebra B(X) × B(A). The transition law Q = Q(·|·, ·) is a stochastic
kernel on X given K (i.e., Q(·|x, a) is a probability measure on X for every
(x, a) ∈ K, and Q(B|·) is a measurable function on K for every B ∈ B(X)).
Finally, the cost function c(·, ·) is a nonnegative measurable function on K.

Let F denote the collection of all measurable functions f : X → A such
that f(x) ∈ A(x) for all x ∈ X. Every function from F may be called a
stationary policy .

For every f ∈ F we define the following kernels:

∀x ∈ X ∀B ∈ B(X) Q1
f (B|x) = Qf (B|x) = Qf (B|x, f(x)),

Qnf (B|x) =
�
Qn−1
f (B|y)Qf (dy|x), n = 2, 3, . . .

For every policy f ∈ F and for all x ∈ X we now define the total expected
discounted cost by the formula

(6) Vα(x, f) = c(x, f(x)) +
∞∑

n=1

αn
�
c(y, f(x))Qnf (dy|x), c(·, ·) ≥ 0.

Recall that the number α ∈ (0, 1) is called the discount factor.
A stationary policy f∗ ∈ F is said to be optimal (for the model M) if

∀x ∈ X Vα(x, f∗) = inf
f∈F

Vα(x, f).(7)

It is possible that an optimal policy does not exist, or is unknown, or is
too expensive to use. In this case we have to use another policy, say f . (For
example, we may use an ε-optimal policy.) But if we use a nonoptimal policy,
we will have an increase of the total expected discounted cost. We measure
the increment by the following value:

∀x ∈ X ∀f ∈ F εα(x, f) := Vα(x, f)− inf
f∈F

Vα(x, f).(8)
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2.2. Approximating model. Together with the original Markov control
model M, introduced in (5), we consider another Markov control model

M̃ = (X, B(X), A, B(A), A(·), Q̃(·|·, ·), c̃(·, ·))
which will be used as approximation ofM. The modelsM and M̃ have the
same state and action sets X, A and A(·). Hence, they have the same set F
of stationary policies. But they have different transition probabilities Q and
Q̃ and different cost functions c and c̃.

Using Q̃ and c̃ instead of Q and c in formulas (5)–(8) we easily define
the values

Q̃f (·|·), Q̃nf (·|·), Ṽα(·, ·), ε̃α(x, f), f̃∗.

For example,

∀x ∈ X ∀f ∈ F ε̃α(x, f) := Vα(x, f)− inf
f∈F

Ṽα(x, f).(9)

An optimal stationary policy f̃∗ for the model M̃, if it exists, satisfies the
condition

∀x ∈ X Ṽα(x, f̃∗) = inf
f∈F

Ṽα(x, f),

which, by (9), may be rewritten as

∀x ∈ X ε̃α(x, f̃∗) = 0.(10)

2.3. The stationary index of perturbations and its generalization. If the
stationary optimal policy f̃∗ exists we may define the stationary index of
perturbations ∆∗α(x) by (2). We remark that, by (8) and (10),

(11) ∆∗α(x) ≡ Vα(x, f̃∗)− inf
f
Vα(x, f) ≡ εα(x, f̃∗) ≡ εα(x, f̃∗)− ε̃α(x, f̃∗)

for all x ∈ X.
But it is possible that the stationary optimal policy f̃∗ for the model

M̃ does not exist or is too expensive. In this case we have to use another
policy, say f . (For example, we may use an ε-optimal policy for M̃.) For the
chosen policy f we may find the value ε̃α(x, f), using the known properties
of the model M̃. But we are interested in evaluating the value εα(x, f). In
this situation a natural way is to estimate the difference

εα(x, f)− ε̃α(x, f).(12)

It follows from (11) that the difference in (12) is a more general value than
the stationary index of perturbations ∆∗α(x).

Another reason to use this natural generalization of the index of pertur-
bations is that the difference in (12) is well defined also in the case when
the optimal policy f̃∗ does not exist and so the index ∆∗α(x) is undefined.
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3. Main estimates. We write Q ∈ H0(W,β,w, ν, h) if there exist a
probability measure ν(·), functions W (·) and h(·, ·), and real numbers β and
w such that the following conditions hold:

∀x ∈ X ∀a ∈ A(x) ∀B ∈ B(X) Q(B|x, a) ≥ h(x, a)ν(B) ≥ 0,(13)
�
W (y)Q(dy|x, a) ≤ βW (x) + h(x, a)

�
W (y) ν(dy) <∞,(14)

W (x) ≥ 1,
�
W (y) ν(dy) ≤ w <∞, 0 ≤ β <∞.(15)

Remark 1. It is easy to see that assumption (13) is a part of a Harris
type condition. For example, if h(x, a) = const · IC(x), where IC(·) is the
indicator of the set C, then C is frequently called ([10]) a small set. On
the other hand, assumption (14) is a natural combination of Lyapunov and
Harris conditions.

Note that Propositions 3 and 4 in Section 6 contain examples where
Q ∈ H0(W,β,w, ν, h) with nontrivial functions h(·, ·) and sets A(·).

Assumptions (13)–(15) were used, for example, in [5, 11]. but with ad-
ditional restrictions on the value � h(y) ν(dy).

We now fix a function W (·) from (15) and introduce the norm

‖g‖ := sup
x∈X

sup
a∈A(x)

|g(x, a)|
W (x)

for any real-valued function g, defined on X. We also need the notation

%(x, a) =
�
W (x) |Q(dy|x, a)− Q̃(dy|x, a)|,(16)

where the measure |Q(·|x, a)− Q̃(·|x, a)| is the total variation of the signed
measure Q(·|x, a)− Q̃(·|x, a).

Let

C ′ := α(w + 1− αβ) min{‖c‖, ‖c̃‖},

δ0(x) :=
(
W (x) +

αw

1− α

)(‖(c− c̃)‖
1− αβ +

C ′‖%‖
(1− αβ)3

)
.

The following theorem is the main and simplest result of the paper.

Theorem 1. Assume that

Q ∈ H0(W,β,w, ν, h) and Q̃ ∈ H0(W,β,w, ν̃, h̃)

for some ν, h, ν̃, h̃ with the same W , β and w. Then

∀x ∈ X ∀f ∈ F |ε(x, f)− ε̃(x, f)| ≤ 2δ0(x).

In addition, if f̃∗ exists, then

∀x ∈ X ∆∗α(x) ≤ 2δ0(x).

We now consider several generalizations of Theorem 1. We write Q ∈
H(Wf , βf , wf , νf , hf ) for some f ∈ F if there exist a probability measure
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νf (·), functions Wf (·) and hf (·), real numbers βf and wf such that

∀x ∈ X ∀B ∈ B(X) Q(B|x, f(x)) ≥ hf (x)νf (B) ≥ 0,(17)
�
Wf (y)Q(dy|x, f(x)) ≤ βfWf (x) + hf (x)

�
Wf (y) νf (dy) <∞,(18)

Wf (x) ≥ 1,
�
Wf (y) νf (dy) ≤ wf <∞, 0 ≤ βf <∞.(19)

It is easy to see that assumptions (13)–(15) are a special case of (17)–
(19) when the values ν(·), W (·), h(·, ·), β and w do not depend on f and
hf (·) = h(· , f(·)).

Suppose now that f ∈ F is such that

Q ∈ H(Wf , βf , wf , νf , hf ) and Q̃ ∈ H(Wf , βf , wf , ν̃f , h̃f )(20)

for some νf , hf , ν̃f , h̃f with the same Wf , βf and wf . In this case we
introduce the following simplified notations:

cf (x) = c(x, f(x)), c̃f (x) = c̃(x, f(x)),

%f (x) =
�
Wf (x) |Q(dy|x, f(x))− Q̃(dy|x, f(x))|.

For any real-valued function g defined on X we will use the norm

‖g‖f := sup
x∈X

|g(x)|
Wf (x)

.

Let

Cf := min{‖cf‖f , ‖c̃f‖f}, wα,f := α(w + 1− αβf ),

δ(x, f) :=
(
Wf (x) +

αwf
1− α

)(‖(cf − c̃f )+‖f
1− αβf

+
wα,fCf‖%f‖f
(1− αβf )3

)
,

δ̃(x, f) :=
(
Wf (x) +

αwf
1− α

)(‖(c̃f − cf )+‖f
1− αβf

+
wα,fCf‖%f‖f
(1− αβf )3

)
.

Theorem 2. Suppose that assumption (20) holds for all f ∈ F. Then

∀f ∈ F ∀x ∈ X εα(x, f)− ε̃α(x, f) ≤ δ(x, f) + sup
f
δ̃(x, f),(21)

∀f ∈ F ∀x ∈ X ε̃α(x, f)− εα(x, f) ≤ δ̃(x, f) + sup
f
δ(x, f).(22)

In addition, if f̃∗ exists, then

∀x ∈ X ∆∗α(x) ≤ δ(x, f̃∗) + sup
f
δ̃(x, f).

Theorem 3. Suppose that f∗ and f̃∗ exist and that assumption (20)
holds for f = f∗ and for f = f̃∗. Then

∀x ∈ X ∆∗α(x) ≤ δ(x, f̃∗) + δ̃(x, f∗).
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Theorems 1–3 will be proved at the end of §4 as immediate corollaries
of Lemmas 1–4.

4. Main lemmas. Introduce the notations

∆α(x, f) = Vα(x, f)− Ṽα(x, f), ∆̃α(x, f) = Ṽα(x, f)− Vα(x, f).

Lemma 1. If f∗ and f̃∗ exist then

∆∗α(x) ≤ ∆α(x, f̃∗) + ∆̃α(x, f∗).

Proof. This is evident because

∆∗α(x) = Vα(x, f̃∗)− Vα(x, f∗)

= ∆α(x, f̃∗) + (Ṽα(x, f̃∗)− Ṽα(x, f∗)) + ∆̃α(x, f∗)

≤ ∆α(x, f̃∗) + ∆̃α(x, f∗).

Lemma 2. For all x ∈ X and f ∈ F,

εα(x, f) ≤ ε̃α(x, f) +∆α(x, f) + sup
f
∆̃α(x, f).(23)

Proof. For arbitrary fn and f̃N we have

Vα(x, f)− Vα(x, fn) = Vα(x, f)− Ṽα(x, f) + Ṽα(x, f)− Ṽα(x, f̃N )

+ Ṽα(x, f̃N )− Ṽα(x, fn) + Ṽα(x, fn)− Vα(x, fn).

Hence

Vα(x, f)− Vα(x, fn) = ∆α(x, f) + (Ṽα(x, f)− Ṽα(x, f̃N ))(24)

+ (Ṽα(x, f̃N )− Ṽα(x, fn)) + ∆̃α(x, fn).

Let the functions f̃N be such that

Ṽα(x, f̃N )→ inf
f
Ṽα(x, f) as N →∞.

Then

Ṽα(x, f)− Ṽα(x, f̃N )→ Ṽα(x, f)− inf
f
Ṽα(x, f) = ε̃α(x, f),

Ṽα(x, f̃N )− Ṽα(x, fn)→ inf
f
Ṽα(x, f)− Ṽα(x, fn) ≤ 0,

and so we may rewrite (24) in the form

Vα(x, f)− Vα(x, fn) ≤ ∆α(x, f) + ε̃α(x, f) + ∆̃α(x, fn).(25)

But ∆̃α(x, fn) ≤ supf ∆̃α(x, f), and thus the desired inequality (23) follows
from (25) if we choose fn such that

Vα(x, fn)→ inf
f
Vα(x, f) as n→∞.



294 R. Montes-de-Oca et al.

Lemma 3. For all x ∈ X and f ∈ F,

ε̃α(x, f) ≤ εα(x, f) + ∆̃α(x, f) + sup
f
∆α(x, f).

The proof is similar to that of Lemma 2.

Lemma 4. For all x ∈ X and f ∈ F,

∆α(x, f) ≤ δ(x, f), ∆̃α(x, f) ≤ δ̃(x, f).

This assertion is a special case of Corollary 2 in [6].
We may now prove the theorems of §3. Theorem 3 follows immediately

from Lemmas 1 and 4. Lemmas 2 and 4 imply the first assertion (21) of
Theorem 2 and, similarly, Lemmas 3 and 4 yield the second assertion (22).
The third assertion follows from Lemma 4 and the representation (11).

Theorem 1 is an evident corollary of Theorem 2 for the case where the
probability measures νf , functions Wf and real numbers βf and wf do not
depend on f .

5. Example 1. In this section we present a generalization of the ex-
ample provided in Section 5 of [2] (see also [5]). The version that we give
here satisfies all assumptions of Theorem 1.

5.1. The model. Consider two controlled Markov processes {Φn, an} and
{Φ̃n, ãn}, with state space X = [0,∞), defined by the following recursive
equations:

Φ0 = x, Φn+1= (Φn + anξn − ηn)+, n = 0, 1, 2, . . . ,

Φ̃0 = x, Φ̃n+1= (Φ̃n + ãnξ̃n − η̃n)+, n = 0, 1, 2, . . . ,

where the controls an and ãn are real numbers and x ∈ X is a given state.

Assumption 1. Each of the two sequences of vectors

(ξ, η), (ξ1, η1), (ξ2, η2), . . . and (ξ̃, η̃), (ξ̃1, η̃1), (ξ̃2, η̃2), . . .

consists of independent and identically distributed random vectors with non-
negative first components ξ ≥ 0 and ξ̃ ≥ 0.

In this case, for all x ∈ X and B ∈ B we may define the kernels

Q(B|x, a) := P(Φn+1 ∈ B |Φn = x, an = a)

= P((x+ aξ − η)+ ∈ B),

Q̃(B |x, a) := P(Φ̃n+1 ∈ B | Φ̃n = x, ãn = a)

= P((x+ aξ̃ − η̃)+ ∈ B),

(26)

where B denotes the Borel σ-algebra of X = [0,∞).
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5.2. Main conditions

Assumption 2. There exists a real number θ such that

∀x ∈ X A(x) ⊂ (−∞, θ] ≡ A.
For real a and q put

βq,a := max{Eeq(aξ−η),Eeq(aξ̃−η̃)}.
Assumption 3. There exists a real number q such that

q > 0 and βq,θ < 1.(27)

Remark 2. Assume that

θEξ < Eη, θEξ̃ < Eη̃,

Eeλ(θξ−η) <∞, Eeλ̃(θξ̃−η̃) <∞
for some λ > 0 and λ̃ > 0. It is well known (see, for example, [2, p. 232]) that
in this case there exists a real number q > 0 such that Assumption 3 holds.
On the other hand, we may obtain (27) also in the case where Eη = ∞ or
Eη̃ =∞.

Assumption 4. The random vectors (ξ, η) and (ξ̃, η̃) have densities
g(·, ·) and g̃(·, ·), respectively , with respect to the Lebesgue measure in R×R.

For real a and q put

rq,a =
∞�

0

∞�

0

max{eq(ax−y), 1}|g(x, y)− g̃(x, y)| dx dy.(28)

5.3. Results

Proposition 1. If Assumptions 1–4 hold then the kernels Q(·|·, ·) and
Q̃(·|·, ·), introduced in (26), satisfy all the assumptions and assertions of
Theorem 1 with

W (x) := eqx, β := βq,θ, w := 1, ‖%‖ ≤ rq,θ.(29)

Suppose now that, in addition to Assumptions 1–4,

∀x ≥ 0 ∀a ≤ θ c(x, a) = c̃(x, a) and |c(x, a)| ≤ Ceqx.
In this case the assertion of Proposition 1 may by written in the following
very simple form:

∀x ∈ X ∀f ∈ F |εα(x, f)− ε̃α(x, f)| ≤ rq,θC
α(2− αβq,θ)
(1− αβq,θ)3

(
eqx +

α

1− α

)
.

5.4. The rest of the section is devoted to the proof of Proposition 1.

Lemma 5. If Assumptions 2 and 3 hold then

Q ∈ H0(W,βq,θ, 1, ν0, h) and Q̃ ∈ H0(W,βq,θ, 1, ν0, h̃)
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where ν0 is the Dirac measure concentrated at x = 0, and

W (x) = eqx, h(x, a) := P(x+ aξ − η ≤ 0), h̃(x, a) := P(x+ aξ̃ − η̃ ≤ 0).

Proof. This follows from Lemma 9 of [11].

For real a and q put

ga(z) =
∞�

0

g(x, ax− z) dx, g̃a(z) =
∞�

0

g̃(x, ax− z) dx,(30)

r′q,a =
∞�

−∞
max{eqz), 1}|ga(z)− g̃a(z)| dz.(31)

Lemma 6. If Assumption 4 holds and W (x) ≡ eqx for some q > 0 then

∀x ≥ 0 ∀a ≤ θ %(x, a)/W (x) ≤ r′q,a.
This assertion is a special case of Lemma 10 from [11] because the func-

tions ga(z) and g̃a(z), defined in (30), are the densities of the random vari-
ables aξ − η and aξ̃ − η̃, respectively.

Lemma 7. If Assumption 4 holds then

∀q ∈ R ∀a ∈ R r′q,a ≤ rq,a.
Proof. The definitions (30) and (31) yield

|ga(z)− g̃a(z)| ≤
∞�

0

|g(x, ax− z)− g̃a(x, ax− z)| dx.

Hence,

r′q,a ≤
∞�

0

dx

∞�

−∞
max{eqz, 1}|g(x, ax− z)− g̃a(x, ax− z)| dz.(32)

We now put z = ax− y in the second integral of (32) and recall (28).

Proof of Proposition 1. By Lemma 5 all assumptions of Theorem 1 are
satisfied with the W , β and w given in (29). Thus, we need only prove the
last inequality in (29). But it follows from (28) and Lemmas 6 and 7 because

∀q > 0 ∀x ≥ 0 ∀a ≤ θ %(x, a)/W (x) ≤ r′q,a ≤ rq,a ≤ rq,θ.

6. Example 2. In this section we present another example which illus-
trates Theorem 1.

6.1. The model. Let X = A = R. For a given state x ∈ X consider the
recurrence equations:

Φ0 = x, Φn+1= G(Φn, an) + ζn, n = 0, 1, 2, . . . ,

Φ̃0 = x, Φ̃n+1= G(Φ̃n, an) + ζ̃n, n = 0, 1, 2, . . .
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Assumption 5. Each of the two sequences

ζ, ζ1, ζ2, . . . and ζ̃, ζ̃1, ζ̃2, . . .

consists of independent and identically distributed random variables with
common densities g and g̃, respectively.

In this case, for all x ∈ X and B ∈ B we may define the kernels

Q(B|x, a) := P(Φn+1 ∈ B |Φn = x, an = a) =
�

B

g(s−G(x, a)) ds,

Q̃(B|x, a) := P(Φ̃n+1 ∈ B | Φ̃n = x, an = a) =
�

B

g̃(s−G(x, a)) ds,
(33)

where B denotes the Borel σ-algebra of X = [0,∞).
For all real m ≥ 0 and s ∈ R define

gm(s) = inf
s−m≤t≤m+s

g(t), g̃m(s) = inf
s−m≤t≤m+s

g̃(t).(34)

Later on we use the following natural assumption:

Assumption 6. A real number m > 0 is such that

τm :=
∞�

−∞
gm(s) ds > 0 and τ̃m :=

∞�

−∞
g̃m(s) ds > 0.

Remark 3. Suppose that the density function g(·) is continuous at some
point s0 such that g(s0) > 0. Then τm > 0 for some m > 0. If, in addition,
the function g(·) has at most countably many points of discontinuity, then

lim
m→0

τm = lim
m→0

∞�

−∞
gm(s) ds =

∞�

−∞
g(s) ds = 1.(35)

6.2. The simplest result

Assumption 7. Suppose that G(·, ·) is a measurable function and that
Borel sets A(x) ∈ B are such that

∀x ∈ X ∀a ∈ A(x) |G(x, a)| ≤ m,
where m is a positive number.

Proposition 2. If Assumptions 5 and 7 are satisfied then the kernels
Q(·|·, ·) and Q̃(·|·, ·), introduced in (33), satisfy all the assumptions and as-
sertions of Theorem 1 with

W (x) ≡ 1, β := min{1− τm, 1− τ̃m}, w := 1

and , in addition,

‖%‖ =
∞�

−∞
|g(s)− g̃(s)| ds.(36)
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Remark 4. In this case due to the condition w(x) ≡ 1, we need the cost
functions to be bounded.

6.3. Consider now a more complicated situation.

Assumption 8. Suppose that G(·, ·) is a measurable function and that
Borel sets A(x) ∈ B are such that

∀x ∈ X ∀a ∈ A(x) |G(x, a)| ≤ γ|x|,
where γ is a positive number.

Introduce the functions

Wl(x) ≡Wk,l(x) := 1 + k|x|l, x ∈ R, k ≥ 0, l = 1, 2.(37)

Fix k in (37) and set, for all m > 0 and l = 1, 2,

τl,m :=
∞�

−∞
|s|lgm(s) ds, τ̃l,m :=

∞�

−∞
|s|lg̃m(s) ds,

(38) βl,m = max
{

(1− τm) + k(E|ζ|l − τl,m),
1 + kE|ζ|l + kml

γl + kml
γl, γl

}
,

(39) β̃l,m = max
{

(1− τ̃m) + k(E|ζ̃|l − τ̃l,m),
1 + kE|ζ̃|l + kml

γl + kml
γl, γl

}
,

(40) wl,m = 1 + kτl,m/τm, w̃l,m = 1 + kτ̃l,m/τ̃m.

Moreover, let

rl :=
∞�

−∞
|s|l|g(s)− g̃(s)| ds, l = 0, 1, 2.(41)

Proposition 3. Assume that Assumptions 5 and 8 hold and that

E|ζ|+ E|ζ̃| <∞.(42)

Then the kernels Q(·|·, ·) and Q̃(·|·, ·) introduced in (33) satisfy all the as-
sumptions and assertions of Theorem 1 with

(43) W (·) := W1(·), β := max{β1,m, β̃1,m}, w := max{w1,m, w̃1,m}
for all m > 0, where k ≥ 0 is a fixed number. In addition,

‖%‖ ≤ max{r0 + kr1, γr0}.(44)

Proposition 4. Assume that Assumptions 5 and 8 hold and that , in
addition,

Eζ = Eζ̃ = 0, Eζ2 + Eζ̃2 <∞.(45)

Then the kernels Q(·|·, ·) and Q̃(·|·, ·) introduced in (33) satisfy all the as-
sumptions and assertions of Theorem 1 with

(46) W (·) := W2(·), β := max{β2,m, β̃2,m}, w := max{w2,m, w̃2,m},
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for all m > 0, where k ≥ 0 is fixed. In addition,

‖%‖ ≤ max{r0 + 2kr2, 2γ2r0}.(47)

Remark 5. Suppose that the functions g(·) and g̃(·) are continuous or
have at most countably many points of discontinuity and

E|ζ|l + E|ζ̃|l <∞ for some l ≥ 0.(48)

Then for every fixed k ≥ 0 we have

∀β > 0 ∃m > 0 ∃γ > 0 βl,m ≤ β and β̃l,m ≤ β.(49)

Thus, the numbers β in (43) and (46) may be sufficiently small.

To prove (49) we first need to remark that

lim
m→0

τl,m = lim
m→0

∞�

−∞
|s|lgm(s) ds =

∞�

−∞
|s|lg(s) ds = E|ζ|l <∞(50)

by (48). Using (35) and (50) we obtain

β
(1)
l,m := (1− τm) + k(E|ζ|l − τl,m)→ 0 as m→ 0.(51)

Hence, by (51),
∀β > 0 ∃mβ > 0 β

(1)
l,mβ
≤ β.(52)

It now follows from (38) and (52) that

βl,mβ
≤ β for γl ≤ βkml

1 + kE|ζ|l + kml
.(53)

Similarly

β̃l,m̃β ≤ β for some m̃β > 0 and γl ≤ βkm̃l

1 + kE|ζ̃|l + km̃l
.(54)

Assertion (49) is an immediate consequence of (53) and (54).

6.4. Key lemmas. Let

Im(x, a) =
{

1 if |G(x, a)| ≤ m,
0 if |G(x, a)| > m,

(55)

be the indicator of the set {(x, a) : |G(x, a)| ≤ m}. In this subsection we
consider a function W and a number m ≥ 1 such that

∀x ∈ R W (x) ≥ 1 and wm :=
∞�

−∞
W (x)gm(x) dx <∞.(56)

For some β ≥ 0 put

R(x, a) := EW (G(x, a) + ζ)− wmIm(x, a)− βW (x).(57)

We will use the following assumption:

∀x ∈ R ∀a ∈ A(x) R(x, a) ≤ 0.(58)
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Lemma 8. If Assumption 6 and conditions (56) and (58) hold then there
exist a function hm(·, ·) and a probability measure νm(·) such that

Q ∈ H0(W,β,wm/τm, hm, νm).(59)

Proof. First of all we remark that
�
W (y)Q(dy|x, a) = EW (G(x, a) + ζ).

Using (34) and (55) we deduce from (33) that

Q(B|x, a) ≥ Im(x, a)
�

B

g(s−G(x, a)) ds ≥ Im(x, a)
�

B

gm(s) ds(60)

because
g(s−G(x, a)) ≥ gm(s) if |G(x, a)| ≤ m.

Denote by νm(·) the measure on (R,B) with density gm(s)/τm, and let

∀x ∈ R ∀a ∈ A(x) hm(x, a) := τmIm(x, a).

It is easy to see that

Im(x, a)
�

B

gm(s) ds ≡ hm(x, a)ν(B),(61)

�
W (y) ν(dy) = wm/τm,(62)

h(x, a)
�
W (y) ν(dy) ≡ wm · Im(x, a).(63)

To prove (59) we now need to verify conditions (13)–(15). But (15) fol-
lows from (56) with w from (62), (13) is a special case of (60) and (61),
and, finally, (14) may be rewritten in the simple form (58) by using (59)
and (63).

Lemma 9. If Assumption 5 holds then

%(x, a) =
∞�

−∞
W (s+G(x, a))|g(x)− g̃(s)| ds.(64)

Proof. It follows from definitions (16) and (33) that

%(x, a) =
∞�

−∞
W (y)|g(y −G(x, a))− g̃(y −G(x, a))| dy.(65)

It is evident that (65) may be rewritten in the form (64).

6.5. Proof of Proposition 2

Lemma 10. If W (·) ≡ 1 then there exist functions hm, h̃m and proba-
bility measures νm and ν̃m such that

Q ∈ H0(1, 1− τm, 1, hm, νm),(66)

Q̃ ∈ H0(1, 1− τ̃m, 1, h̃m, ν̃m).(67)
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Proof. It follows from the definition of the class H0 that always

Q ∈ H0(1, 1, 1, 0, ν) with W ≡ 1 and h ≡ 0(68)

for all measures ν. Hence, (68) yields (66) in the case when τm = 0, whereas
for τm > 0, (66) is a consequence of Lemma 8. Similar arguments imply
(67).

Thus, to obtain Proposition 2 we need only prove equality (36). But it
follows immediately from Lemma 9 with W ≡ 1.

6.6. Auxiliary lemmas. In the rest of the section we consider the case
when Assumptions 5, 6, 8 and condition (48) hold with

W (x) ≡ 1 + k|x|l and wm = τm + kτl,m.(69)

In this case

∀x ∈ X ∀a ∈ A(x) Im(x, a) ≥ Im/γ(x) =
{

1 if |x| ≤ γ/m,
0 if |x| > γ/m,

(70)

because

|G(x, a)| ≤ γ|x| ≤ m if |x| ≤ γ/m.
For l ≥ 0 introduce

Rl(x) = 1 + kE|ζ|l − Im/γ(x)(τm + kτl,m)− (β − γl)k|x|l − β.(71)

Our first aim is to prove the following inequality:

∀x ∈ X ∀a ∈ A(x) R(x, a) ≤ Rl(x).(72)

Lemma 11. If condition (42) holds then inequality (72) is valid for l = 1.

Proof. This follows immediately from (57), (69)–(71) and

EW (G(x, a) + ζ) = 1 + kE|G(x, a) + ζ| ≤ 1 + kγ|x|+ kE|ζ|.(73)

Lemma 12. If conditions (45) are true then inequality (72) holds for
l = 2.

Proof. Use again (57), (69)–(73) and the following fact:

EW (G(x, a) + ζ) = 1 + kG2(x, a) + kEζ2

≤ 1 + kγ2x2 + kEζ2.

Lemma 13. If β ≤ βl,m then

∀x ∈ X ∀a ∈ A(x) Rl(x) ≤ 0.

Recall that the value βl,m was defined in (38).
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Proof. If |x| ≤ m/γ then Im/γ(x) = 1 and (β−γl)|x| ≥ 0. Hence, in this
case we need to verify the inequality

Rl(x) ≤ Rl(0) = (1− τm) + k(E|ζ|l − τl,m)− β ≤ 0.(74)

On the other hand, if |x| > m/γ then (β−γl)|x|l ≥ (β−γl)ml/γl and hence
we must have

Rl(x) ≤ Rl(m/γ + 0) = 1 + kE|ζ|l + kml − β(1 + kml/γl) ≤ 0.(75)

Thus, the value βl,m, defined in (38), is the minimal value of the β for which
we have, simultaneously, inequalities (74), (75) together with β ≥ γ l.

6.7. Proof of Proposition 3

Lemma 14. If all the conditions of Proposition 3 hold then there exist
hm, h̃m, νm and ν̃ such that

Q ∈ H0(W1, β1,m, w1,m, hm, νm),(76)

Q̃ ∈ H0(W1, β̃1,m, w̃1,m, h̃m, ν̃m),(77)

where the values β1,m, β̃1,m, w1,m and w̃1,m were defined in (38)–(40).

Proof. It follows from Lemmas 11 and 13 that

∀x ∈ X ∀a ∈ A(x) R(x, a) ≤ R1(x) if β = β1,m.(78)

Now (78) and Lemma 8 yield (76). Similar arguments imply (77).

Thus, to obtain Proposition 3 we need only prove

Lemma 15. If Assumption 8 and conditions (43) hold then inequality
(44) is valid.

Proof. Assumption 8 and Lemma 9 with W (x) ≡ 1 + k(x) yield

%(x, a) ≤
∞�

−∞
(1 + kγ|x|+ k|s|)|g(s)− g̃(s)| ds = (1 + kγ|x|)r0 + kr + 1,

where the values r0 and r1 were defined in (41). Hence,

‖%‖ = sup
x∈X

sup
a∈A(x)

%(x, a)
W (x)

≤ sup
x∈R

(1 + kγ|x|)r0 + kr1

1 + k|x| .(79)

It is easy to verify that the right hand sides in (44) and (79) are equal.

6.8. Proof of Proposition 4

Lemma 16. If all the assumptions of Proposition 4 hold then

Q ∈ H0(W2, β2,m, w1,m, hm, νm), Q̃ ∈ H0(W2, β̃2,m, w̃2,m, h̃m, ν̃m),

for some hm, h̃m, νm and ν̃m.
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The proof is similar to that of Lemma 14 and is based on Lemmas 8, 12
and 13 for l = 2. Hence, to obtain Proposition 4 we need only prove

Lemma 17. If Assumption 8 and conditions (46) are valid then inequal-
ity (47) is true.

Proof. Assumption 8 and Lemma 9 with W (x) = 1 + kx2 yield

%(x, a) ≤
∞�

−∞
(1 + k(γ|x|+ |s|)2)|g(s)− g̃(s)| ds

≤
∞�

−∞
(1 + 2k(γ2x2 + s2))|g(s)− g̃(s)| ds = (1 + 2kγ2x2)r0 + 2kr2,

where the values r0 and r2 were defined in (41). Thus,

‖%‖ = sup
x∈X

sup
a∈A(x)

%(x, a)
W (x)

≤ sup
x∈R

(1 + 2kγ2x2)r0 + 2kr2

1 + kx2 .(80)

The right hand in (80) is the same as that in (47).
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México, D.F. 09340, Mexico
E-mail: momr@xanum.uam.mx

Facultad de Ciencias F́ısico Matemáticas
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