Kerwin Morris (Adelaide)
Dominik Szynal (Lublin)

GOODNESS-OF-FIT TESTS USING CHARACTERIZATIONS OF CONTINUOUS DISTRIBUTIONS

Abstract. Using characterization conditions of continuous distributions in terms of moments of order statistics and moments of record values we present new goodness-of-fit techniques.

1. Introduction and preliminaries. Let $\left(X_{1}, \ldots, X_{n}\right)$ be a sample from a continuous distribution $F(x)=P[X \leq x], x \in \mathbb{R}$, and let $X_{k: n}$ denote the k th smallest order statistic of the sample. We construct goodness-of-fit tests for continuous distributions using characterizations of distributions via moments of order statistics and moments of record values (cf. [2]-[5], [10]). The results presented extend the tests for uniformity and exponentiality discussed in [6] and [7]. Moreover, we give the proof of statements on tests for exponentiality announced in [7]. We include a theorem on the asymptotic effect of substituting estimators for parameters in the tests proposed here. It can be used, among other things, to construct a test for normality.
(O) Characterizations in terms of moments of order statistics. We use the characterization conditions contained in the following theorems.

Theorem 1 (cf. [10], [3]). Let n, k, l be given integers such that $n \geq k \geq l \geq 1$. Assume that G is a nondecreasing right-continuous function from \mathbb{R} to \mathbb{R}. Then $F(x)=G(x)$ on $I(F)$ (the minimal interval containing the support of F) and F is continuous on \mathbb{R} iff

$$
\begin{align*}
\frac{(k-l)!}{(n-l+1)!} E G^{2 l}(& \left.X_{k+1-l: n+1-l}\right) \tag{1.1}\\
& \quad-\frac{2 k!}{(n+1)!} E G^{l}\left(X_{k+1: n+1}\right)+\frac{(k+l)!}{(n+l+1)!}=0 .
\end{align*}
$$

[^0]Theorem 2 (cf. [5]). Under the assumptions of Theorem 1, $F(x)=$ $G(x)$ on $I(F)$ and F is continuous on \mathbb{R} iff

$$
\begin{align*}
& E G^{l}\left(X_{k+1: n+1}\right)=\frac{(k+l)!(n+1)!}{k!(n+l+1)!} \\
& E G^{2 l}\left(X_{k+1-l: n+1-l}\right)=\frac{(k+l)!(n-l+1)!}{(k-l)!(n+l+1)!} \tag{1.2}
\end{align*}
$$

Note that Theorem 2 is a consequence of Theorem 1, since (1.1) implies $F=G$ implies (1.2) implies (1.1).

Corollary 1. $X \sim F$ and F is continuous iff

$$
\begin{equation*}
E F\left(X_{2: 2}\right)-E F^{2}(X)=\frac{1}{3} \tag{1.3}
\end{equation*}
$$

or

$$
\begin{equation*}
E F\left(X_{2: 2}\right)=\frac{2}{3}, \quad E F^{2}(X)=\frac{1}{3} \tag{1.4}
\end{equation*}
$$

In particular:
(a) $X \sim U(\alpha, \beta)$ (uniform distribution), i.e. $F(x)=(x-\alpha) /(\beta-\alpha)$, $\alpha<x<\beta$, iff

$$
E\left[\left(X_{2: 2}-\alpha\right) /(\beta-\alpha)\right]-E[(X-\alpha) /(\beta-\alpha)]^{2}=\frac{1}{3}
$$

or

$$
E\left[\left(X_{2: 2}-\alpha\right) /(\beta-\alpha)\right]=\frac{2}{3}, \quad E[(X-\alpha) /(\beta-\alpha)]^{2}=\frac{1}{3}
$$

(b) $X \sim \operatorname{Exp}(\alpha)$ (exponential distribution), i.e. $F(x)=1-\exp (-\alpha x)$, $x>0, \alpha>0$, iff

$$
E\left(1-\exp \left(-\alpha X_{2: 2}\right)\right)-E(1-\exp (-\alpha X))^{2}=\frac{1}{3}
$$

or

$$
E\left(1-\exp \left(-\alpha X_{2: 2}\right)\right)=\frac{2}{3}, \quad E(1-\exp (-\alpha X))^{2}=\frac{1}{3}
$$

(R) Characterization conditions in terms of moments of record values. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with cdf F and pdf f. For a fixed $k \geq 1$ we define the sequence $U_{k}(1), U_{k}(2), \ldots$ of k-(upper) record times of X_{1}, X_{2}, \ldots as follows:

$$
\begin{aligned}
& U_{k}(1)=1 \\
& \begin{aligned}
& U_{k}(n)=\min \left\{j>U_{k}(n-1): X_{j: j+k-1}>X_{U_{k}(n-1): U_{k}(n-1)+k-1}\right\} \\
& n=2,3, \ldots
\end{aligned}
\end{aligned}
$$

Write

$$
Y_{n}^{(k)}:=X_{U_{k}(n): U_{k}(n)+k-1}, \quad n \geq 1
$$

The sequence $\left\{Y_{n}^{(k)}, n \geq 1\right\}$ is called the sequence of k-(upper) record values of the above sequence. For convenience we also take $Y_{0}^{(k)}=0$ and note that $Y_{1}^{(k)}=X_{1: k}=\min \left(X_{1}, \ldots, X_{k}\right)($ cf. [1] $)$.

We see that for $k=1,2, \ldots$, the sequences $\left\{Y_{n}^{(k)}, n \geq 1\right\}$ of k th record values can be obtained from $\left\{X_{n}, n \geq 1\right\}$ by inspecting successively the samples $X_{1},\left(X_{1}, X_{2}\right),\left(X_{1}, X_{2}, X_{3}\right)$, and so on. For $k=1, Y_{1}^{(1)}=X_{1}$, and the following terms are obtained by looking at the maxima of the successive samples; $Y_{2}^{(1)}$ is the first maximum that exceeds $Y_{1}^{(1)}, Y_{3}^{(1)}$ is the first maximum that exceeds $Y_{2}^{(1)}$, and so on. For $k=2, Y_{1}^{(2)}=\min \left(X_{1}, X_{2}\right)$, and the following terms are obtained by looking at the next-to-largest values in the successive samples: $Y_{2}^{(2)}$ is the first next-to-largest value that exceeds $Y_{1}^{(2)}, Y_{3}^{(2)}$ is the next-to-largest value that exceeds $Y_{2}^{(2)}$, and so on. And generally, $Y_{1}^{(k)}=\min \left(X_{1}, \ldots, X_{k}\right)=X_{1: k}$, and the following k th record values are obtained by looking at the k th largest values in successive samples, i.e., looking at the order statistics $X_{2: k+1}$ from $\left(X_{1}, \ldots, X_{k+1}\right), X_{3: k+2}$ from $\left(X_{1}, \ldots, X_{k+2}\right)$, and so on.

We have the following characterizations.
Theorem 3 (cf. [4]). Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of i.i.d. random variables with cdf F. Assume that G is a nondecreasing right-continuous function from \mathbb{R} to $(-\infty, 1]$, and let n, k, l be given integers such that $k \geq 1$ and $n \geq l \geq 1$. Then $F(x)=G(x)$ on $I(F)$ iff

$$
\begin{align*}
& k^{2 l}(n-l)!E\left[-\log \left(1-G\left(Y_{n-l+1}^{(k)}\right)\right)\right]^{2 l} \tag{1.5}\\
& \quad-2 n!k^{l} E\left[-\log \left(1-G\left(Y_{n+1}^{(k)}\right)\right)\right]^{l}+(n+l)!=0 .
\end{align*}
$$

Theorem 4 (cf. [5], [4]). Under the assumptions of Theorem 3, $F(x)=$ $G(x)$ on $I(F)$ iff

$$
\begin{aligned}
E\left[-\log \left(1-G\left(Y_{n+1}^{(k)}\right)\right)\right]^{l} & =\frac{(n+l)!}{n!k^{l}}, \\
E\left[-\log \left(1-G\left(Y_{n-l+1}^{(k)}\right)\right)\right]^{2 l} & =\frac{(n+l)!}{(n-l)!k^{2 l}} .
\end{aligned}
$$

Following the observation after Theorem 2 we see that Theorem 4 is a consequence of Theorem 3.

Corollary 2. $X \sim F$ and F is continuous iff

$$
\begin{equation*}
E\left[-\log \left(1-F\left(Y_{1}^{(k)}\right)\right)\right]^{2}-\frac{2}{k} E\left[-\log \left(1-F\left(Y_{2}^{(k)}\right)\right)\right]+\frac{2}{k^{2}}=0 \tag{1.6}
\end{equation*}
$$

or

$$
\begin{equation*}
E\left[-\log \left(1-F\left(Y_{2}^{(k)}\right)\right)\right]=\frac{2}{k}, \quad E\left[-\log \left(1-F\left(Y_{1}^{(k)}\right)\right)\right]^{2}=\frac{2}{k^{2}} \tag{1.7}
\end{equation*}
$$

In particular:
(a) $X \sim U(0,1)$ iff

$$
E\left[-\log \left(1-Y_{1}^{(k)}\right)\right]^{2}-\frac{2}{k} E\left[-\log \left(1-Y_{2}^{(k)}\right)\right]+\frac{2}{k^{2}}=0
$$

or

$$
E\left[-\log \left(1-Y_{2}^{(k)}\right)\right]=\frac{2}{k}, \quad E\left[-\log \left(1-Y_{1}^{(k)}\right)\right]^{2}=\frac{2}{k^{2}}
$$

(b) $X \sim \operatorname{Exp}(\alpha)$ iff

$$
\alpha^{2} E\left(Y_{1}^{(k)}\right)^{2}-\frac{2}{k^{2}} \alpha E\left(Y_{2}^{(k)}\right)+\frac{2}{k^{2}}=0
$$

or

$$
E Y_{2}^{(k)}=\frac{2}{\alpha k}, \quad E\left(Y_{1}^{(k)}\right)^{2}=\frac{2}{\alpha^{2} k^{2}}
$$

2. Goodness-of-fit tests based on characterizations via moments of order statistics. The cases when parameters of F are specified and unknown will be treated separately.
(A) Parameters of F are specified. First we construct goodness-of-fit tests based on the characterization in (1.1) (see also (1.3)) which we can write in the form

$$
E\left(F\left(X_{2: 2}\right)\right)-\frac{1}{2}\left(E\left(F^{2}\left(X_{1}\right)+F^{2}\left(X_{2}\right)\right)\right)=\frac{1}{3}
$$

where X_{1} and X_{2} are i.i.d. as X.
Let $\left(X_{1}, \ldots, X_{2 n}\right)$ be a sample from F, where F is continuous and strictly increasing. Define

$$
\begin{aligned}
& Y_{j}=F^{2}\left(X_{2 j-1}\right)+F^{2}\left(X_{2 j}\right), \\
& Z_{j}=F\left(\max \left(X_{2 j-1}, X_{2 j}\right)\right), \quad j=1, \ldots, n
\end{aligned}
$$

Then Y_{1}, \ldots, Y_{n} are i.i.d. and Z_{1}, \ldots, Z_{n} are i.i.d. Writing $Y:=Y_{1}=$ $F^{2}\left(X_{1}\right)+F^{2}\left(X_{2}\right), Z:=Z_{1}=F\left(\max \left(X_{1}, X_{2}\right)\right)$ we state the following result.

Lemma 1. Under the above assumptions, the density function of (Y, Z) is given by

$$
f(y, z)= \begin{cases}1 / \sqrt{y-z^{2}}, & 0 \leq z \leq 1, z^{2}<y \leq 2 z^{2} \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
E Y=\frac{2}{3}, \operatorname{Var}(Y)=\frac{8}{45}, E Z=\frac{2}{3}, \operatorname{Var}(Z)=\frac{1}{18}, \operatorname{Cov}(Y, Z)=\frac{4}{45}
$$

Now we define

$$
R_{j}=Z_{j}-\frac{1}{2} Y_{j}, \quad j=1, \ldots, n
$$

We see that

$$
\begin{aligned}
E R_{j} & =E Z_{j}-\frac{1}{2} E Y_{j}=\frac{1}{3} \\
\operatorname{Var} R_{j} & =\operatorname{Var} Z_{j}+\frac{1}{4} \operatorname{Var} Y_{j}-\operatorname{Cov}\left(Z_{j}, Y_{j}\right)=\frac{1}{90}, \quad j=1, \ldots, n
\end{aligned}
$$

Write

$$
\overline{R_{n}}=\frac{1}{n} \sum_{j=1}^{n} R_{j}
$$

then by the CLT

$$
3 \sqrt{10 n}\left(\overline{R_{n}}-\frac{1}{3}\right) \xrightarrow{D} V \sim N(0,1),
$$

and hence

$$
\begin{equation*}
D_{n}^{(1)}:=45 \cdot 2 n\left(\overline{R_{n}}-\frac{1}{3}\right)^{2} \xrightarrow{D} \chi^{2}(1), \tag{2.1}
\end{equation*}
$$

and so $D_{n}^{(1)}$ provides a simple asymptotic test of the hypothesis $X \sim F$.
Setting $X_{j}^{*}=\max \left(X_{2 j-1}, X_{2 j}\right), j=1, \ldots, n$, we note that $D_{n}^{(1)}$ in (2.1) has the form

$$
\begin{equation*}
D_{n}^{(1)}=45 \cdot 2 n\left(\frac{1}{n} \sum_{j=1}^{n} F\left(X_{j}^{*}\right)-\frac{1}{2 n} \sum_{j=1}^{2 n} F^{2}\left(X_{j}\right)-\frac{1}{3}\right)^{2} . \tag{2.2}
\end{equation*}
$$

Next we construct goodness-of-fit tests based on the characterization in (1.2) (see also (1.4)), which we write in the form

$$
E F\left(\max \left(X_{1}, X_{2}\right)\right)=\frac{2}{3}, \quad E F^{2}\left(X_{1}\right)=\frac{1}{3}
$$

Define

$$
\begin{gathered}
\mathbf{W}_{j}=\binom{Y_{j}}{Z_{j}}, \quad j=1, \ldots, n \\
\mu=E \mathbf{W}_{1}=\binom{2 / 3}{2 / 3}=\frac{2}{3}\binom{1}{1} \\
\Sigma:=\operatorname{Var}\left(\mathbf{W}_{1}\right)=E\left(\mathbf{W}_{1}-E \mathbf{W}_{1}\right)\left(\mathbf{W}_{1}-E \mathbf{W}_{1}\right)^{\prime}=\left(\begin{array}{cc}
8 / 45 & 4 / 45 \\
4 / 45 & 1 / 18
\end{array}\right),
\end{gathered}
$$

and write $\overline{\mathbf{W}_{n}}=n^{-1} \sum_{j=1}^{n} \mathbf{W}_{j}$. The CLT says that

$$
\begin{equation*}
\sqrt{n}\left(\overline{\mathbf{W}_{n}}-\mu\right) \xrightarrow{D} \mathbf{V} \sim N(0, \Sigma), \tag{2.3}
\end{equation*}
$$

whence

$$
D_{n}^{(2)}:=n\left(\overline{\mathbf{W}_{n}}-\mu\right)^{\prime} \Sigma^{-1}\left(\overline{\mathbf{W}_{n}}-\mu\right) \xrightarrow{D} \mathbf{V}^{\prime} \Sigma^{-1} \mathbf{V} \sim \chi^{2}(2)
$$

But $D_{n}^{(2)}$ is a reasonable measure of the "size" of $\left(\overline{\mathbf{W}_{n}}-\mu\right)$ and so by (2.3) provides a test of the hypothesis that X has the distribution function F. And since

$$
\Sigma^{-1}=45\left(\begin{array}{cc}
5 / 8 & -1 \\
-1 & 2
\end{array}\right)
$$

it follows that in extended form

$$
\begin{equation*}
D_{n}^{(2)}=45 n\left[\frac{5}{8}\left(\overline{Y_{n}}-\frac{2}{3}\right)^{2}+2\left(\overline{Z_{n}}-\frac{2}{3}\right)^{2}-2\left(\overline{Y_{n}}-\frac{2}{3}\right)\left(\overline{Z_{n}}-\frac{2}{3}\right)\right] \tag{2.4}
\end{equation*}
$$

In terms of $X_{j}^{*}, D_{n}^{(2)}$ in (2.4) has the form

$$
\begin{equation*}
D_{n}^{(2)}=45 \cdot 2 n\left[\frac{1}{4}\left(\overline{F^{2}\left(X_{2 n}\right)}-\frac{1}{3}\right)^{2}+\left(\overline{F^{2}\left(X_{2 n}\right)}-\overline{F\left(X_{n}^{*}\right)}+\frac{1}{3}\right)^{2}\right] \tag{2.5}
\end{equation*}
$$

By (2.5) and (2.2) we have
Lemma 2.

$$
D_{n}^{(2)}=\frac{45}{4} \cdot 2 n\left(\overline{F^{2}\left(X_{2 n}\right)}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}
$$

Special cases:
(a) If $X \sim U(\alpha, \beta)$ then

$$
\begin{aligned}
D_{n}^{(1)} & =45 \cdot 2 n\left(\frac{1}{(\beta-\alpha)^{2}} \overline{X_{2 n}^{2}}-\frac{\beta+\alpha}{(\beta-\alpha)^{2}} \overline{X_{2 n}}-\frac{1}{\beta-\alpha} \overline{X_{n}^{+}}+\frac{\alpha \beta}{\beta-\alpha}+\frac{1}{3}\right)^{2} \\
D_{n}^{(2)} & =\frac{45}{4} \cdot 2 n\left(\frac{\overline{X_{2 n}^{2}}}{(\beta-\alpha)^{2}}-2 \alpha \frac{\overline{X_{2 n}}}{(\beta-\alpha)^{2}}+\frac{\alpha^{2}}{(\beta-\alpha)^{2}}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}
\end{aligned}
$$

Remark. If $X \sim U(0, \beta)$ then

$$
\begin{aligned}
& D_{n}^{(1)}=45 \cdot 2 n\left(\overline{X_{2 n}^{2}} / \beta^{2}-\overline{X_{2 n}} / \beta-\overline{X_{n}^{+}} / \beta+\frac{1}{3}\right)^{2} \\
& D_{n}^{(2)}=\frac{45}{4} \cdot 2 n\left(\overline{X_{2 n}^{2}} / \beta^{2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}
\end{aligned}
$$

(b) If $X \sim \operatorname{Pow}(\alpha)$ (power distribution), i.e. $F(x)=1-(1-x / \alpha)^{\alpha}$, $0 \leq x \leq \alpha, 0<\alpha \leq 1$, then

$$
\begin{aligned}
& D_{n}^{(1)}=45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-\left(1-X_{j} / \alpha\right)^{\alpha}\right)^{2}+\frac{1}{n} \sum_{j=1}^{n}\left(1-X_{j}^{*} / \alpha\right)^{\alpha}-\frac{2}{3}\right)^{2} \\
& D_{n}^{(2)}=\frac{45}{4} \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-\left(1-X_{j} / \alpha\right)^{\alpha}\right)^{2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}
\end{aligned}
$$

(c) If $X \sim \operatorname{Exp}(\alpha)$ then

$$
\begin{aligned}
D_{n}^{(1)} & =45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-e^{-\alpha X_{j}}\right)^{2}+\frac{1}{n} \sum_{j=1}^{n} e^{-\alpha X_{j}^{*}}-\frac{2}{3}\right)^{2} \\
D_{n}^{(2)} & =\frac{45}{4} \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-e^{-\alpha X_{j}}\right)^{2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}
\end{aligned}
$$

(d) If $X \sim W(\beta, \alpha)$ (Weibull distribution), i.e. $F(x)=1-\exp \left(-\alpha x^{\beta}\right)$, $x>0, \alpha>0, \beta>0$, then

$$
\begin{aligned}
& D_{n}^{(1)}=45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-e^{-\alpha X_{j}^{\beta}}\right)^{2}+\frac{1}{n} \sum_{j=1}^{n} e^{-\alpha\left(X_{j}^{*}\right)^{\beta}}-\frac{2}{3}\right)^{2}, \\
& D_{n}^{(2)}=\frac{45}{4} \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-e^{-\alpha X_{j}^{\beta}}\right)^{2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)} .
\end{aligned}
$$

(e) If $X \sim \operatorname{Par}_{S}(\alpha, \sigma)$ (single-parameter Pareto distribution), i.e. $F(x)=$ $1-(\sigma / x)^{\alpha}, x>\sigma, \alpha>0, \sigma>0$, then

$$
\begin{aligned}
& D_{n}^{(1)}=45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-\left(\frac{\sigma}{X_{j}}\right)^{\alpha}\right)^{2}+\frac{1}{n} \sum_{j=1}^{n}\left(\sigma / X_{j}^{*}\right)^{\alpha}-\frac{2}{3}\right)^{2}, \\
& D_{n}^{(2)}=\frac{45}{4} \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-\left(\frac{\sigma}{X_{j}}\right)^{\alpha}\right)^{2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)} .
\end{aligned}
$$

(f) If $X \sim \operatorname{Par}_{T}(\alpha, \theta)$ (two-parameter Pareto distribution), i.e. $F(x)=$ $1-\left(\frac{\theta}{x+\theta}\right)^{\alpha}, x>0, \alpha>0, \theta>0$, then

$$
\begin{aligned}
D_{n}^{(1)} & =45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-\left(\frac{\theta}{X_{j}+\theta}\right)^{\alpha}\right)^{2}+\frac{1}{n} \sum_{j=1}^{n}\left(\frac{\theta}{X_{j}^{*}+\theta}\right)^{\alpha}-\frac{2}{3}\right)^{2}, \\
D_{n}^{(2)} & =\frac{45}{4} \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-\left(\frac{\theta}{X_{j}+\theta}\right)^{\alpha}\right)^{2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)} .
\end{aligned}
$$

(g) If $X \sim \log (\alpha, \beta)$ (logistic distribution), i.e.

$$
F(x)=[1+\exp (-(x-\alpha) / \beta)]^{-1}, \quad-\infty<x<\infty, \alpha \in \mathbb{R}, \beta>0,
$$

then

$$
\begin{aligned}
D_{n}^{(1)}= & 45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1+\exp \left(-\left(X_{j}-\alpha\right) / \beta\right)\right)^{-2}\right. \\
& \left.-\frac{1}{n} \sum_{j=1}^{n}\left(1+\exp \left(-\left(X_{j}^{*}-\alpha\right) / \beta\right)\right)^{-1}+\frac{1}{3}\right)^{2}, \\
D_{n}^{(2)}= & \frac{45}{4} \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1+\exp \left(-\left(X_{j}-\alpha\right) / \beta\right)\right)^{-2}-\frac{1}{3}\right)^{2}+D_{n}^{(1)} .
\end{aligned}
$$

(B) Unknown parameters. We discuss asymptotic tests obtained from $D_{n}^{(1)}$ and $D_{n}^{(2)}$ in (A) when parameters are replaced by estimators.

Proposition 1. Goodness-of-fit tests for $F(x)=x / \beta, x \in(0, \beta), \beta>0$, are given by

$$
\begin{aligned}
& \widehat{D}_{n}^{(1)}:=D_{n}^{(1)}\left(\widehat{\beta}_{n}\right)=45 \cdot 2 n\left(\frac{\overline{X_{2 n}^{2}}}{\widehat{\beta}_{n}^{2}}-\frac{\overline{X_{2 n}}}{\widehat{\beta}_{n}}-\frac{\overline{X_{n}^{+}}}{\widehat{\beta}_{n}}+\frac{1}{3}\right)^{2} \xrightarrow{D} \chi^{2}(1), \\
& \widehat{D}_{n}^{(2)}:=D_{n}^{(2)}\left(\widehat{\beta}_{n}\right)=\frac{45}{4} \cdot 2 n\left(\frac{\overline{X_{2 n}^{2}}}{\widehat{\beta}_{n}^{2}}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}\left(\widehat{\beta}_{n}\right) \xrightarrow{D} \chi^{2}(2),
\end{aligned}
$$

where $\widehat{\beta}_{n}=\max \left(X_{1}, \ldots, X_{2 n}\right)$.
Proposition 2. Goodness-of-fit tests for $F(x)=\frac{x-\alpha}{\beta-\alpha}, x \in(\alpha, \beta)$, $\alpha<\beta$, are given by

$$
\begin{aligned}
\widehat{D}_{n}^{(1)}:=D_{n}^{(1)}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right)= & 45 \cdot 2 n\left(\frac{\overline{X_{2 n}^{2}}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)^{2}}-\left(\widehat{\beta}_{n}+\widehat{\alpha}_{n}\right) \frac{\overline{X_{2 n}}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)^{2}}\right. \\
& \left.-\frac{\overline{X_{n}^{+}}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)}+\frac{\widehat{\alpha}_{n} \widehat{\beta}_{n}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)^{2}}+\frac{1}{3}\right)^{2} \xrightarrow{D} \chi^{2}(1), \\
\widehat{D}_{n}^{(2)}:=D_{n}^{(2)}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right)= & \frac{45}{4} \cdot 2 n\left(\frac{\overline{X_{2 n}^{2}}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)^{2}}-2 \frac{\widehat{\alpha}_{n} \overline{X_{2 n}}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)}\right. \\
& \left.+\frac{\widehat{\alpha}_{n}^{2}}{\left(\widehat{\beta}_{n}-\widehat{\alpha}_{n}\right)^{2}}-\frac{1}{3}\right)^{2}+D_{n}^{(1)}\left(\widehat{\alpha}_{n}, \widehat{\beta}_{n}\right) \xrightarrow{D} \chi^{2}(2),
\end{aligned}
$$

where $\widehat{\beta}_{n}=\max \left(X_{1}, \ldots, X_{2 n}\right)$ and $\widehat{\alpha}_{n}=\min \left(X_{1}, \ldots, X_{2 n}\right)$.
The proofs of Propositions 1 and 2 are given in [6] and [7]. For the following propositions concerning exponential and normal distributions we use a general theorem based on results in [8] and [9].

Theorem $5([8])$. Let $\widehat{T}_{n}=T_{n}\left(X_{1}, \ldots, X_{n} ; \widehat{\lambda}_{n}\right)$, where $\widehat{\lambda}_{n}=\widehat{\lambda}_{n}\left(X_{1}, \ldots\right.$ $\left.\ldots, X_{n}\right)$ is an estimator of a parameter λ of the distribution of X, and let $T_{n}=T_{n}\left(X_{1}, \ldots, X_{n} ; \lambda\right)$ (here T_{n}, λ and $\widehat{\lambda}_{n}$ may be vectors). Suppose that:
(i) For each λ,

$$
\sqrt{n}\binom{T_{n}}{\hat{\lambda}_{n}-\lambda} \xrightarrow{D} T \sim N(0, V),
$$

where

$$
V=\left(\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right)
$$

and V_{22} is nonsingular.
(ii) There is a matrix B, possibly depending continuously on λ, such that

$$
\sqrt{n} \widehat{T}_{n}=\sqrt{n} T_{n}+B \sqrt{n}\left(\widehat{\lambda}_{n}-\lambda\right)+o_{p}(1) .
$$

(iii) $\widehat{\lambda}_{n}$ is asymptotically efficient (cf. [8]).

Then

$$
\begin{equation*}
\sqrt{n} \widehat{T}_{n} \xrightarrow{D} T^{*} \sim N\left(0, V_{11}-B V_{22} B^{\prime}\right) . \tag{2.6}
\end{equation*}
$$

Note that (ii) is satisfied when T_{n} is differentiable in λ, and then

$$
B=\lim _{n \rightarrow \infty} E\left[\frac{\partial}{\partial \lambda} T_{n}\right]
$$

The following result is a consequence of Theorem 5.
Theorem 6. Let $\left(X_{1}, \ldots, X_{2 n}\right)$ be a sample with an absolutely continuous distribution function $F(x ; \lambda)$ differentiable with respect to the $m \times 1$ vector λ. Set

$$
\left.\overline{\mathbf{W}_{n}}:=\left(\overline{Y_{n}} \bar{Z}_{n}\right):=\left(\overline{Y_{n}(\lambda)}\right)=\overline{Z_{n}(\lambda)}\right)
$$

where

$$
\overline{Y_{n}}=\frac{1}{n} \sum_{j=1}^{2 n} F^{2}\left(X_{j} ; \lambda\right), \quad \overline{Z_{n}}=\frac{1}{n} \sum_{j=1}^{n} F\left(X_{j}^{*} ; \lambda\right)
$$

and $X_{j}^{*}=\max \left(X_{2 j-1}, X_{2 j}\right), j=1, \ldots, n$. Write

$$
\widehat{W}_{n}=\overline{W_{n}\left(\widehat{\lambda}_{2 n}\right)}=\binom{\widehat{Y}_{n}}{\widehat{Z}_{n}}
$$

where

$$
\widehat{Y}_{n}:=\overline{Y_{n}\left(\widehat{\lambda}_{2 n}\right)}, \quad \widehat{Z}_{n}:=\overline{Z_{n}\left(\widehat{\lambda}_{2 n}\right)}
$$

and $\hat{\lambda}_{2 n}$ is the MLE of λ. Suppose that F is such that the $M L E \hat{\lambda}_{2 n}$ is "regular" in the sense that

$$
\sqrt{2 n}\left(\widehat{\lambda}_{2 n}-\lambda\right) \xrightarrow{D} \gamma \sim N\left(0, I^{-1}\right)
$$

where $I=I(\lambda)$ is the information matrix for λ based on a single observation. Then

$$
\begin{gather*}
\quad \sqrt{n}\left(\overline{W_{n}}\left(\widehat{\lambda}_{2 n}\right)-\mu\right) \xrightarrow{D} W \sim N\left(0, \Sigma_{1}\right), \tag{2.7}\\
\widehat{D}_{n}^{(1)}:=45 \cdot 2 n\left(\widehat{\widehat{F}^{(}\left(X_{n}^{*}\right)}-\overline{\widehat{F}^{2}\left(X_{2 n}\right)}-\frac{1}{3}\right)^{2} \rightarrow \chi^{2}(1), \tag{2.8}\\
\widehat{D}_{n}^{(2)}:=\frac{45}{4-b} 2 n\left(\overline{\widehat{F}^{2}\left(X_{2 n}\right)}-\frac{1}{3}\right)^{2}+\widehat{D}_{n}^{(1)} \rightarrow \chi^{2}(2), \tag{2.9}
\end{gather*}
$$

where $\Sigma_{1}=\Sigma-B(2 I)^{-1} B, \mu$ and Σ are taken from $(2.3), \widehat{F}(x):=F(x, \widehat{\lambda})$, and

$$
B=2\binom{2}{1} d^{\prime}
$$

where

$$
d:=E\left(F(X ; \lambda) \frac{d F(X ; \lambda)}{d \lambda}\right) \quad \text { is } m \times 1
$$

and

$$
b:=b(\lambda)=180 d^{\prime} I^{-1} d
$$

Proof. The statement (2.7) follows directly from (2.3) and (2.6). Now note that

$$
\begin{aligned}
E \frac{\partial \overline{Y_{n}}}{\partial \lambda_{j}} & =2 E \frac{\partial F^{2}(X ; \lambda)}{\partial \lambda_{j}}=4 E\left(F \frac{\partial F}{\partial \lambda_{j}}\right) \\
& =4 \int F(x ; \lambda) \frac{\partial F}{\partial \lambda_{j}} f(x ; \lambda) d x, \quad j=1, \ldots, m
\end{aligned}
$$

and correspondingly

$$
E\left(\frac{\partial \overline{Z_{n}}}{\partial \lambda_{j}}\right)=E\left(\frac{\partial F\left(\max \left(X_{2 j-1}, X_{2 j}\right) ; \lambda\right)}{\partial \lambda_{j}}\right)=\frac{1}{2} E \frac{\partial \overline{Y_{n}}}{\partial \lambda_{j}}, \quad j=1, \ldots, m
$$

since the pdf of $X_{i}^{*}=\max \left(X_{2 i-1}, X_{2 i}\right)$ is $2 F\left(x^{*} ; \lambda\right) f\left(x^{*} ; \lambda\right), i=1, \ldots, n$.
It follows that

$$
B=\lim _{n \rightarrow \infty} E\left(\frac{\partial \overline{W_{n}}}{\partial \lambda}\right)=\binom{4}{2}\left(E\left(F \frac{\partial F}{\partial \lambda_{1}}\right) \ldots E\left(F \frac{\partial F}{\partial \lambda_{m}}\right)\right)=2\binom{2}{1} d^{\prime}
$$

and hence that

$$
B(2 I)^{-1} B^{\prime}=2 d^{\prime} I^{-1} d\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right)=\frac{b}{90}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right) .
$$

Thus we have

$$
\begin{aligned}
\Sigma_{1} & =\Sigma-B(2 I)^{-1} B^{\prime}=\frac{1}{90}\left(\begin{array}{cc}
16 & 8 \\
8 & 5
\end{array}\right)-\frac{b}{90}\left(\begin{array}{ll}
4 & 2 \\
2 & 1
\end{array}\right) \\
& =\frac{1}{90}\left(\begin{array}{cc}
4(4-b) & 2(4-b) \\
2(4-b) & 5-b
\end{array}\right),
\end{aligned}
$$

and

$$
\Sigma_{1}^{-1}=90\left(\begin{array}{cc}
5-b /(4(4-b)) & -1 / 2 \\
-1 / 2 & 1
\end{array}\right)
$$

Therefore

$$
\widehat{D}_{n}^{(2)}=n(\widehat{W}-\mu)^{\prime} \Sigma_{1}^{-1}(\widehat{W}-\mu) \xrightarrow{D} \chi^{2}(2),
$$

which (in extended form) proves (2.9).
Finally, writing $a=\binom{-1 / 2}{1}$ we see that

$$
\sqrt{n}\left(\widehat{Z}_{n}-\frac{1}{2} \widehat{Y}_{n}-\frac{1}{3}\right)=a^{\prime}(\sqrt{n}(\widehat{W}-\mu)) \xrightarrow{D} a^{\prime} W \sim N\left(0, a^{\prime} \Sigma_{1} a\right)
$$

and $a^{\prime} \Sigma_{1} a=1 / 90$, which shows (2.8) and completes the proof of Theorem 6.

Proposition 3. Goodness-of-fit tests for $X \sim \operatorname{Exp}(\alpha)$ are given by

$$
\begin{aligned}
\widehat{D}_{n}^{(1)} & :=D_{n}^{(1)}\left(\widehat{\alpha}_{2 n}\right) \\
& =45 \cdot 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-e^{-\widehat{\alpha}_{2 n} X_{j}}\right)^{2}+\frac{1}{n} \sum_{j=1}^{n} e^{-\widehat{\alpha}_{2 n} X_{j}^{*}}-\frac{2}{3}\right)^{2} \\
& \xrightarrow{D} \chi^{2}(1) \\
\widehat{D}_{n}^{(2)} & :=D_{n}^{(2)}\left(\widehat{\alpha}_{2 n}\right) \\
& =\frac{45 \cdot 36}{19} 2 n\left(\frac{1}{2 n} \sum_{j=1}^{2 n}\left(1-e^{-\widehat{\alpha}_{2 n} X_{j}}\right)^{2}-\frac{1}{3}\right)^{2}+\widehat{D}_{n}^{(1)} \xrightarrow{D} \chi^{2}(2)
\end{aligned}
$$

where $\widehat{\alpha}_{2 n}=1 / \overline{X_{2 n}}$.
Proof. The first statement of Proposition 3 follows from (c) after Lemma 2 and Theorem 6. To prove the second statement it is enough to see that for $X \sim \operatorname{Exp}(\alpha)$ we have $I(\alpha)=1 / \alpha^{2}$,

$$
d=\alpha \int_{0}^{\infty}\left(x e^{-2 \alpha x}-x e^{-3 \alpha x}\right) d x=5 /(36 \alpha)
$$

and $b=125 / 36$, which by (2.9) gives the test statistic $\widehat{D}_{n}^{(2)}$.
Proposition 4. Goodness-of-fit tests for $X \sim N\left(\mu, \sigma^{2}\right)$ with

$$
\begin{aligned}
F(x) & =\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{x} e^{-(t-\mu)^{2} /\left(2 \sigma^{2}\right)} d t \\
f(x) & =\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}, \quad-\infty<x<\infty
\end{aligned}
$$

are given by

$$
\begin{aligned}
\widehat{D}_{n}^{(1)} & :=D_{n}^{(1)}\left(\widehat{\mu}_{2 n}, \widehat{\sigma}_{2 n}^{2}\right) \\
& =45 \cdot 2 n\left(\overline{\Phi^{2}\left(\left(X_{2 n}-\widehat{\mu}_{2 n}\right) / \widehat{\sigma}_{2 n}\right)}-\overline{\Phi\left(\left(X_{n}^{*}-\widehat{\mu}_{2 n}\right) / \widehat{\sigma}_{2 n}\right)}+\frac{1}{3}\right)^{2} \\
& \stackrel{D}{\rightarrow} \chi^{2}(1), \\
\widehat{D}_{n}^{(2)} & :=D_{n}^{(2)}\left(\widehat{\mu}_{2 n}, \widehat{\sigma}_{2 n}^{2}\right) \\
& =\frac{45 \cdot 8 \pi^{2}}{32 \pi^{2}-15(6 \pi+1)} \cdot 2 n\left(\overline{\Phi^{2}\left(\left(X_{2 n}-\widehat{\mu}_{2 n}\right) / \widehat{\sigma}_{2 n}\right)}-\frac{1}{3}\right)^{2}+\widehat{D}_{n}^{(1)},
\end{aligned}
$$

where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-t^{2} / 2} d t
$$

$$
\begin{aligned}
\overline{\Phi^{2}\left(\left(X_{2 n}-\widehat{\mu}_{2 n}\right) / \widehat{\sigma}_{2 n}\right)} & =\frac{1}{2 n} \sum_{j=1}^{2 n} \Phi^{2}\left(\left(X_{j}-\widehat{\mu}_{2 n}\right) / \widehat{\sigma}_{2 n}\right) \\
\overline{\Phi\left(\left(X_{n}^{*}-\widehat{\mu}_{2 n}\right) / \widehat{\sigma}_{2 n}\right)} & =\frac{1}{n} \sum_{j=1}^{n} \Phi\left(\left(X_{j}^{*}-\widehat{\mu}_{n}\right) / \widehat{\sigma}_{n}\right)
\end{aligned}
$$

and

$$
\widehat{\mu}_{2 n}=\overline{X_{2 n}}, \quad \widehat{\sigma}_{2 n}^{2}=\frac{1}{2 n} \sum_{j=1}^{2 n}\left(X_{j}-\overline{X_{2 n}}\right)^{2} .
$$

Proof. Here

$$
I^{-1}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & 2 \sigma^{4}
\end{array}\right)
$$

and

$$
\frac{\partial F}{\sigma \mu}=-f, \quad \frac{\partial F}{\partial \sigma^{2}}=-\frac{1}{2 \sigma^{2}}(x-\mu) f
$$

so

$$
d_{1}=-\int_{-\infty}^{\infty} F(x) f^{2}(x) d x, \quad d_{2}=-\frac{1}{2 \sigma^{2}} \int_{-\infty}^{\infty}(x-\mu) F(x) f^{2}(x) d x
$$

To evaluate the integrals, write

$$
F(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x_{1}} e^{-y^{2} / 2} d y=\frac{1}{2}+\psi\left(x_{1}\right)
$$

where

$$
x_{1}=(x-\mu) / \sigma, \quad \psi\left(x_{1}\right)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{x_{1}} e^{-y^{2} / 2} d y
$$

Changing variables to $x_{1}=(x-\mu) / \sigma$ gives

$$
d_{1}=-\frac{1}{2 \pi \sigma} \int_{-\infty}^{\infty}\left(\frac{1}{2}+\psi\left(x_{1}\right)\right) e^{-x_{1}^{2}} d x_{1}=-\frac{1}{4 \pi \sigma} \int_{-\infty}^{\infty} e^{-x_{1}^{2}} d x_{1}=-\frac{1}{4 \sqrt{\pi} \sigma}
$$

where we have used the fact that ψ is an odd function. Similarly

$$
\begin{aligned}
d_{2} & =-\frac{1}{4 \pi \sigma^{2}} \int_{-\infty}^{\infty}\left(\frac{1}{2}+\psi\left(x_{1}\right)\right) x_{1} e^{-x_{1}^{2}} d x_{1}=-\frac{1}{4 \pi \sigma^{2}} \int_{-\infty}^{\infty} \psi\left(x_{1}\right) x_{1} e^{-x_{1}^{2}} d x_{1} \\
& =-\frac{1}{8 \pi \sigma^{2}} \int_{-\infty}^{\infty} \psi^{\prime}\left(x_{1}\right) e^{-x_{1}^{2}} d x_{1}=-\frac{1}{8 \sqrt{3} \pi \sigma^{2}}
\end{aligned}
$$

where we have used integration by parts and the facts that $x_{1} e^{-x_{1}^{2}}$ is an odd function and

$$
\psi^{\prime}\left(x_{1}\right)=\frac{1}{\sqrt{2 \pi}} e^{-x_{1}^{2} / 2}
$$

Hence

$$
b=180\left(d_{1}, d_{2}\right)\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & 2 \sigma^{4}
\end{array}\right)\left(d_{1}, d_{2}\right)^{\prime}=\frac{15(6 \pi+1)}{8 \pi^{2}}
$$

which by (2.9) leads us to the $\widehat{D}_{n}^{(2)}$ test. Then $\widehat{D}_{n}^{(1)}$ is obtained immediately from (2.8).

3. Goodness-of-fit tests based on characterizations via moments

 of record values. Suppose that X has df F and pdf f. To simplify the notation we write$$
g(x)=1-F(x) \quad \text { and } \quad h(x)=-\log (g(x))
$$

if $F(x)<1$ and 0 otherwise.
Then Theorem 3 says (see (1.5)) that $X \sim F$ iff

$$
k^{2 l}(n-l)!E h^{2 l}\left(Y_{n-l+1}^{(k)}\right)-2 n!k^{l} E h^{l}\left(Y_{n+1}^{(k)}\right)+(n+l)!=0 .
$$

Since the definition of $Y_{n}^{(k)}$ requires an infinite sequence it is hard to see how a finite sample can be used to estimate $E Y_{n}^{(k)}$. So our procedure is as follows.

We consider the special case $l=n$. Then $X \sim F$ iff

$$
\begin{equation*}
E h^{2 n}\left(X_{1: k}\right)-\frac{2 n!}{k^{n}} E h^{n}\left(Y_{n+1}^{(k)}\right)+\frac{(2 n)!}{k^{2 n}}=0 . \tag{3.1}
\end{equation*}
$$

We know that the pdf of $Y_{n}^{(k)}$ is

$$
\begin{equation*}
f_{Y_{n}^{(k)}}(x)=\frac{k^{n}}{(n-1)!} h^{n-1}(x) g^{k-1}(x) f(x) \tag{1}
\end{equation*}
$$

and that

$$
\begin{align*}
F_{Y_{n+1}^{(k)}}(x) & =F_{Y_{n}^{(k)}}(x)-\frac{k^{n}}{n!} h^{n}(x) g^{k}(x) \tag{3.2}\\
& =1-g^{k}(x) \sum_{j=0}^{n} \frac{k^{j}}{j!} h^{j}(x) \quad(\text { cf. }[2]) .
\end{align*}
$$

Hence

$$
\begin{aligned}
E h^{n}\left(Y_{n+1}^{(k)}\right)= & E h^{n}\left(Y_{n}^{(k)}\right)-\frac{k^{n}}{(n-1)!} E h^{2 n-1}(X) g^{k-1}(X) \\
& +\frac{k^{n+1}}{n!} E h^{2 n}(X) g^{k-1}(X)
\end{aligned}
$$

Taking into account that

$$
E g^{\alpha-1}(X) h^{\beta-1}(X)=\frac{\Gamma(\beta)}{\alpha^{\beta}} \quad \text { for } \alpha, \beta>0
$$

as X has df F, we get

$$
E h^{n}\left(Y_{n+1}^{(k)}\right)=E h^{n}\left(Y_{n}^{(k)}\right)+\frac{(2 n)!}{2 n!k^{n}}
$$

Hence by (3.1) we obtain

$$
E h^{2 n}\left(X_{1: k}\right)-\frac{2 n!}{k^{n}} E h^{n}\left(Y_{n}^{(k)}\right)=0
$$

Letting $n=1$ we have

$$
\begin{equation*}
E h^{2}\left(X_{1: k}\right)-\frac{2}{k} E h\left(X_{1: k}\right)=0 \tag{3.3}
\end{equation*}
$$

Similarly using the second equality in (3.2) we get

$$
\begin{equation*}
E h^{2 n}\left(X_{1: k}\right)-\frac{2 n!}{k^{n}} E h^{n}\left(X_{1: k}\right)-\frac{(2 n)!-2(n!)^{2}}{k^{2 n}}=0 \tag{3.4}
\end{equation*}
$$

To verify $H: \quad X \sim F$ we use (3.3). Consider first the case $k=1$. Then

$$
E\left(h^{2}\left(X_{1}\right)-2 h\left(X_{1}\right)\right)=0
$$

The sample $\left(X_{1}, \ldots, X_{n}\right)$ provides an estimator of $E W_{1}$, where $W_{1}=h^{2}\left(X_{1}\right)$ $-2 h\left(X_{1}\right)$, of the form

$$
\overline{W_{n}}=\overline{h^{2}\left(X_{n}\right)}-2 \overline{h\left(X_{n}\right)},
$$

where

$$
\overline{h^{2}\left(X_{n}\right)}=\frac{1}{n} \sum_{j=1}^{n} h^{2}\left(X_{j}\right), \quad \overline{h\left(X_{n}\right)}=\frac{1}{n} \sum_{j=1}^{n} h\left(X_{j}\right)
$$

It follows from the CLT that

$$
\sqrt{n} \overline{W_{n}} \xrightarrow{D} N\left(0, \operatorname{Var}\left(W_{1}\right)\right),
$$

and hence that

$$
T_{n}^{(1)}:=n{\overline{W_{n}}}^{2} / \operatorname{Var}\left(W_{1}\right) \xrightarrow{D} \chi^{2}(1),
$$

and so provides a simple asymptotic test of the hypothesis $X \sim F$ when the parameters of F are known. Here

$$
\operatorname{Var} W_{1}=E h^{4}\left(X_{1}\right)-4 E h^{3}\left(X_{1}\right)+4 E h^{2}\left(X_{1}\right)=8
$$

since $h\left(X_{1}\right) \sim \operatorname{Exp}(1)$ gives $E h^{m}\left(X_{1}\right)=m!, m=1,2, \ldots$, and so

$$
T_{n}^{(1)}=\frac{n}{8}\left(\overline{h^{2}\left(X_{n}\right)}-2 \overline{h\left(X_{n}\right)}\right)^{2}
$$

We have proved
Proposition 5. If $X_{n} \sim F, n \geq 1$, are independent then

$$
\begin{equation*}
T_{n}^{(1)}=\frac{n}{8}\left(\overline{h^{2}\left(X_{n}\right)}-2 \overline{h\left(X_{n}\right)}\right)^{2} \xrightarrow{D} \chi^{2}(1) . \tag{3.5}
\end{equation*}
$$

Now consider the case $k=2$. Write $U_{1}:=X_{1: 2}=\min \left(X_{1}, X_{2}\right)$. Here from (3.3) we have to estimate $E W_{1}^{\prime}$, where $W_{1}^{\prime}=h^{2}\left(U_{1}\right)-h\left(U_{1}\right)$. The sample $X_{1}, \ldots, X_{2 n}$ provides the sample $W_{1}^{\prime}, \ldots, W_{n}^{\prime}$, where $W_{j}^{\prime}=h^{2}\left(U_{j}\right)-h\left(U_{j}\right)$ and $U_{j}=\min \left(X_{2 j-1}, X_{2 j}\right), j=1, \ldots, n$. Then $E W_{1}^{\prime}$ is estimated by

$$
\overline{W_{n}^{\prime}}=\overline{h^{2}\left(U_{n}\right)}-\overline{h\left(U_{n}\right)}
$$

and

$$
T_{n}^{(2)}:=n\left(\overline{W_{n}^{\prime}}\right)^{2} / \operatorname{Var}\left(W_{1}^{\prime}\right) \xrightarrow{D} \chi^{2}(1) .
$$

Taking into account that $h\left(U_{1}\right) \sim \operatorname{Exp}(2)$ we see that $\operatorname{Var}\left(W_{1}^{\prime}\right)=1 / 2$. Thus another simple asymptotic test is provided by

Proposition 6. If $X_{n} \sim F, n \geq 1$, are independent then

$$
\begin{equation*}
T_{n}^{(2)}=2 n\left(\overline{h^{2}\left(U_{n}\right)}-\overline{h\left(U_{n}\right)}\right)^{2} \xrightarrow{D} \chi^{2}(1) . \tag{3.6}
\end{equation*}
$$

The same argument leads to a similar test for the case $k=3, \ldots, n-1$ based on a sample of size $k n$.

We now consider the case $k=n$. Write $U_{n}=\min \left(X_{1}, \ldots, X_{n}\right)$. Then by (3.3) we have to estimate $E\left(h^{2}\left(U_{n}\right)-(2 / n) h\left(U_{n}\right)\right)$. The obvious estimate is $h^{2}\left(U_{n}\right)-(2 / n) h\left(U_{n}\right)$ itself, and if the parameters of F are specified the test statistic is

$$
T_{n}^{(n)}:=\left(h^{2}\left(U_{n}\right)-\frac{2}{n} h\left(U_{n}\right)\right)^{2}
$$

As above, under $H, h\left(U_{n}\right) \sim \operatorname{Exp}(n)$, whence

$$
\begin{equation*}
R_{n}:=n h\left(U_{n}\right) \sim U \sim \operatorname{Exp}(1), \quad n \geq 1 \tag{3.7}
\end{equation*}
$$

It follows that

$$
T_{n}^{(n)}=\frac{1}{n^{4}}\left(R_{n}^{2}-2 R_{n}\right)^{2}
$$

and so an equivalent test statistic is $T_{n}:=\left(R_{n}^{2}-2 R_{n}\right)^{2} \sim T:=\left(U^{2}-2 U\right)^{2}$, $n \geq 1$, which provides an exact test for $H: X \sim F$.

Proposition 7 (cf. [7]). The significance probability of the test using T_{n} is

$$
\begin{align*}
P_{t} & :=P\left[T_{n}>t\right] \tag{3.8}\\
& = \begin{cases}e^{-1-\sqrt{1+\sqrt{t}}}+e^{-1+\sqrt{1-\sqrt{t}}}-e^{-1-\sqrt{1-\sqrt{t}}} & \text { if } 0<t \leq 1, \\
e^{-1-\sqrt{1+\sqrt{t}}} & \text { if } t \geq 1\end{cases}
\end{align*}
$$

Proof. The significance probability $P\left[T_{n}>t\right]$ associated with an observed value t can be obtained by considering the graph of $u^{2}(u-2)^{2}=t$ and using the fact that $P[U<u]=1-e^{-u}$. One finds readily that (3.8) holds true.

In particular we consider the 5% test of H, i.e. $P_{t}=0.05$. But since

$$
P[T>1]=e^{-(1+\sqrt{2})}>0.05
$$

the 5% test rejects when $R_{n}>u_{0}$, where $e^{-u_{0}}=0.05$, i.e. when $u_{0}=3.00$. Thus the exact 5% test rejects when $n h\left(U_{n}\right)>3$.

Now we show that instead of $T_{n}=\left[R_{n}^{2}-2 R_{n}\right]^{2}$ one can use more generally the statistics

$$
T_{n}^{[m]}:=\left\{\left(R_{n}^{m}-m!\right)^{2}-\left((2 m)!-(m!)^{2}\right)\right\}^{2}, \quad m \geq 1
$$

We note that $T_{n}=T_{n}^{[1]}$.
Writing (3.4) in the form

$$
E k^{2 m} h^{2 m}\left(X_{1: k}\right)-2 m!E k^{m} h^{m}\left(X_{1: k}\right)-\left((2 m)!-2(m!)^{2}\right)=0
$$

and letting $k=n$ (sample size), we have

$$
E\left\{\left(\left(n h\left(X_{1: n}\right)\right)^{m}-m!\right)^{2}-\left((2 m)!-(m!)^{2}\right)\right\}=0
$$

Taking into account that $R_{n}=n h\left(X_{1: n}\right) \sim \operatorname{Exp}(1), n \geq 1$, we see that

$$
T_{n}^{[m]}=\left\{\left(R_{n}^{m}-m!\right)^{2}-a_{m}\right\}^{2} \sim\left[\left(U^{m}-m!\right)^{2}-a_{m}\right]^{2}
$$

where

$$
a_{m}=(2 m)!-(m!)^{2}
$$

It follows that the statistics $T_{n}^{[m]}$ have for every $n \geq 1$ the distribution of $\left[\left(U^{m}-m!\right)^{2}-a_{m}\right]^{2}$, and we reject $H: X \sim F$ if $T_{n}^{[m]}$ is large enough. Moreover, we can state the following result.

Proposition 8. The significance probability of the test using $T_{n}^{[m]}$ is

$$
\begin{align*}
P_{t}^{[m]} & :=P\left[T_{n}^{[m]}>t\right] \tag{3.9}\\
& = \begin{cases}1-e^{-b_{m}^{(2)}(t)}+e^{-b_{m}^{(3)}(t)} & \text { if } 0<t \leq t_{m} \\
e^{-b_{m}^{(1)}(t)}-e^{-b_{m}^{(2)}(t)}+e^{-b_{m}^{(3)}(t)} & \text { if } t_{m}<t \leq t_{m}^{\prime} \\
e^{-b_{m}^{(3)}(t)} & \text { if } t>t_{m}^{\prime}\end{cases}
\end{align*}
$$

where

$$
\begin{array}{ll}
b_{m}^{(1)}(t)=\left(m!-\sqrt{a_{m}-\sqrt{t}}\right)^{1 / m}, & b_{m}^{(2)}(t)=\left(m!+\sqrt{a_{m}-\sqrt{t}}\right)^{1 / m} \\
b_{m}^{(3)}(t)=\left(m!+\sqrt{a_{m}+\sqrt{t}}\right)^{1 / m}, \quad t_{m}=\left(a_{m}-(m!)^{2}\right)^{2}, \quad t_{m}^{\prime}=a_{m}^{2}
\end{array}
$$

The proof of (3.9) is similar to the proof of Proposition 7.

Corollary. $P_{t}^{[1]}$ is given by (3.8) and $P_{t}^{[2]}$ is given by the formula $P_{t}^{[2]}=P\left[T_{n}^{[2]}>t\right]$

$$
= \begin{cases}1-e^{-\sqrt{2+\sqrt{20-\sqrt{t}}}+e^{-\sqrt{2+\sqrt{20+\sqrt{t}}}}} \begin{array}{ll}
e^{-\sqrt{2-\sqrt{20-\sqrt{t}}}}-e^{-\sqrt{2+\sqrt{20-\sqrt{t}}}+e^{-\sqrt{2+\sqrt{20+\sqrt{t}}}}} & \text { if } 0<t \leq 256 \\
e^{-\sqrt{2+\sqrt{20+\sqrt{t}}}} & \text { if } 256 t \leq 400 \\
\text { if } t>400
\end{array} \text {. }\end{cases}
$$

4. Tests for exponentiality. We consider corresponding tests for $X \sim \operatorname{Exp}(\alpha)$ when α is not specified. Note that in this case $h(x)=$ $-\log (1-F(x))=\alpha x$. Using $T_{n}^{(1)}:=T_{n}^{(1)}(\alpha), T_{n}^{(2)}:=T_{n}^{(2)}(\alpha)$ in (3.5) and (3.6) respectively, we replace α by the estimator $\widehat{\alpha}_{n}$. We have proved in [7] the following results.

Proposition 9. If $X_{n} \sim F, n \geq 1$, are independent then

$$
\widehat{T}_{n}^{(1)}:=2 T_{n}^{(1)}\left(\widehat{\alpha}_{n}\right)=\frac{n}{4}\left(\overline{X_{n}^{2}} /\left(\overline{X_{n}}\right)^{2}-2\right)^{2} \xrightarrow{D} \chi^{2}(1),
$$

where $\widehat{\alpha}_{n}=1 / \overline{X_{n}}$.
Proposition 10. If $X_{n} \sim F, n \geq 1$, are independent then

$$
\widehat{T}_{n}^{(2)}:=\frac{4}{3} T_{n}^{(2)}\left(\widehat{\alpha}_{n}\right)=\frac{8}{3}\left(\overline{U_{n}^{2}}-\frac{1}{\widehat{\alpha}_{n}} \overline{U_{n}}\right)^{2}=\frac{8 n}{3}\left(\frac{\overline{U_{n}^{2}}}{\left(\overline{X_{2 n}}\right)^{2}}-\frac{\overline{U_{n}}}{\overline{X_{2 n}}}\right)^{2} \xrightarrow{D} \chi^{2}(1),
$$

where $\widehat{\alpha}_{n}=1 / \overline{X_{2 n}}$.
Proposition 11. Let $\widehat{T}_{n}:=T\left(\widehat{\alpha}_{n}\right)=\left(\widehat{U}_{n}^{2}-2 \widehat{U}_{n}\right)^{2}$ where $\widehat{U}_{n}=n \widehat{\alpha}_{n} U_{n}=$ $n U_{n} / \overline{X_{n}}$, and let $\widehat{P}_{t}:=P\left[\widehat{T}_{n}>t\right]$ stand for the associated significance probability. Then $\lim _{n \rightarrow \infty} \widehat{P}_{t}=P_{t}$, where P_{t} is given by Proposition 7 .

Now by Proposition 8 we have the following generalization of Proposition 11.

Proposition 12. Let

$$
\widehat{T}_{n}^{[m]}:=T_{n}^{[m]}\left(\widehat{\alpha}_{n}\right)=\left\{\left[\left(n \widehat{\alpha}_{n} U_{n}\right)^{m}-m!\right]^{2}-a_{m}\right\}^{2}
$$

and let $\widehat{P}_{t}^{[m]}:=P\left[\widehat{T}_{n}^{[m]}>t\right]$ stand for the associated significance probability. Then

$$
\lim _{n \rightarrow \infty} \widehat{P}_{t}^{[m]}=P_{t}^{[m]}, \quad m \geq 1
$$

where $P_{t}^{[m]}$ is given by Proposition 8.
Proof. Since $\widehat{\alpha}_{n} \xrightarrow{P} \alpha$, from (3.7) we get $n \widehat{\alpha}_{n} U_{n}=\left(\widehat{\alpha}_{n} / \alpha\right) R_{n} \xrightarrow{D} U$ and so

$$
\widehat{T}_{n}^{[m]} \xrightarrow{D}\left[\left(U^{m}-m!\right)^{2}-a_{m}\right]^{2},
$$

which is distributed as $T_{n}^{[m]}$.

Acknowledgements．The authors are very grateful to the referee for a number of useful suggestions．

References

［1］W．Dziubdziela and B．Kopociński，Limiting properties of the k－th record values， Zastos．Mat． 15 （1976），187－190．
［2］Z．Grudzień and D．Szynal，On the expected values of k－th record values and asso－ ciated characterizations of distributions，in：Proc．4th Pannonian Symp．on Math． Statist．（Bad Tatzmannsdorf，1985），119－127．
［3］—，一，Characterization of continuous distributions in terms of moments of extremal statistics，J．Math．Sci． 81 （1996），2912－2936．
［4］—，一，Characterizations of continuous distributions via moments of record values， J．Appl．Statist．Soc． 9 （2000），93－103．
［5］G．D．Lin，Characterizations of continuous distributions via expected values of two functions of order statistics，Sankhyā Ser．A 52 （1990），84－90．
［6］K．Morris and D．Szynal，A goodness－of－fit test for the uniform distribution based on a characterization，J．Math．Sci．，submitted．
［7］—，一，Goodness－of－fit tests based on characterizations of continuous distributions， Appl．Math．（Warsaw） 27 （2000），475－488．
［8］D．A．Pierce，The asymptotic effect of substituting estimators for parameters in certain types of statistics，Ann．Statist． 10 （1982），475－478．
［9］R．H．Randles，On the asymptotic normality of statistics with estimated parameters， ibid．，462－474．
［10］Y．H．Too and G．D．Lin，Characterizations of uniform and exponential distribu－ tions，Statist．Probab．Lett． 7 （1989），357－359．

Department of Applied Mathematics
University of Adelaide
North Tce，Adelaide
South Australia， 5001
E－mail：kmorris＠stats．adelaide．edu．au

Institute of Mathematics
Maria Curie－Skłodowska University
Pl．M．Curie－Skłodowskiej 1 20－031 Lublin，Poland E－mail：szynal＠golem．umcs．lublin．pl

Received on 1．9．2000；
revised version on 26．1．2001

[^0]: 2000 Mathematics Subject Classification: Primary 62E10, 62F03.
 Key words and phrases: goodness-of-fit tests, characterizations, order statistics, record values, uniform, exponential, Weibull, Pareto, geometric and logarithmic distributions.

