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STABILITY CONDITIONS OF A QUEUEING SYSTEM

MODEL VIA FLUID LIMITS

Abstract. We study the ergodicity of a multi-class queueing model via
fluid limits which have the advantage of describing the model in macroscopic
form. We consider a model of processing bandwidth requests. Our system
is defined by a network of capacity C = N, and a queue which contains an
infinite number of items of various sizes 1, a′ and b′ with 1<a′<b′<N. The
problem considered is: Under what conditions on the parameters of some
large classes of networks, do they reach the stationary regime?

1. Introduction. In this paper we study a queueing model of storage
and transmission of bandwidth in computer and communication systems,
considering a description of allocation of different streams of messages in a
communication network.

A model of processing bandwidth requests of different sizes is considered.
Messages in the network are of different nature, and to be transmitted they
require different throughput. In this paper the First Fit algorithm policy is
considered: the sum of the sizes of messages in the network is less than its
capacity; following every event (arrival or departure), the queue is scanned
from the beginning in search of an item whose size is smaller than the empty
space left in the network. This procedure is repeated until the end of the
queue is reached.

The network is a bin of size C = N (N can be large but it is finite),
messages are items of different sizes 1, a′ and b′ such that 1 < a′ < b′ and
the bandwidth required by a message is the size of the item. Items have the
same distribution as some random variable S1. The items arrive to the bin
according to a Poisson process Nλ with parameter λ; for t ≥ 0, the quantity
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Nλ(]0, t]) denotes the number of arrivals between 0 and t, and each item
requires service time of mean 1 (all the service times are i.i.d. exponentially
distributed random variables with parameter 1).

The sizes (Si) of the items form an i.i.d. sequence with a common dis-
tribution F (dx) given by

F (dx) = pδ1 + qδa′ + rδb′ ,

where δx is the Dirac measure at x and p, q, r are nonnegative numbers such
that p+ q + r = 1.

The set of possible sizes is denoted by T = {1, a′, b′} and T (N) is the set
of finite vectors with coordinates in T ; if x ∈ T (N), ‖x‖ denotes the number
of coordinates of x.

An element X of the state space S of the Markov process describing the
storage process can be written as X = (B,L), where L and B are elements
of T (N), the set of finite vectors with coordinates in T .

The following notation will be employed in the remainder of this paper:

x items a′︷ ︸︸ ︷
(a′, . . . , a′) = [x items a′],

x items a′, y items b′︷ ︸︸ ︷
(a′, . . . , a′, b′, . . . , b′) = [x items a′, y items b′].

Important point: The choice of a′ and b′ depends on the choice of the
capacity of the bin, N.

Notice that the order of the components in B has no importance but it
is important for the vector L since the First Fit discipline checks if the first
coordinate fits in the bin, then the second, the third, and so on. The vector
L is a string of 1, a′ and b′.

If (X(t)) = (B(t), L(t)) is the state of the system at time t, then (X(t))
is an irreducible Markov process on S; our model is stable when (X(t)) is
ergodic on S. In Dantzer et al. [1] it has been proved that the condition
λE(S1) ≤ C is necessary for the stability of the system.

Then we define by

W (X(t)) =

‖B(t)‖∑
i=1

biσ
0
i (t) +

‖L(t)‖∑
j=1

ljσj(t)

the load of (X(t)) = (B(t), L(t)) = ((bi(t)), (lj(t))). Moreover ‖X‖ is the
norm of the state X = (B,L) ∈ S, equal to the sum of ‖B‖ and ‖L‖, σ0i (t)
is the residual service time of the item bi(t), and σj(t) the service time of
the item lj(t).

The probabilistic description of this model involves an infinite-dimen-
sional vector space (a space of strings).

The First Fit algorithm with items having two possible sizes has been
analyzed in Dantzer et al. [1]; a stability condition has been established and,
more interestingly, a curious transient behaviour was analyzed.
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The First Fit algorithm with three possible sizes 1, 2 and 3 and capacity
of the bin C equal to 4 has been analyzed by Dantzer and Robert [2].

The present paper proposes some stability results for some large classes
of networks with items of different sizes 1, a′ and b′ such that 1 < a′ < b′; the
sizes of items depend formally on the capacity of the bin which is C = N.
We prove that under the conditions λp > N − b′ and λE(S1) < N our
system is ergodic; then in the case when λp < N − b′ the concept of smooth
distribution on the state space is introduced, which is used together with
the concept of piecewise linear processes in R2

+ to establish ergodicity and
transience for our system.

In the next section we present two results; the first gives an estimate
of the wasted space when there are only two possible sizes: 1 and a′, and
where it is not important to have much information on the structure of the
queue of the initial state. Then we consider the general case with three sizes,
and we show that the condition λE(S1) < N turns out to be sufficient for
ergodicity when λp > N − b′.

2. Stability of the system when λp > N − b′

Lemma 2.1. Under the condition λE(S1) < N, suppose the system pro-
cesses only items 1 and a′, τ is the first time where the queue is empty,
and D is the duration of time during which the bin is not full during a busy
period (between 0 and τ). Then Ex(D) ≤ K with K = K1 log(1 + ‖x‖) +K2

and x = (l, b) ∈ S,

Proof. First, we note that if there are some items of size 1 in the queue
there is no waste of space in the bin. So, we can assume that l is a string of
items a′.

The only possibility to waste space with a nonempty queue and an empty
space of size 1 in the bin is when the state of the bin is [N−1 items of size 1],
[1, N−2a′ items a′], [a′, (N − (a′ + 1)) items 1], [N−1a′ items a′], [q1 items 1,

q2 items a′], q1 6= q2, and if q1 = q2 we will have b = [N−1a′+1 items 1, N−1a′+1
items a′]. We set A0 = l, T0 = 0 and

Tn+1 = inf{t > Tn : C(t−) = N, C(t) < N, and

all the items a′ present at time Tn are served at time t}

with An = ‖L(Tn)‖ for n ≥ 1. Then L(Tn) is necessarily a string of items a′

which can be empty. The sequence (B(Tn), An) is clearly a Markov chain.

• b = [(N − 1) items of size 1]. If there is at least one item 1 in the queue
the items a′ are ignored (the First Fit algorithm picks only items of size 1).
Since λp ≤ λE(S1) < N, after an integrable amount of time not depending
on ‖l‖, some places will be vacant in the bin and consequently an item a′
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will enter the bin. In this situation the number of items 1 is the number of
customers of an M/M/N queue.

• b =
[
N−1
a′+1 items 1, N−1a′+1 items a′

]
.

1. λp < 2. In this case all items of size a′ will be served consecutively. The
expected value of this duration of time is bounded with respect to ‖l‖.
When the initial items a′ have been served, the queue is an i.i.d. string
of items 1 and a′. Then with probability 1 at least N+a′

a′+1 items 1 enter

the bin. Later, when the number of items 1 in the system is N−1
a′+1 the

system will waste some space; this is the definition of time T1, and A1

is the number of items at that time.
2. λp > 2. If the state of the bin does not change, the arriving items 1 will

saturate N+a′

a′+1 places in the bin. In this case, the number of items 1 is

the number of customers of a transient M/M/N+a′

a′+1 queue. A change
in the state of the bin may occur only if this transient queue is empty.

(a) The M/M/N+a′

a′+1 queue never reaches the empty state. After a short

period of time, the bin will be full with N−1
a′+1 items a′ and N+a′

a′+1
items 1. The condition λE(S1) < N implies that λq < 1 (λp > 2),
therefore with probability 1 after some period of time the system
will not contain any items a′. At that time the state of the bin
will be [N items 1]. Then, with probability 1, the total number of

items 1 will be less than N+a′

a′+1 . Moreover, N−1
a′+1 items a′ will be in

the bin; this is the starting situation.
(b) The queue reaches the empty state. There are only a few cases

where this transient queue reaches the empty space. The items a′

occupy the bin with no empty space. All the initial items a′ are
served. In this situation T1 is the time when there is some wasted
space and after that time all items a′ were served.

Notice that case (a) occurs only a geometrically distributed number of times.
Hence, the duration of time between time 0 and T1 when the bin is not full
has a bounded expected value (with respect to ‖l‖).

Consequently, there exist a0 and α1 < 1 such that for ‖x‖ > a0,

(2.1) Ex(A1) ≤ α1‖x‖, where α1 = 1 + c
a′ + 1

N + a′
(λE(S1)−N),

where c is a positive constant such that

lim
‖x‖→+∞

Ex(T1)

‖x‖
= c in L1 and almost surely,

and

(2.2) γ1 = − log

(
1 + α1‖x‖
1 + ‖x‖

)
> 0.
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Then, for the cases
[
1, N−2a′ items a′

]
, [a′, N−(a′+1) items 1],

[
N−1
a′ items a′

]
and [q1 items 1, q2 items a′] the values of αi and γi are:

γi = − log

(
1 + αi‖x‖
1 + ‖x‖

)
> 0, i = 2, . . . , 5,

α2 = 1 +
c

2
(λE(S1)−N), α3 = 1 +

c

N − a′
(λE(S1)−N),

α4 = 1 + c(λE(S1)−N), α5 = 1 +
c

q1 + 1
(λE(S1)−N).

Now, we define νi = inf{n ≥ 1 : An ≤ a0}; then the sequence (Zn) =
(log(1 + An∧νi) + γi(n ∧ νi)) is a super-martingale, i = 1, . . . , 5. Then
the contribution of the νi cycles in the integral defining D is bounded by
KEx(νi) ≤ K log(1 + ‖x‖)/γi, for some constant K.

Proposition 6 of Dantzer et al. [1] shows that the system is ergodic.
Consequently, starting from the state (B(Tνi), Aνi), the hitting time of the
empty state ∅ is integrable and with an expected value bounded with respect
to ‖x‖. Therefore, the expected value of the contribution of this period in
the integral defining D is bounded with respect to ‖x‖.

Proposition 2.2. If λE(S1) < N and λp > N − b′, then (X(t)) is an
ergodic Markov process.

Proof. To prove this result we have to suppose that D, the duration of
time (between 0 and τ) during which the bin is not full during a busy period,
is integrable and

lim
n→∞

Exn(D)

‖xn‖
= 0.

If this assumption is true we get

lim sup
n→∞

Exn(τ)

‖xn‖
≤ 1

N − λE(S1)
,(2.3)

lim sup
n→∞

Exn(W (X(τ)))

W (xn)
≤ λE(S)

N
< 1.(2.4)

Here τ is the first time when the bin is not full after all the initial items
a′ have left the system (τ is a stopping time). Notice that for the states
(xn) the bin is not full, thus the queue is a string of items a′ and b′ (see
Proposition 5 of Dantzer et al. [1]).

The two relations (2.3) and (2.4) and Theorem 1 of [2] show that the
Markov process (X(t)) is ergodic.

Then to prove that really (Exn(D)) is negligible with respect to ‖xn‖
when n is large, we have to discuss several possibilities for b.

(1) b is [N − 1 items 1] or [N items 1]. If there is at least one item 1 in the
queue, all the other items are ignored. Since λp ≤ λE(S1) < N, from the
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point of view of items 1, the system is a stable M/M/N queue. Hence
the first time there will be some empty places (maybe equal to the size
of the item a′) is a bounded integrable variable. At that time, an item
a′ will be inserted in the bin. Notice that for this period, the duration
of time during which the bin is not full is a bounded integrable variable.

(2) b has some items a′.

(a) By adding an item of size b′ one will exceed the maximum capacity
of the bin N. The items b′ are not taken into account as long as
the bin contains some items a′ or some items 1 such that by adding
b′ one will exceed the capacity of the bin. In this case the items
b′ are ignored. Consequently, a string of the initial items b′ builds
up at the beginning of the queue. Since the condition λE(S1) < N
implies λp+ a′q < N, the system with items 1 and a′ is stable (see
Dantzer et al. [1]). Lemma 1 shows that until an item b′ enters the
bin, the wasted space is negligible compared to the number of initial
items a′.

(b) Else. All items b′ are selected by the First Fit algorithm. Since the
condition λE(S1) < N implies λq + b′r < N, the system with items
a′ and b′ is stable; after some time, the condition λp > N−b′ implies
that the residual space in the bin left by items a′ or b′ is saturated
by items 1. Consequently, the duration of time when the bin is not
full is a bounded integrable variable.

(3) b contains some items b′ such that by adding an item of size b′ or a′ one
will exceed the maximum capacity of the bin, N. Now ln is a string of
items b′. Otherwise, if at some time some items a′ enter the bin, items
1 and a′ will be cleared from the system until some items b′ are in the
bin. The condition λp > N − b′ implies that the residual space in the
bin left by items b′ is saturated by items 1. Consequently, the duration
of time when the bin is not full is a bounded integrable variable.

This discussion shows that the assertion is proved.

3. Stability of the system when λp < N − b′. When λp < N − b′,
the situation is more delicate, and for this reason the concept of smoothing
initial state is introduced.

3.1. Main result for the smoothing case. In this section we shall
assume that λp < N − b′ and that the initial states are strings of items a′

and b′. The next definition formalizes the notion of “smooth random” state,
in fact the notion of a smooth distribution on S.

Definition 3.1. For integers l,m, n we define a distribution Rl,m,n(dx)

on T (N) by
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(3.1) Rl,m,n(dx) = δb′(du)(l) ⊗ Fa′,b′(du)(m) ⊗ F (du)(n),

where F (dx)(n) is the nth power of the distribution F (dx), and Fa′,b′(dx) is
the conditional distribution Fa′,b′(dx) = (qδa′ + rδb′)/(q + r).

A distribution µ on S is smooth if its L-component is in the convex hull
of the Rl×m×nl,m,n , l,m, n ∈ N, i.e. there exists a probability distribution (qi)

on N3 such that
µ(L ∈ dx) =

∑
i∈N3

qiRi(dx).

The distribution Rl,m,n is the distribution of the concatenation of several
i.i.d. strings. The L-component of a distribution of type R0,0,n(dx) is just
an i.i.d. string of length n with distribution F.

Proposition 3.2. If λE(S1) < N, then for any stopping time U greater
than the first time when all the initial items have left the queue, the distri-
bution of X(U) is smooth.

In [2] it was proved that if λE(S1) < 4, C = 4 and T = {1, 2, 3} the
distribution of X(U) is smooth. For a large class of systems, neither the
capacity of the bin nor the sizes of the items affect the result, and under the
hypotheses of our proposition we will get a smooth distribution.

Proposition 3.3. If λE(S1) < N , λp < N − b′ and U0 is the first time
t after all the initial items have left the queue that B(t) = [b′, N − (b′ + 1)
items 1] then

(3.2) sup
x∈S1

Ex
((

U0

‖x‖

)2)
<∞ and sup

x∈S1
Ex
((
‖X(U0)‖
‖x‖

)2)
<∞

where S1 is the subset of the states of S for which the bin is not full.

Proof. The initial state is given by x = (B,L) with L = (l1, . . . , lp) for
some p ≥ 1. Let T be the first time when all the initial items have left the
queue. Then T is a stopping time bounded by Ta′ +Tb′ , where Ta′ [resp. Tb′ ]
is the time when all the initial items a′ [resp.b′] have left the queue.

For a fixed k ∈ {1, . . . , p− 1}, we define x̌ = (B, Ľ) where Ľ is the same
string as L except that the components k and k + 1 are permuted. For 1 ≤
i < p, the quantities τi, τ̌i denote respectively the waiting time necessary for
the ith item li to enter the bin when the initial state is respectively x, x̌. We
assume that for these two initial states, the arrival stream and the services
associated with the items are the same. There are two cases: τk+1 < τk and
τk+1 ≥ τk and the initial state is x̌. In any case τk ≤ τ̌k. By induction,
the quantity Ex(Ta′) is thus bounded by Ex′(Ta′) where x′ = (B,L′) with
L′ = (b′, . . . , b′, a′, . . . , a′). Similarly, Ex(Ta′) ≤ Ex′′(Ta′) if Ta′ is the time to
get rid of the initial items a′ and x′′ = (B,L′′), where L′′ is a permutation
of the L-component of x when all items b′ are at the head of the queue.
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To bound Ex(T 2) it is sufficient to give an upper bound for Ex′′(T 2
a′) and

Ex′(T 2
b′).

• Items a′ are at the beginning. We get, for some constant A1, Ex′(T 2
b′) ≤

A1‖x‖2 (notice that ‖x′‖ = ‖x‖).
• Items b′ are at the beginning.

– If the initial state of the bin is [k items b′], for a convenient constant A2,
one easily gets Ex′′(T 2

a′) ≤ A2‖x‖2.
– If there is a b′ in the bin and at least N − (b′ + 1) items 1, we get
Ex′′(Ta′) ≤ A3‖x‖ for some constant A3.

At time T all the initial items have left the queue. Since X(T ) ≤ ‖x‖ +
Nλ(]0, T ]), Wald’s formula and the above estimate show that for some con-
stant A, ‖X(T )‖ ≤ A‖x‖.

Then to estimate the first time T̄ when the state of the bin is [b′, N −
(b′ + 1) items 1] it is sufficient to prove that if the initial state is x, then T̄
has a second moment of order ‖x‖2. The first step is to get rid of items a′.
There are many possibilities for the bin:

• The bin has some items 1 (at least N − (b′ + 1)). Since λp < N − b′, after
some time the items 1 which were in the queue will enter the bin and the
state will reach [N − b′ items 1, ·].
∗ If, at that time, there are sufficiently many items b′ in the queue, the

state of the bin will reach the state [N − b′ items 1, b′]. Then, with
probability 1, the state of the bin will be [b′, N − (b′ + 1) items 1].
∗ Else. All the items a′ in the queue at that time are served ([N − b′

items 1, a′]). When this is finished, the condition λp < N − b′ implies
that the number of items 1 is tight. The items b′ accumulated during
that time are served; consequently, with probability 1, the state of the
bin will be [b′, N − (b′ + 1) items 1].

• b = [N/b′ items b′] (the bin is full). The initial items b′ are served con-
secutively at rate N/b′. Then with probability 1, an item a′ will enter the
bin and then all the other items a′ will be processed consecutively. When
this is finished, since λp < N − b′, N − b′ items 1 enter the bin. This is the
situation of the previous case.

• b = [N/a′ items a′] (the bin is full). As in the previous case, the initial
items a′ are served consecutively at rate N/a′. When this is finished, always
with probability 1, N − a′ items 1 enter the bin; then we will have N − b′
items 1 in the bin, the situation of the previous case.

For the case where the bin is not full (there is an empty space of size 1),
we follow the same discussion with a very small change which depends on
the sizes of the items.
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• b = [k1 items a′, k2 items b′] (the bin is full)

∗ If b′ is served before some items a′, the First Fit algorithm selects all
the items b′, then all the initial items a′ are served at that time; we see
the arriving of items 1 wastes the empty space, until we have N − b′
items 1 in the bin; since λp < N − b′ the bin reaches the state [N − b′
items 1, a′], the situation of the previous case.
∗ If a′ is served before item b′, the First Fit algorithm selects all the

items a′. When this is finished, some items b′ will be served, then with
probability 1, N − (b′ + 1) items 1 enter the bin ([b′, N − (b′ + 1) items
1]).

• b = [k1 items a′, k2 items 1] (the bin is full).

* b = [a′, N − a′ items 1]
** If a′ is served before some items 1, the First Fit algorithm selects all

the initial items a′, then with probability 1, we will have N − (b′ + 1)
items 1 in the bin; at that time an item b′ will enter the bin.

** If 1 is served before a′, the items 1 which are in the queue will be
served consecutively, then all the items a′ will be served; after some
time we will have, with probability 1, N − (b′ + 1) items 1 in the bin;
at that time an item b′ enters the bin.

When b =
[
1, N−1a′ items a′

]
, b =

[
N
a′+1 items a′, N

a′+1 items 1
]

we will follow
the same discussion. And there is not much difference in the cases where the
bin is not full: b =

[
1, N−2a′ items a′

]
, b =

[
a′, N−(a′+1) items 1

]
, b =

[
N−1
a′+1

items 1, N−1
a′+1 items a′

]
.

• b = [k1 items b′, k2 items 1] (the bin is full or not). This case is easy (we
follow the same discussion).

Notice that each of the steps we have described has a duration with
second moment of order ‖x‖2. And the last inequality is a consequence of
Wald’s formula applied to the stopping time U0.

3.2. A random dynamical system in R2
+ for a large class of

networks. In this section we assume that (µn) is a sequence of smooth
distributions on S such that

(3.3) µn(B = [b′, N − (b′ + 1) items 1], L ∈ dx) = E(Ryn,wn,0(dx)),

where yn, wn are random variables such that

lim
n→∞

yn
n

= y, and lim
n→∞

wn
n

= w in L1,

y and w are nonnegative integrable random variables and P(y+w > 0) = 1.
The B-component of µn is [b′, N − (b′ + 1) items 1] and the L-component
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of the distribution µn does not have an item 1 in the queue; it is the con-
catenation of yn items b′ followed by an i.i.d. string of length wn of a′ and b′

with respective probability q/(q + r) and r/(q + r).
In all that follows, a′ = 2.
If the distribution of X(0) is given by µn, then ‖X(0)‖ is equivalent to

((y+w)n). (Note that a sequence (Xn) of random variables is equivalent to
(αn) if the sequence (Xn/αn) converges to 1 in L1(P).)

The next proposition proves that the distribution of X at a stopping
time has a property similar to Identity (3.3).

Proposition 3.4. Let U1 be the first time when all the initial items a′

have left the queue, the initial items b′ in the bin have been served and the
state of the bin is [b′, N − (b′+ 1) items 1]. Then there exist FU1-measurable
random variables Yn and Wn such that

Pµn(B(U1)) = ([b′, N − (b′ + 1) items 1], L(U1) ∈ dx) = Eµn(RYn,Wn,0(dx)),

and a random matrix M such that

(3.4) lim
n→∞

1

n
(Yn,Wn) = M · (y, w) almost surely and in L1.

The random matrix M has two possible values with equal probability,

(3.5) m1 =

(
1 1−p−q

(N−b′)(1−p)
0 λ(q + λp(1−p−q)

(N−b′)(N−λp))

)
and

m2 =

(
λ

N−b′ (1− p− q)
1−p−q

(N−b′)(1−p)
λ2(1− p)(q + λp(1−p−q)

(N−b′)(N−λp)) λ(q + λp(1−p−q)
(N−b′)(N−λp))

)
.

M is independent of (y, w) if P(y > 0, w > 0) = 1.

Proof. Let b = [b′, N− (b′+1) items 1] at time 0. If a new item 1 arrives,
then the bin is full and, during that time, the b′ in the bin is replaced by the
initial items b′. So, the state of the bin will return to [b′, N−(b′+1) items 1].
In this manner, a finite number of initial items b′ in the queue are served in
the bin before a significant change occurs. And if there is a departure of an
item 1, an item of size a′ = 2 replaces it, and since (wn) converges almost
surely to infinity, there will be an item a′ in the queue with probability 1
at the occasion of such a departure. So the fact that an item b′ or an item
a′ enters the bin is independent of the limit of (yn, wn)/n, as long as y
and w are positive with probability 1. (yn/n) and (wn/n) converge almost
surely (see Skorokhod’s representation theorem with a change of probability
space).

Throughout this discussion, we shall ignore small strings in our state-
ments. Then if the initial distribution is given by µn, the initial state of the
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bin is [b′, N − (b′ + 1) items 1]. If there is a departure before a new arrival,
there are two possibilities:

1) With probability 1
1+[N−(b′+1)] the item b′ leaves first. In this case the

first item b′ enters the bin and all the other yn− 1 items b′ will follow it.
During that time, since λp < N − b′, the items 1 are processed by the
empty space in the bin. So the time τ1 to get rid of the initial items b′ is
equivalent to yn ∼ yn.
At time τ1 the length of the queue is thus equivalent to (w+λ(q+r)y)n [2].
As soon as an item of size a′ is in the bin, it is easy to check that after
an integrable period of time the bin will be filled up with items a′ and
some items 1. The time τ2 to serve all the items a′ that arrive before the
bin is filled up either with only items of size a′ or items of size a′ and one
item 1 is equivalent to the quantity (w+λ(q+ r)y) q

q+rn. At time τ1 + τ2
there is a string of b′’s at the head of the queue of length equivalent to

(3.6) (w + λ(q + r)y)
r

(N − b′)(q + r)
n

followed by an i.i.d. string with distribution F (du) whose length is equiv-
alent to the quantity λ(w+λ(q+r)y) q

q+rn. At that time we have to discuss
two cases, but at the end we will have the same result.

♣ The bin is filled up with items of size a′. If there is a departure of an
item a′ it is replaced immediately by an item a′ (a′ = 2) or two items 1.
The items b′ cannot be served at that time. Due to the i.i.d. structure of
the queue at that time, after an integrable period of time, the bin reaches
[N items 1]; from that time on, all items 1 are served at rate N. The time
τ3 it takes to empty the queue of items 1 and to have exactly one b′ and
N − (b′ + 1) items of size 1 in the bin is equivalent to

λp(w + λ(q + r)y)r

(N − b′)(q + r)(N − λp)
n.

At time τ1 + τ2 + τ3 there is a string of b′’s whose length is equivalent to
(3.6), followed by a string of a′’s and b′’s of length equivalent to

(3.7) λ(w + λ(q + r)y)

(
q +

λrp

(N − b′)(N − λp)

)
.

♣ The bin is filled up with some items a′ and one item 1.

1) If there is a departure of an item a′ we will have the same discussion
as in the previous case.

2) If there is a departure of an item 1 it is replaced by an item 1, then
all items 1 which are in queue will be served (the essential point in
this phase is that the items b′ cannot be served); after that each
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item a′ which departs will be replaced immediately by an item a′

or items 1, then we will follow the same discussion.

Finally the distribution of L(U) is given by Eµn(RYn,Wn,0(dx)) and (Yn,Wn)
satisfies the relation (3.4) with the matrix M = m2.

2) With probability N−(b′+1)
1+(N−(b′+1)) an item 1 is served first. This situation is

simpler since the initial items b′ are not served at time U1.

Remark 3.5. The dynamic of the system is influenced by the fact that
either the b′ leaves first or not. This is also true at the fluid level. The case
where the random bifurcation may depend on the current state was shown
in Robert [4].

The discussion is similar on the set {y = 0, w 6= 0} ∪ {y 6= 0, w = 0};
the difference is that the duration of some transitions described above is
negligible in this case.

The following proposition presents the most important result on the
ultimate behavior of the fluid limits.

Proposition 3.6. If (Mn) is an i.i.d. sequence of random matrices with
the same distribution as M in Proposition 3.4 and Pn = Mn ·Mn−1 · · ·M1,
then there exist α, β > 0 and a function η on R+ such that for any n ∈ N
and x ∈ R2

+,

(3.8) E(〈(α, β), Pn · x〉) = η(λ)n〈(α, β), x〉)

where 〈·, ·〉 is the usual scalar product in R2. If

(3.9) λ∗ =
1

2(−qNp+ qb′p)
[(−qN2 +Nq + qb′N −N + b′p)

+ (N2 − 2qN2 + q2N2 + 2pqb′N − 2q2N3b′ + 2N2q2b′ + q2b′2N2 − 2qb′N2

− 2Nb′p+ q2N4− 2q2N3 + 2qN3 + b′2p2 + 6qN2b′p− 2qb′2Np− 4qN3p)1/2]

then η(λ) < 1 if λ < λ∗ and η(λ) > 1 if λ∗ < λ < N/p.

The proof of this proposition is based on the fact that if λp < N, the
same property is true for the largest eigenvalue η(λ) of the matrix E(M1),
where E(Pn) = E(M1)

n. The smallest root of the equation η(λ) = 1 is given
by λ = λ∗. Then it can be shown that the term under the square root in
(3.9) is non-negative if p+ q ≤ 1 and that λ∗p < N .

3.3. Ergodicity and transience theorem

Theorem 3.7. When the arrival rate of the items is λ, the distribution
of their sizes is given by F (dx) = pδ1 + qδa′ + (1− p− q)δb′ , and the size of
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the bin is N, if

(3.10) λFF := min

{
λ∗,

N

b′ + (1− b′)p+ (a′ − b′)q

}
then the Markov process (X(t)) describing the First Fit algorithm is ergodic
when λ < λFF, and transient when λ > λFF.

Proof. Ergodicity. If λp > N − b′, Proposition 2.2 shows that the condi-
tion λE(S1) < N, i.e. λ(b′ + (1− b′)p+ (a′ − b′)q) < N , is sufficient for the
ergodicity of (X(t)). One can check that in that case

N

b′ + (1− b′)p+ (a′ − b′)q
< λ∗.

Now, we assume that conditions (3.10) and λp < N − b′ are satisfied.
To prove the ergodicity under these hypotheses it is sufficient to prove that
there exists a stopping time V such that for any sequence (xn) = (bn, ln) in
S∞ with ‖xn‖ = n, the following inequalities hold (Theorem 1 of [2]):

(3.11) lim sup
n→∞

Exn(‖X(V )‖)
n

≤ 1− ε, lim sup
n→∞

Exn(V )

n
≤ K,

where K > 1 and ε > 0 are constants independent of the sequence (xn).

Transience. In this setting we suppose that the initial distribution of
(L(t)) is given by Ry,w,0. Using the notation of Proposition 3.4, let U1 be
the first time when all the initial items a′ have left the queue, the items b′ in
the bin have been served and the state of the bin is [b′, N − (b′+ 1) items 1].
We denote by Up+1 = Up+U1◦θUp the first time when all the items a′ present
at time Up have left the queue and the state of the bin is [b′, N − (b′ + 1)
items 1]. It is clear that the sequence (L(Up)) is a homogeneous irreducible
Markov chain on T (N). We suppose that the Markov process (X(t)) is recur-
rent and it visits the state ξ0 = (∅, [b′, N − (b′+ 1) items 1]) infinitely often,
in other words, with probability 1 the queue will be empty and the state of
the bin will be [b′, N − (b′ + 1) items 1]. The first time the process (X(t))
visits the state ξ0 is necessarily at one of the times Up, p ≥ 1. Consequently,
the Markov chain (L(Up)) visits the state ξ0 with probability 1.

Now we define a Lyapunov function on the state space of (L(Up)) by

f(l) = log(1 + αp+ β(‖l‖ − p)) if l = (li), p = inf{k − 1 : lk 6= a′}.

With the notations above, we have

f(L(U1)) = log(1 + αYy,w + βWy,w).
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Now by using Proposition 3.4 and Lebesgue’s Theorem, we get

ERy,w,0(|f(L(U1))− f(L(U0))|2) ≤ n1 log(α ∨ β)2

+ n2ERy,w,0

(
log2

(
1 + Yy,w +Wy,w

1 + αy + βw

))
, n1, n2 ∈ N.

Hence
sup

y,w;y+w>k
ERy,w,0(|f(L(U1))− f(L(U0))|2) <∞.

These two inequalities imply that our Markov chain (L(Up)) is transient
(see Lamperti [3]). This contradicts our assumption on the recurrence of
(X(t)).

Example (The case of symmetrical distributions). The distribution F
is symmetrical if F (dx) = pδ1 + (1− 2p)δa′ + pδb′ for p ∈ [0, 1/2]. According
to Theorem 3.7 the critical value of λ for the First Fit algorithm is given by

λFF =
1

2(−1 + 2p)p(N − b′)
[(−N2 + 2N2p− 2Np+ b′N − 2Nb′p+ b′p)

+ (b′2p2 − 4Nb′p2 − 2n3b′ − 8N3b′p2 + 8N3b′p− 4N2b′p2 + 2N2b′p+ b′2N2

+ 4b′2N2p2−4b′2N2p+4N2p2+N4−4N4p+4N4p2−2b′2Np+4b′2Np2)1/2].

Now we give some examples of the effective bandwidth of First Fit policies
for symmetrical distributions on {1, 2, b′}.
• For C = 13, b′ = 5,

λFF =
1

16

−104 + 187p+
√

10816− 42224p+ 41625p2

(−1 + 2p)p
.

• For C = 68, b′ = 34,

λFF =
1

2

−68 + 133p+
√

4624− 18360p+ 18233p2

(−1 + 2p)p
.

The effective bandwidth of the First Fit pol-

icy for symmetrical distribution on {1, 2, 5}
and C = 13.

The effective bandwidth of the First Fit pol-

icy for symmetrical distribution on {1, 2, 34}
and C = 68.
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