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MONOTONICITY OF BAYES ESTIMATORS

Abstract. Let X = (X1, . . . , Xn) be a sample from a distribution with
density f(x; θ), θ ∈ Θ ⊂ R. In this article the Bayesian estimation of the
parameter θ is considered. We examine whether the Bayes estimators of θ are
pointwise ordered when the prior distributions are partially ordered. Various
cases of loss function are studied. A lower bound for the survival function of
the normal distribution is obtained.

1. Preliminaries. Let X and Y be real valued random variables with
distribution functions F and G, respectively, and density functions f and g, if
they exist. Denote by F−1 the quantile function, by F̄ the survival function,
by SX the support, and by lX and uX the left and right endpoints of the
support of X, respectively.

We say that X is smaller than Y :

• in the (usual) stochastic order (X ≤st Y ) if F (x) ≥ G(x) for all x ∈ R;
• in the hazard rate order (X ≤hr Y ) if Ḡ(x)/F̄ (x) is increasing in x ∈

(−∞,max(uX , uY ));
• in the reverse hazard rate order (X ≤rh Y ) if G(x)/F (x) is increasing

in x ∈ (min(lX , lY ),∞);
• in the likelihood ratio order (X ≤lr Y ) if g(x)/f(x) is increasing in
x ∈ SX ∪ SY .

We say that X and Y are pointwise ordered (X ≤ Y ) if X and Y are
defined on the same probability space (Ω,F , P ) and X(ω) ≤ Y (ω) for all
ω ∈ Ω.
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The following relations among the above defined stochastic orders are
well known:

X ≤lr Y ⇒ X ≤hr Y

⇓ ⇓
X ≤rh Y ⇒ X ≤st Y ⇐ X ≤ Y

We also write F ≤S G instead of X ≤S Y , where S is some stochastic order.
Recall the following definition of a weighted distribution.

Definition 1.1. Let X be a random variable with distribution func-
tion F and let w : R→ R+ be a function for which 0 < E[w(X)] <∞. The
distribution function

(1.1) Fw(x) =
1

E[w(X)]

x�

−∞
w(u) dF (u)

is called the weighted distribution related to F with weight function w. A ran-
dom variable Xw with distribution Fw is called a weighted version of X.

Now we discuss the relationship between weighted distributions and
Bayesian estimation.

Let X be a random variable with density f(x; θ), θ ∈ Θ, absolutely
continuous with respect to a σ-finite measure µ. We assume that θ is a value
of a random variable ϑ with distribution function G and density g absolutely
continuous with respect to ν. This distribution is called the prior distribution
of θ. Denote by f(θ |x) and F (θ |x) the density and distribution function of
the conditional distribution of ϑ given X = x, respectively.

From the Bayes formula it follows that

(1.2) f(θ |x) =
f(x; θ)g(θ)

m(x)
,

where m(x) = E[f(x;ϑ)] is the density of the marginal distribution of X
with respect to the measure µ.

From the general theory of Bayesian estimation it is known (see Ferguson
[4]) that the Bayes estimator of θ under squared error loss is given by

(1.3) θ̂(x) =
�

Θ

θf(θ |x) dν(θ).

Thus, this estimator is the mean of the posterior distribution. In what fol-
lows we also consider Bayesian estimation under weighted squared error loss,
uniform loss and LINEX loss function.

We assume that all densities considered are absolutely continuous with
respect to the counting measure or Lebesgue measure. Assume, without loss
of generality, that X is a sufficient statistic for the family {Pθ, θ ∈ Θ}.
Suppose that G1 and G2 (the prior distribution functions of θ) have density
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functions g1 and g2, respectively. Denote by θ̂1 and θ̂2 the Bayes estimators
of θ if the prior distributions are G1 and G2, respectively.

2. Main results. Our first aim is to examine the stochastic ordering of
estimators of the form (1.3) when the prior distributions are also ordered.

We show that under some assumptions about the weight function and
prior distributions the Bayes estimators are stochastically ordered. In fact,
we show that they are pointwise ordered, i.e. θ̂1(x) ≤ θ̂2(x) for all x (we
always assume that x belongs to the set of values of X).

Assume now that we estimate under squared error loss.

Theorem 2.1. If G1 ≤lr G2, then the corresponding Bayes estimators
of θ are pointwise ordered.

Proof. First we prove that F1(· |x) ≤lr F2(· |x) for all x. The correspond-
ing densities of the posterior distributions are

fi(θ |x) =
f(x; θ)gi(θ)

mi(x)
, i = 1, 2.

From the assumption it follows that g2(θ)/g1(θ) is increasing in θ. Hence,
f2(θ |x)/f1(θ |x) is also increasing in θ for all x. Thus, we have shown that
the posterior distributions are ordered with respect to the likelihood ratio
order and hence they are also ordered with respect to the usual stochastic
order.

We know that stochastically ordered distributions have ordered means,
provided they exist. Hence θ̂1(x) ≤ θ̂2(x) for all x.

From Theorem 2.1 it follows that in order to obtain stochastic ordering
of Bayes estimators it suffices to order posterior distributions with respect
to the usual stochastic order. On the other hand, the assumption of that
theorem is so strong that ordering of estimators holds for any weight function
f(x; θ). Below, we relax the strong assumption that the prior distributions
are ordered with respect to the likelihood ratio order. First we recall the
following result, due to Bartoszewicz and Skolimowska [3].

Lemma 2.2.

(a) Let w be an increasing function. If X ≤hr Y , then Xw ≤hr Yw.
(b) Let w be a decreasing function. If X ≤rh Y , then Xw ≤rh Yw.

The crucial observation in our study is the following corollary.

Corollary 2.3. The posterior density (1.2) is the density of the
weighted version of ϑ with weight function f(x; θ).

Treating the problem of ordering of posterior distributions as a problem
of ordering of weighted distributions one can formulate the following theorem
which is a direct consequence of Lemma 2.2.
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Theorem 2.4.

(a) If f(x; θ) is increasing in θ for all x and G1 ≤hr G2, then the corre-
sponding Bayes estimators of θ are pointwise ordered.

(b) If f(x; θ) is decreasing in θ for all x and G1 ≤rh G2, then the corre-
sponding Bayes estimators of θ are pointwise ordered.

Observe that the likelihood function as a weighted function has often a
local maximum so it is not monotonic. Therefore Theorem 2.4 has limited
applications.

Now we give two special cases when we can use Theorem 2.4, because
the likelihood functions are in fact monotonic in θ.

Case (a): Shifted exponential distribution with density f(x; θ) =
e−(x−θ)1(θ,∞)(x), θ ∈ R. Then the likelihood function L is

L(x1, . . . , xn; θ) =

n∏
i=1

f(xi; θ) = exp
(
nθ −

n∑
i=1

xi

)
1{θ < x1:n}.

Thus it is increasing in θ ∈ (−∞, x1:n).

Case (b): Uniform distribution on (0, θ), θ > 0. Then the likelihood
function L is

L(x1, . . . , xn; θ) =
n∏
i=1

f(xi; θ) =
1

θn

n∏
i=1

1(xi,∞)(θ) =
1

θn
1{θ > xn:n}.

Thus it is decreasing in θ ∈ (xn:n,∞).
Using this method, based on weighted distributions, we cannot obtain

ordering of Bayes estimators if we only assume that the prior distributions
are ordered in the usual stochastic order. This situation is described in the
following example.

Example 2.5. Let X be a random variable with uniform distribution
U(0; θ), where θ ∈ {1, 2, 3}. Assume that ϑ has the following distribution:

Pλ(ϑ = 1) = p1 = 1
3 −

1
3λ, Pλ(ϑ = 2) = p2 = 1

3 + 1
3λ, Pλ(ϑ = 3) = p3 = 1

3 ,

where λ ∈ (0, 1). It is easy to see that the family of distributions {Pλ,
λ ∈ (0, 1)} is stochastically increasing in θ but is not ordered with respect
to the hazard rate order. Indeed, for example

F̄ (0;λ2)

F̄ (0;λ1)
= 1,

F̄ (1;λ2)

F̄ (1;λ1)
=

2
3 + 1

3λ2
2
3 + 1

3λ1
,

F̄ (2;λ2)

F̄ (2;λ1)
= 1.

Thus, the function F̄ (t;λ2)/F̄ (t;λ1) is not monotonic for t ∈ (−∞, 3) when
λ1 < λ2.
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First we determine the marginal distribution of the random variable X:

m(x) = p11(0,1)(x) + 1
2p21(0,2)(x) + 1

3p31(0,3)(x)

=


p1 + 1

2p2 + 1
3p3 when x ∈ (0, 1),

1
2p2 + 1

3p3 when x ∈ (1, 2),

1
3p3 when x ∈ (2, 3).

The posterior distribution is

P (ϑ = i | X = x) =
1
i pi1(0,i)(x)

m(x)
, i ∈ {1, 2, 3}.

Thus, the Bayes estimator of θ under squared error loss is

θ̂(x) =
1

m(x)

(
p11(0,1)(x) + p21(0,2)(x) + p31(0,3)(x)

)

=


18

11− 3λ
when x ∈ (0, 1),

12 + 6λ

5 + 3λ
when x ∈ (1, 2),

3 when x ∈ (2, 3).

Now let λ1 < λ2, λ1, λ2 ∈ (0, 1). Thus the inequality θ̂1(x) ≤ θ̂2(x) does not
hold for all x ∈ (0, 3).

Now we consider the ordering of the Bayes estimators in a particular
case, when the density f belongs to a one-parameter exponential family, i.e.
f(x; θ) = c(θ)h(x) exp(θx). Thus the Bayes estimator of θ under squared
error loss is (see Lehmann and Casella [6])

(2.1) θ̂(x) =
∂

∂x
logm(x)− ∂

∂x
log h(x).

Hence, the inequality θ̂1(x) ≤ θ̂2(x) for all x is equivalent to m2(x)/m1(x)
being increasing in x, i.e. mi(x), i ∈ {1, 2}, is TP2 in (i, x) (for definition of
TP2 see Karlin [5]).

Corollary 2.6. If mi(x) =
	
Θ f(x; θ)gi(θ) dθ is TP2, i ∈ {1, 2}, then

θ̂1(x) ≤ θ̂2(x) for all x, where the Bayes estimator of θ is given by (2.1).

In particular, when G1 ≤lr G2, then mi(x) is TP2, i ∈ {1, 2}. It follows
directly from the Basic Composition Formula (see also Karlin [5]) since both
f(x; θ) and gi(θ) are TP2.

Until now we have only considered stochastic ordering of the Bayes esti-
mators under squared error loss. The following theorem is known (see Fer-
guson [4]).
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Theorem 2.7. If the loss function is

(2.2) L(θ, a) =

{
(θ − a)k0 if θ − a ≥ 0,

(a− θ)k1 if θ − a < 0,

where k0 and k1 are positive constants, then the Bayes estimator of θ is the
quantile of order k0/(k0 + k1) of the posterior distribution.

It is well known that if X ≤st Y , then F−1X (p) ≤ F−1Y (p) for all p ∈ (0, 1).
Hence, we have the following conclusion.

Corollary 2.8. Theorems 2.1 and 2.4 remain valid when θ̂ is the Bayes
estimator under the loss function (2.2).

Now we consider the following generalization of the squared error loss:

(2.3) L(a, θ) = χ(θ)[γ(θ)− a]2, χ(θ) > 0.

It is well known (see e.g. Ferguson [4]) that the Bayes estimator under
weighted squared error loss is

(2.4) θ̂(x) =
E[χ(θ)γ(θ) |x]

E[χ(θ) |x]

provided that all posterior expectations in (2.4) exist and E[χ(θ) |x] 6= 0.
Now we prove an auxiliary lemma.

Lemma 2.9. Let f1, f2, g1, g2 be nonnegative functions such that f2/f1
and g2/g1 are increasing functions. Then

	
f1(x)g1(x) dx	
f2(x)g1(x) dx

≥
	
f1(x)g2(x) dx	
f2(x)g2(x) dx

,

provided all integrals exist.

Proof. Monotonicity of f2/f1 is equivalent to the kernel fi(x) being TP2

in (i, x) ∈ {1, 2} × R. Similarly, gj(x) is TP2 in (j, x) ∈ {1, 2} × R. By the
Basic Composition Formula the integral

	
fi(x)gj(x) dx is TP2 in (i, j) ∈

{1, 2} × {1, 2}, which is equivalent to the assertion of the lemma.

Now we give a result on ordering of Bayes estimators under the loss
function (2.3).

Theorem 2.10. If G1 ≤lr G2 and the function γ in (2.3) is increasing
and nonnegative on Θ, then the corresponding Bayes estimators of θ under
the loss function (2.3) are pointwise ordered.

Proof. From the assumptions it follows that the posterior distributions
are ordered with respect to the likelihood ratio order. Hence the conclusion
follows immediately from Lemma 2.9 and formula (2.4).
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Before we consider the comparison of Bayes estimators under the uniform
loss function we recall the definition of unimodality. In further considera-
tions we will work only with distributions having densities with respect to
Lebesgue measure.

Definition 2.11. A function f : [a, b] → R is unimodal with mode
M ∈ [a, b] if f is increasing on [a,M ] and decreasing on [M, b]. We say that
f is strictly unimodal if it has a single mode.

Definition 2.12. We say that a random variable X is (strictly) uni-
modal if its density is (strictly) unimodal on the support SX .

The following lemma gives a relation between the modes of two strictly
unimodal random variables which are ordered in the likelihood ratio order.

Lemma 2.13. Let X and Y be strictly unimodal random variables with
densities f and g, respectively. Let M1 and M2 be the modes of X and Y ,
respectively. If X ≤lr Y , then M1 ≤M2.

Proof. Suppose, on the contrary, that M1 > M2. Observe that

g(M1)f(M2) ≥ g(M2)f(M1) > g(M2)f(M2).

The first inequality follows sinceX ≤lr Y . The second inequality follows from
f(M1) > f(M2), since M1 is the mode of X. We infer that g(M1) > g(M2),
which is impossible, since M2 is the mode of Y .

Example 2.14. The condition X ≤lr Y in Lemma 2.13 cannot be re-
laxed. Let X be a random variable with distribution function

(2.5) G1(θ) =

{
1− e−θ2 , θ > 0,

0, θ ≤ 0,

and let Y be a random variable with distribution function

(2.6) G2(θ) =

{
1− 1

2e
−3θ(9θ2 + 6θ + 2), θ > 0,

0, θ ≤ 0.

One can verify that X ≤hr Y and X ≤rh Y , but X �lr Y . We omit the te-
dious and elementary proof. Moreover, the mode of X equals 1/

√
2, whereas

the mode of Y is 2/3.

Now we consider the Bayesian estimation of θ under the uniform loss
function, i.e.

(2.7) Lε(θ, a) =

{
0, |θ − a| ≤ ε,

1, |θ − a| > ε,

where ε > 0.
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It is easy to check that in this case

(2.8) θ̂(x) = arg min
a∈Θ

a+ε�

a−ε
f(θ |x) dθ

gives the Bayes estimator for θ. When the posterior density f(θ |x) is uni-
modal and symmetric about M , then θ̂(x) = M . In this simple case we
immediately have the following lemma.

Lemma 2.15. If G1 ≤lr G2 and the corresponding posterior distributions
are symmetric and unimodal, then the corresponding Bayes estimators of θ
under the loss function (2.7) are pointwise ordered.

Using Exercise 4.10 of Shao [7] we have a generalization of Lemma 2.15.

Corollary 2.16. Under the assumptions of Lemma 2.15 the inequality
θ̂1(x) ≤ θ̂2(x) holds for all x if the loss function is of the form L(|θ − a|),
where L is an increasing function on [0,∞].

Note that for small ε,

1

2ε

a+ε�

a−ε
f(θ |x) dθ ≈ f(a |x).

Thus, in the limit ε→ 0 the Bayes estimator under the uniform loss function
(2.7) is

(2.9) θ̂(x) = argmax
a∈Θ

f(a |x).

This estimator is also called the MAP (maximum a posteriori) estimator.
Now we investigate the case when the posterior density is a unimodal

function. Then the problem of comparison of MAP estimators is equivalent
to comparison of modes of the posterior distributions. If we combine previous
facts with Lemma 2.13 we obtain the following result about comparison of
MAP estimators.

Theorem 2.17. If G1 ≤lr G2 and fi(θ |x), i = 1, 2, are strictly unimodal,
then the corresponding MAP estimators of θ are pointwise ordered.

Now we recall some well known sufficient conditions for unimodality.

Remark 2.18. Every logconcave density f is unimodal (see e.g. Barlow
and Proschan [2]) and the product of logconcave functions is also logconcave.

Finally we consider estimation under the asymmetric loss function
LINEX defined by

L(θ, δ) = b{ea(θ−δ) − a(θ − δ)− 1}, a 6= 0, b > 0.

The Bayes estimator of θ under the LINEX loss function is (see Zellner [8])

(2.10) δ(x) = (1/a) logE(eaθ |x).
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From (2.10) it follows that in order to compare Bayes estimators under
the LINEX loss function it suffices to compare the moment generating func-
tions of the posterior distributions. In the following theorem we give a simple
sufficient condition for ordering of Bayes estimators under the LINEX loss
function.

Theorem 2.19. If G1 ≤lr G2, then the corresponding Bayes estimators
of θ under the LINEX loss function are pointwise ordered.

3. Examples of applications. Now we illustrate our results by ex-
amples.

Example 3.1. Let X = (X1, . . . , Xn) be a random sample of binary
random variables with P (X1 = 1) = θ ∈ (0, 1). By the factorization theorem,
T =

∑n
i=1Xi is a sufficient statistic for θ.

We consider stochastic ordering of the Bayes estimators of θ assuming
that the prior has noncentral beta distribution with density

(3.1) g(θ; δ, α, β) =

∞∑
j=0

e−δδj

j!

θα+j−1(1− θ)β−1

B(α+ j, β)
, δ, α, β > 0, θ ∈ (0, 1).

Let α and β be fixed and let 0 < δ1 < δ2. First we show that G1 ≤lr G2.
Note that this is equivalent to (3.1) being TP2 in (θ, δ). Notice that (3.1)
can be expressed as

(3.2) g(θ; δ, α, β) =
∞∑
j=0

k(δ, j)l(j, θ;α, β),

where

k(δ, j) =
e−δδj

j!
, δ > 0, j = 0, 1, . . . ,

l(j, θ;α, β) =
θα+j−1(1− θ)β−1

B(α+ j, β)
, α, β > 0, θ ∈ (0, 1).

It is obvious that k(δ, j) is TP2 and l(j, θ;α, β) is TP2 in (j, θ). There-
fore, by the Basic Composition Formula, g(θ; δ, α, β) is TP2 in (θ, δ). Using
Theorem 2.1 we have θ̂1(t) ≤ θ̂2(t) for all t, where t is a value of T .

Now we derive the Bayes estimator of θ. Firstly we find the marginal
distribution of T :

m(t) =

1�

0

f(t, θ)g(θ) dθ =

(
n

t

) ∞∑
k=0

e−δδk

k!

B(α+ t+ k, β + n− t)
B(α+ k, β)

.

Hence the Bayes estimator of θ is



402 J. Bartoszewicz and P. B. Nowak

θ̂(t) =

1�

0

θ
f(t, θ)g(θ)

m(t)
dθ =

∞∑
k=0

δk

k!

B(α+ t+ k + 1, β + n− t)
B(α+ k, β)

∞∑
k=0

δk

k!

B(α+ t+ k, β + n− t)
B(α+ k, β)

(3.3)

=
α+ t

α+ β + n
2F2(α+ β, α+ t+ 1;α, α+ β + n+ 1; δ)

2F2(α+ β, α+ t;α, α+ β + n; δ)
,

where 2F2 denotes the generalized hypergeometric function (see Andrews et
al. [1]). Observe that if δ → 0, then (3.3) tends to (α + t)/(α + β + n). On
the other hand, if δ →∞, then (3.3) tends monotonically to 1.

Now we apply Theorem 2.4 to obtain a lower bound for a survival function
of normal distribution.

Example 3.2. Let X be a random variable having uniform distribution
U(0, θ), θ > 0. Consider the estimation of θ under squared error loss. Assume
that ϑ1 and ϑ2 are random variables with distribution functions given in (2.5)
and (2.6), respectively. Recall that G1 ≤rh G2 and G1 �lr G2.

The Bayes estimator of the parameter θ with respect to the prior having
distribution function G1 is given by

θ̂1(x) =

	∞
x θe−θ

2
dθ	∞

x e−θ2 dθ
=

1
2e
−x2

	∞
x e−θ2 dθ

.

In turn, the Bayes estimator of the parameter θ with respect to the prior
having distribution function G2 is given by

θ̂2(x) =

	∞
x θ2e−3θ dθ	∞
x θe−3θ dθ

=
9x2 + 6x+ 2

3(3x+ 1)
.

By Theorem 2.4(b) we have θ̂1(x) ≤ θ̂2(x), x > 0. This inequality can be
equivalently written as

∞�

x

e−θ
2
dθ ≥ 3

2
e−x

2 3x+ 1

9x2 + 6x+ 2
, x > 0.

Making the substitution x :=
√

2x, after easy modifications we have

(3.4) 1− Φ(x) ≥ 3

2
√
π
e−x

2/2 3
√

2x+ 2

9x2 + 6
√

2x+ 4
, x > 0,

where Φ is the distribution function of the standard normal distribution. In
fact, the inequality in (3.4) is sharp.

Let us denote the right side of inequality (3.4) by Φ̃(x). By L’Hopital’s
rule, we can show that Φ̃ and Φ are asymptotically equivalent, i.e.
limx→∞ Φ̃(x)/Φ(x) = 1.
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Fig. 1. Solid line: survival function of the normal distribution; dotted line: classical lower
bound; dashed line: lower bound given in (3.4).

The lower bound obtained in (3.4) is better than the classical lower bound
1√
2π

x
x2+1

e−x
2/2 for 0 < x < 1

12(5
√

2 +
√

194) = 1.749 . . . (see Figure 1).

Example 3.3. Let ϑ1 be a random variable having normal distribution
N(0, 1) and let ϑ2 be a random variable with density e−θ exp{−e−θ}, θ ∈ R.
We check directly that ϑ1 ≤lr ϑ2. Now let us consider a random variable
X having normal distribution N(θ, 1), θ ∈ R and MAP estimator of θ. The
posterior density of ϑ1 is

f1(θ |x) =
1√
π

exp{−(θ − x/2)2}

and the posterior density of ϑ2 is

f2(θ |x) ∝ f(x | θ)g2(θ) ∝ exp{(x− θ)2/2− θ − e−θ}.

Note also that both densities are unimodal since they are products of
logconcave functions.

It is clear that θ̂1(x) = x/2 and θ̂2(x) = a, where a is the solution of the
equation e−a − a = 1− x. As a corollary we obtain the inequality a ≥ x/2,
which holds for any x ∈ R. Of course, this inequality can be easily proved
by methods of elementary calculus.

Example 3.4. Consider the classical example of estimating the mean of
the normal distribution N(θ, σ2), where σ is known. Assume that the prior
is normal N(µ, η2), µ ∈ R, η > 0. Then the posterior distribution is also
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normal N(m(x), ρ2), where

m(x) =
σ2

η2 + σ2
µ+

η2

η2 + σ2
x and ρ2 =

η2σ2

η2 + σ2
,

hence it is strictly unimodal and symmetric. It is also obvious that the family
{gµ, µ ∈ R}, where gµ is the density of the normal distribution with location
parameter µ and a known scale parameter η, has monotone likelihood ratio.
Hence, the corresponding Bayes estimators obtained under squared error
loss, uniform loss function and LINEX loss function are increasing in µ.
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