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GOODNESS-OF-FIT TESTS USING CHARACTERIZATIONS
OF CONTINUOUS DISTRIBUTIONS

Abstract. Using characterization conditions of continuous distributions
in terms of moments of order statistics and moments of record values we
present new goodness-of-fit techniques.

1. Introduction and preliminaries. Let (X1, . . . ,Xn) be a sample
from a continuous distribution F (x) = P [X ≤ x], x ∈ R, and let Xk:n denote
the kth smallest order statistic of the sample. We construct goodness-of-fit
tests for continuous distributions using characterizations of distributions via
moments of order statistics and moments of record values (cf. [2]–[5], [10]).
The results presented extend the tests for uniformity and exponentiality
discussed in [6] and [7]. Moreover, we give the proof of statements on tests
for exponentiality announced in [7]. We include a theorem on the asymptotic
effect of substituting estimators for parameters in the tests proposed here.
It can be used, among other things, to construct a test for normality.

(O) Characterizations in terms of moments of order statistics. We use
the characterization conditions contained in the following theorems.

Theorem 1 (cf. [10], [3]). Let n, k, l be given integers such that
n ≥ k ≥ l ≥ 1. Assume that G is a nondecreasing right-continuous function
from R to R. Then F (x) = G(x) on I(F ) (the minimal interval containing
the support of F ) and F is continuous on R iff

(1.1)
(k − l)!

(n− l + 1)!
EG2l(Xk+1−l:n+1−l)

− 2k!
(n+ 1)!

EGl(Xk+1:n+1) +
(k + l)!

(n+ l + 1)!
= 0.
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Theorem 2 (cf. [5]). Under the assumptions of Theorem 1, F (x) =
G(x) on I(F ) and F is continuous on R iff

(1.2)
EGl(Xk+1:n+1) =

(k + l)!(n+ 1)!
k!(n+ l + 1)!

,

EG2l(Xk+1−l:n+1−l) =
(k + l)!(n− l + 1)!
(k − l)!(n+ l + 1)!

.

Note that Theorem 2 is a consequence of Theorem 1, since (1.1) implies
F = G implies (1.2) implies (1.1).

Corollary 1. X ∼ F and F is continuous iff

(1.3) EF (X2:2)−EF 2(X) = 1
3

or

(1.4) EF (X2:2) = 2
3 , EF 2(X) = 1

3 .

In particular:

(a) X ∼ U(α, β) (uniform distribution), i.e. F (x) = (x − α)/(β − α),
α < x < β, iff

E[(X2:2 − α)/(β − α)]−E[(X − α)/(β − α)]2 = 1
3

or
E[(X2:2 − α)/(β − α)] = 2

3 , E[(X − α)/(β − α)]2 = 1
3 ,

(b) X ∼ Exp(α) (exponential distribution), i.e. F (x) = 1 − exp(−αx),
x > 0, α > 0, iff

E(1− exp(−αX2:2))−E(1− exp(−αX))2 = 1
3

or
E(1− exp(−αX2:2)) = 2

3 , E(1− exp(−αX))2 = 1
3 .

(R) Characterization conditions in terms of moments of record val-
ues. Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with cdf
F and pdf f . For a fixed k ≥ 1 we define the sequence Uk(1), Uk(2), . . . of
k-(upper) record times of X1,X2, . . . as follows:

Uk(1) = 1,

Uk(n) = min{j > Uk(n− 1) : Xj:j+k−1 > XUk(n−1):Uk(n−1)+k−1},
n = 2, 3, . . .

Write
Y (k)
n := XUk(n):Uk(n)+k−1, n ≥ 1.
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The sequence {Y (k)
n , n ≥ 1} is called the sequence of k-(upper) record values

of the above sequence. For convenience we also take Y (k)
0 = 0 and note that

Y
(k)
1 = X1:k = min(X1, . . . ,Xk) (cf. [1]).

We see that for k = 1, 2, . . . , the sequences {Y (k)
n , n ≥ 1} of kth record

values can be obtained from {Xn, n ≥ 1} by inspecting successively the
samples X1, (X1,X2), (X1,X2,X3), and so on. For k = 1, Y (1)

1 = X1, and
the following terms are obtained by looking at the maxima of the successive
samples; Y (1)

2 is the first maximum that exceeds Y (1)
1 , Y (1)

3 is the first max-
imum that exceeds Y (1)

2 , and so on. For k = 2, Y (2)
1 = min(X1,X2), and

the following terms are obtained by looking at the next-to-largest values in
the successive samples: Y (2)

2 is the first next-to-largest value that exceeds
Y

(2)
1 , Y (2)

3 is the next-to-largest value that exceeds Y (2)
2 , and so on. And

generally, Y (k)
1 = min(X1, . . . ,Xk) = X1:k, and the following kth record val-

ues are obtained by looking at the kth largest values in successive samples,
i.e., looking at the order statistics X2:k+1 from (X1, . . . ,Xk+1), X3:k+2 from
(X1, . . . ,Xk+2), and so on.

We have the following characterizations.

Theorem 3 (cf. [4]). Let {Xn, n ≥ 1} be a sequence of i.i.d. random
variables with cdf F . Assume that G is a nondecreasing right-continuous
function from R to (−∞, 1], and let n, k, l be given integers such that
k ≥ 1 and n ≥ l ≥ 1. Then F (x) = G(x) on I(F ) iff

(1.5) k2l(n− l)!E[− log(1−G(Y (k)
n−l+1))]2l

−2n!klE[− log(1−G(Y (k)
n+1))]l + (n+ l)! = 0.

Theorem 4 (cf. [5], [4]). Under the assumptions of Theorem 3, F (x) =
G(x) on I(F ) iff

E[− log(1−G(Y (k)
n+1))]l =

(n+ l)!
n!kl

,

E[− log(1−G(Y (k)
n−l+1))]2l =

(n+ l)!
(n− l)!k2l .

Following the observation after Theorem 2 we see that Theorem 4 is a
consequence of Theorem 3.

Corollary 2. X ∼ F and F is continuous iff

(1.6) E[− log(1− F (Y (k)
1 ))]2 − 2

k
E[− log(1− F (Y (k)

2 ))] +
2
k2 = 0

or

(1.7) E[− log(1− F (Y (k)
2 ))] =

2
k
, E[− log(1− F (Y (k)

1 ))]2 =
2
k2 .
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In particular:

(a) X ∼ U(0, 1) iff

E[− log(1− Y (k)
1 )]2 − 2

k
E[− log(1− Y (k)

2 )] +
2
k2 = 0

or

E[− log(1− Y (k)
2 )] =

2
k
, E[− log(1− Y (k)

1 )]2 =
2
k2 ,

(b) X ∼ Exp(α) iff

α2E(Y (k)
1 )2 − 2

k2αE(Y (k)
2 ) +

2
k2 = 0

or

EY
(k)
2 =

2
αk

, E(Y (k)
1 )2 =

2
α2k2 .

2. Goodness-of-fit tests based on characterizations via moments
of order statistics. The cases when parameters of F are specified and
unknown will be treated separately.

(A) Parameters of F are specified. First we construct goodness-of-fit
tests based on the characterization in (1.1) (see also (1.3)) which we can
write in the form

E(F (X2:2))− 1
2 (E(F 2(X1) + F 2(X2))) = 1

3

where X1 and X2 are i.i.d. as X.
Let (X1, . . . ,X2n) be a sample from F , where F is continuous and strictly

increasing. Define

Yj = F 2(X2j−1) + F 2(X2j),

Zj = F (max(X2j−1,X2j)), j = 1, . . . , n.

Then Y1, . . . , Yn are i.i.d. and Z1, . . . , Zn are i.i.d. Writing Y := Y1 =
F 2(X1)+F 2(X2), Z := Z1 = F (max(X1,X2)) we state the following result.

Lemma 1. Under the above assumptions, the density function of (Y,Z)
is given by

f(y, z) =
{

1/
√
y − z2, 0 ≤ z ≤ 1, z2 < y ≤ 2z2,

0, otherwise,

and

EY = 2
3 , Var(Y ) = 8

45 , EZ = 2
3 , Var(Z) = 1

18 , Cov(Y,Z) = 4
45 .

Now we define

Rj = Zj − 1
2Yj , j = 1, . . . , n.
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We see that
ERj = EZj − 1

2EYj = 1
3 ,

VarRj = VarZj + 1
4 VarYj − Cov(Zj , Yj) = 1

90 , j = 1, . . . , n.

Write

Rn =
1
n

n∑

j=1

Rj ;

then by the CLT

3
√

10n
(
Rn − 1

3

) D→ V ∼ N(0, 1),

and hence

(2.1) D(1)
n := 45 · 2n

(
Rn − 1

3

)2 D→ χ2(1),

and so D(1)
n provides a simple asymptotic test of the hypothesis X ∼ F .

Setting X∗j = max(X2j−1,X2j), j = 1, . . . , n, we note that D(1)
n in (2.1)

has the form

(2.2) D(1)
n = 45 · 2n

(
1
n

n∑

j=1

F (X∗j )− 1
2n

2n∑

j=1

F 2(Xj)−
1
3

)2

.

Next we construct goodness-of-fit tests based on the characterization in
(1.2) (see also (1.4)), which we write in the form

EF (max(X1,X2)) = 2
3 , EF 2(X1) = 1

3 .

Define

Wj =
(
Yj
Zj

)
, j = 1, . . . , n,

µ = EW1 =
(

2/3
2/3

)
=

2
3

(
1
1

)
,

Σ := Var(W1) = E(W1 −EW1)(W1 − EW1)′ =
(

8/45 4/45
4/45 1/18

)
,

and write Wn = n−1∑n
j=1 Wj . The CLT says that

(2.3)
√
n (Wn − µ) D→ V ∼ N(0, Σ),

whence

D(2)
n := n(Wn − µ)′Σ−1(Wn − µ) D→ V′Σ−1V ∼ χ2(2).

But D(2)
n is a reasonable measure of the “size” of (Wn − µ) and so by (2.3)

provides a test of the hypothesis that X has the distribution function F .
And since

Σ−1 = 45
(

5/8 −1
−1 2

)
,
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it follows that in extended form

(2.4) D(2)
n = 45n

[
5
8

(
Yn − 2

3

)2
+ 2
(
Zn − 2

3

)2 − 2
(
Yn − 2

3

)(
Zn − 2

3

)]
.

In terms of X∗j , D(2)
n in (2.4) has the form

(2.5) D(2)
n = 45 · 2n

[
1
4

(
F 2(X2n)− 1

3

)2
+
(
F 2(X2n)− F (X∗n) + 1

3

)2]
.

By (2.5) and (2.2) we have

Lemma 2.

D(2)
n = 45

4 · 2n
(
F 2(X2n)− 1

3

)2
+D(1)

n .

Special cases:

(a) If X ∼ U(α, β) then

D(1)
n = 45 · 2n

(
1

(β − α)2X
2
2n −

β + α

(β − α)2X2n −
1

β − αX
+
n +

αβ

β − α +
1
3

)2

,

D(2)
n =

45
4
· 2n

(
X2

2n

(β − α)2 − 2α
X2n

(β − α)2 +
α2

(β − α)2 −
1
3

)2

+D(1)
n .

Remark. If X ∼ U(0, β) then

D(1)
n = 45 · 2n

(
X2

2n/β
2 −X2n/β −X+

n /β + 1
3

)2
,

D(2)
n = 45

4 · 2n
(
X2

2n/β
2 − 1

3

)2
+D(1)

n .

(b) If X ∼ Pow(α) (power distribution), i.e. F (x) = 1 − (1 − x/α)α,
0 ≤ x ≤ α, 0 < α ≤ 1, then

D(1)
n = 45 · 2n

(
1

2n

2n∑

j=1

(1− (1−Xj/α)α)2 +
1
n

n∑

j=1

(1−X∗j /α)α − 2
3

)2

,

D(2)
n =

45
4
· 2n

(
1

2n

2n∑

j=1

(1− (1−Xj/α)α)2 − 1
3

)2

+D(1)
n .

(c) If X ∼ Exp(α) then

D(1)
n = 45 · 2n

(
1

2n

2n∑

j=1

(1− e−αXj )2 +
1
n

n∑

j=1

e−αX
∗
j − 2

3

)2

,

D(2)
n =

45
4
· 2n

(
1

2n

2n∑

j=1

(1− e−αXj )2 − 1
3

)2

+D(1)
n .
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(d) If X ∼ W (β, α) (Weibull distribution), i.e. F (x) = 1 − exp(−αxβ),
x > 0, α > 0, β > 0, then

D(1)
n = 45 · 2n

(
1

2n

2n∑

j=1

(1− e−αXβj )2 +
1
n

n∑

j=1

e−α(X∗j )β − 2
3

)2

,

D(2)
n =

45
4
· 2n

(
1

2n

2n∑

j=1

(1− e−αXβj )2 − 1
3

)2

+D(1)
n .

(e) If X ∼ ParS(α, σ) (single-parameter Pareto distribution), i.e. F (x) =
1− (σ/x)α, x > σ, α > 0, σ > 0, then

D(1)
n = 45 · 2n

(
1

2n

2n∑

j=1

(
1−

(
σ

Xj

)α)2

+
1
n

n∑

j=1

(σ/X∗j )α − 2
3

)2

,

D(2)
n =

45
4
· 2n

(
1

2n

2n∑

j=1

(
1−

(
σ

Xj

)α)2

− 1
3

)2

+D(1)
n .

(f) If X ∼ ParT (α, θ) (two-parameter Pareto distribution), i.e. F (x) =
1−

(
θ

x+θ

)α
, x > 0, α > 0, θ > 0, then

D(1)
n = 45 · 2n

(
1

2n

2n∑

j=1

(
1−

(
θ

Xj + θ

)α)2

+
1
n

n∑

j=1

(
θ

X∗j + θ

)α
− 2

3

)2

,

D(2)
n =

45
4
· 2n

(
1

2n

2n∑

j=1

(
1−

(
θ

Xj + θ

)α)2

− 1
3

)2

+D(1)
n .

(g) If X ∼ Log(α, β) (logistic distribution), i.e.

F (x) = [1 + exp(−(x− α)/β)]−1, −∞ < x <∞, α ∈ R, β > 0,

then

D(1)
n = 45 · 2n

(
1

2n

2n∑

j=1

(1 + exp(−(Xj − α)/β))−2

− 1
n

n∑

j=1

(1 + exp(−(X∗j − α)/β))−1 +
1
3

)2

,

D(2)
n =

45
4
· 2n

(
1

2n

2n∑

j=1

(1 + exp(−(Xj − α)/β))−2 − 1
3

)2

+D(1)
n .

(B) Unknown parameters. We discuss asymptotic tests obtained from
D

(1)
n and D

(2)
n in (A) when parameters are replaced by estimators.
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Proposition 1. Goodness-of-fit tests for F (x) = x/β, x ∈ (0, β), β > 0,
are given by

D̂(1)
n := D(1)

n (β̂n) = 45 · 2n
(
X2

2n

β̂2
n

− X2n

β̂n
− X+

n

β̂n
+

1
3

)2
D→ χ2(1),

D̂(2)
n := D(2)

n (β̂n) =
45
4
· 2n

(
X2

2n

β̂2
n

− 1
3

)2

+D(1)
n (β̂n) D→ χ2(2),

where β̂n = max(X1, . . . ,X2n).

Proposition 2. Goodness-of-fit tests for F (x) = x−α
β−α , x ∈ (α, β),

α < β, are given by

D̂(1)
n := D(1)

n (α̂n, β̂n) = 45 · 2n
(

X2
2n

(β̂n − α̂n)2
− (β̂n + α̂n)

X2n

(β̂n − α̂n)2

− X+
n

(β̂n − α̂n)
+

α̂nβ̂n

(β̂n − α̂n)2
+

1
3

)2
D→ χ2(1),

D̂(2)
n := D(2)

n (α̂n, β̂n) =
45
4
· 2n

(
X2

2n

(β̂n − α̂n)2
− 2

α̂nX2n

(β̂n − α̂n)

+
α̂2
n

(β̂n − α̂n)2
− 1

3

)2

+D(1)
n (α̂n, β̂n) D→ χ2(2),

where β̂n = max(X1, . . . ,X2n) and α̂n = min(X1, . . . ,X2n).

The proofs of Propositions 1 and 2 are given in [6] and [7]. For the
following propositions concerning exponential and normal distributions we
use a general theorem based on results in [8] and [9].

Theorem 5 ([8]). Let T̂n = Tn(X1, . . . ,Xn; λ̂n), where λ̂n = λ̂n(X1, . . .
. . . ,Xn) is an estimator of a parameter λ of the distribution of X, and let
Tn = Tn(X1, . . . ,Xn;λ) (here Tn, λ and λ̂n may be vectors). Suppose that :

(i) For each λ,

√
n

(
Tn

λ̂n − λ

)
D→ T ∼ N(0, V ),

where

V =
(
V11 V12

V21 V22

)

and V22 is nonsingular.
(ii) There is a matrix B, possibly depending continuously on λ, such that

√
n T̂n =

√
nTn +B

√
n (λ̂n − λ) + op(1).



Goodness-of-fit tests 159

(iii) λ̂n is asymptotically efficient (cf. [8]).

Then

(2.6)
√
n T̂n

D→ T ∗ ∼ N(0, V11 −BV22B
′).

Note that (ii) is satisfied when Tn is differentiable in λ, and then

B = lim
n→∞

E

[
∂

∂λ
Tn

]
.

The following result is a consequence of Theorem 5.

Theorem 6. Let (X1, . . . ,X2n) be a sample with an absolutely contin-
uous distribution function F (x;λ) differentiable with respect to the m × 1
vector λ. Set

Wn :=
(
Yn
Zn

)
:=
(
Yn(λ)

Zn(λ)

)
= Wn(λ),

where

Yn =
1
n

2n∑

j=1

F 2(Xj ;λ), Zn =
1
n

n∑

j=1

F (X∗j ;λ),

and X∗j = max(X2j−1,X2j), j = 1, . . . , n. Write

Ŵn = Wn(λ̂2n) =
(
Ŷn

Ẑn

)
,

where
Ŷn := Yn(λ̂2n), Ẑn := Zn(λ̂2n).

and λ̂2n is the MLE of λ. Suppose that F is such that the MLE λ̂2n is
“regular” in the sense that

√
2n (λ̂2n − λ) D→ γ ∼ N(0, I−1),

where I = I(λ) is the information matrix for λ based on a single observation.
Then

(2.7)
√
n (Wn(λ̂2n)− µ) D→W ∼ N(0, Σ1),

(2.8) D̂(1)
n := 45 · 2n

(
F̂ (X∗n)− F̂ 2(X2n)− 1

3

)2 → χ2(1),

(2.9) D̂(2)
n :=

45
4− b2n

(
F̂ 2(X2n)− 1

3

)2
+ D̂(1)

n → χ2(2),

where Σ1 = Σ−B(2I)−1B, µ and Σ are taken from (2.3), F̂ (x) := F (x, λ̂),
and

B = 2
(

2
1

)
d′,
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where

d := E

(
F (X;λ)

dF (X;λ)
dλ

)
is m× 1,

and
b := b(λ) = 180d′I−1d.

Proof. The statement (2.7) follows directly from (2.3) and (2.6). Now
note that

E
∂Yn
∂λj

= 2E
∂F 2(X;λ)

∂λj
= 4E

(
F
∂F

∂λj

)

= 4
�
F (x;λ)

∂F

∂λj
f(x;λ) dx, j = 1, . . . ,m,

and correspondingly

E

(
∂Zn
∂λj

)
= E

(
∂F (max(X2j−1,X2j);λ)

∂λj

)
=

1
2
E
∂Yn
∂λj

, j = 1, . . . ,m,

since the pdf of X∗i = max(X2i−1,X2i) is 2F (x∗;λ)f(x∗;λ), i = 1, . . . , n.
It follows that

B = lim
n→∞

E

(
∂Wn

∂λ

)
=
(

4
2

)(
E

(
F
∂F

∂λ1

)
. . . E

(
F
∂F

∂λm

))
= 2
(

2
1

)
d′,

and hence that

B(2I)−1B′ = 2d′I−1d

(
4 2
2 1

)
=

b

90

(
4 2
2 1

)
.

Thus we have

Σ1 = Σ −B(2I)−1B′ =
1
90

(
16 8
8 5

)
− b

90

(
4 2
2 1

)

=
1
90

(
4(4− b) 2(4− b)
2(4− b) 5− b

)
,

and

Σ−1
1 = 90

(
5− b/(4(4− b)) −1/2

−1/2 1

)
.

Therefore
D̂(2)
n = n(Ŵ − µ)′Σ−1

1 (Ŵ − µ) D→ χ2(2),

which (in extended form) proves (2.9).
Finally, writing a =

(−1/2
1

)
we see that

√
n

(
Ẑn −

1
2
Ŷn −

1
3

)
= a′(

√
n (Ŵ − µ)) D→ a′W ∼ N(0, a′Σ1a),

and a′Σ1a = 1/90, which shows (2.8) and completes the proof of Theorem 6.
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Proposition 3. Goodness-of-fit tests for X ∼ Exp(α) are given by

D̂(1)
n := D(1)

n (α̂2n)

= 45 · 2n
(

1
2n

2n∑

j=1

(1− e−α̂2nXj )2 +
1
n

n∑

j=1

e−α̂2nX
∗
j − 2

3

)2

D→ χ2(1),

D̂(2)
n := D(2)

n (α̂2n)

=
45 · 36

19
2n
(

1
2n

2n∑

j=1

(1− e−α̂2nXj )2 − 1
3

)2

+ D̂(1)
n

D→ χ2(2),

where α̂2n = 1/X2n.

Proof. The first statement of Proposition 3 follows from (c) after Lemma
2 and Theorem 6. To prove the second statement it is enough to see that
for X ∼ Exp(α) we have I(α) = 1/α2,

d = α

∞�

0

(xe−2αx − xe−3αx) dx = 5/(36α),

and b = 125/36, which by (2.9) gives the test statistic D̂(2)
n .

Proposition 4. Goodness-of-fit tests for X ∼ N(µ, σ2) with

F (x) =
1√
2πσ

x�

−∞
e−(t−µ)2/(2σ2) dt,

f(x) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x <∞,

are given by

D̂(1)
n := D(1)

n (µ̂2n, σ̂
2
2n)

= 45 · 2n
(
Φ2((X2n − µ̂2n)/σ̂2n)− Φ((X∗n − µ̂2n)/σ̂2n) + 1

3

)2

D→ χ2(1),

D̂(2)
n := D(2)

n (µ̂2n, σ̂
2
2n)

=
45 · 8π2

32π2 − 15(6π + 1)
· 2n

(
Φ2((X2n − µ̂2n)/σ̂2n)− 1

3

)2
+ D̂(1)

n ,

where

Φ(x) =
1√
2π

x�

−∞
e−t

2/2 dt,
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Φ2((X2n − µ̂2n)/σ̂2n) =
1

2n

2n∑

j=1

Φ2((Xj − µ̂2n)/σ̂2n),

Φ((X∗n − µ̂2n)/σ̂2n) =
1
n

n∑

j=1

Φ((X∗j − µ̂n)/σ̂n),

and

µ̂2n = X2n, σ̂2
2n =

1
2n

2n∑

j=1

(Xj −X2n)2.

Proof. Here

I−1 =
(
σ2 0
0 2σ4

)

and
∂F

σµ
= −f, ∂F

∂σ2 = − 1
2σ2 (x− µ)f,

so

d1 = −
∞�

−∞
F (x)f2(x) dx, d2 = − 1

2σ2

∞�

−∞
(x− µ)F (x)f2(x) dx.

To evaluate the integrals, write

F (x) =
1√
2π

x1�

−∞
e−y

2/2 dy =
1
2

+ ψ(x1),

where

x1 = (x− µ)/σ, ψ(x1) =
1√
2π

x1�

0

e−y
2/2 dy.

Changing variables to x1 = (x− µ)/σ gives

d1 = − 1
2πσ

∞�

−∞

(
1
2

+ ψ(x1)
)
e−x

2
1 dx1 = − 1

4πσ

∞�

−∞
e−x

2
1 dx1 = − 1

4
√
π σ

,

where we have used the fact that ψ is an odd function. Similarly

d2 = − 1
4πσ2

∞�

−∞

(
1
2

+ ψ(x1)
)
x1e
−x2

1 dx1 = − 1
4πσ2

∞�

−∞
ψ(x1)x1e

−x2
1 dx1

= − 1
8πσ2

∞�

−∞
ψ′(x1)e−x

2
1 dx1 = − 1

8
√

3πσ2
,

where we have used integration by parts and the facts that x1e
−x2

1 is an odd
function and

ψ′(x1) =
1√
2π
e−x

2
1/2.
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Hence

b = 180(d1, d2)
(
σ2 0
0 2σ4

)
(d1, d2)′ =

15(6π + 1)
8π2 ,

which by (2.9) leads us to the D̂(2)
n test. Then D̂(1)

n is obtained immediately
from (2.8).

3. Goodness-of-fit tests based on characterizations via moments
of record values. Suppose that X has df F and pdf f . To simplify the
notation we write

g(x) = 1− F (x) and h(x) = − log(g(x))

if F (x) < 1 and 0 otherwise.
Then Theorem 3 says (see (1.5)) that X ∼ F iff

k2l(n− l)!Eh2l(Y (k)
n−l+1)− 2n!klEhl(Y (k)

n+1) + (n+ l)! = 0.

Since the definition of Y (k)
n requires an infinite sequence it is hard to see

how a finite sample can be used to estimate EY (k)
n . So our procedure is as

follows.
We consider the special case l = n. Then X ∼ F iff

(3.1) Eh2n(X1:k)− 2n!
kn

Ehn(Y (k)
n+1) +

(2n)!
k2n = 0.

We know that the pdf of Y (k)
n is

f
Y

(k)
n

(x) =
kn

(n− 1)!
hn−1(x)gk−1(x)f(x) (cf. [1])

and that

F
Y

(k)
n+1

(x) = F
Y

(k)
n

(x)− kn

n!
hn(x)gk(x)(3.2)

= 1− gk(x)
n∑

j=0

kj

j!
hj(x) (cf. [2]).

Hence

Ehn(Y (k)
n+1) = Ehn(Y (k)

n )− kn

(n− 1)!
Eh2n−1(X)gk−1(X)

+
kn+1

n!
Eh2n(X)gk−1(X).

Taking into account that

Egα−1(X)hβ−1(X) =
Γ (β)
αβ

for α, β > 0
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as X has df F , we get

Ehn(Y (k)
n+1) = Ehn(Y (k)

n ) +
(2n)!
2n!kn

.

Hence by (3.1) we obtain

Eh2n(X1:k)− 2n!
kn

Ehn(Y (k)
n ) = 0.

Letting n = 1 we have

(3.3) Eh2(X1:k)− 2
k
Eh(X1:k) = 0.

Similarly using the second equality in (3.2) we get

(3.4) Eh2n(X1:k)− 2n!
kn

Ehn(X1:k)− (2n)!− 2(n!)2

k2n = 0.

To verify H : X ∼ F we use (3.3). Consider first the case k = 1. Then

E(h2(X1)− 2h(X1)) = 0.

The sample (X1, . . . ,Xn) provides an estimator of EW1, whereW1 = h2(X1)
− 2h(X1), of the form

Wn = h2(Xn)− 2h(Xn),

where

h2(Xn) =
1
n

n∑

j=1

h2(Xj), h(Xn) =
1
n

n∑

j=1

h(Xj).

It follows from the CLT that
√
n Wn

D→ N(0,Var(W1)),

and hence that
T (1)
n := nWn

2
/Var(W1) D→ χ2(1),

and so provides a simple asymptotic test of the hypothesis X ∼ F when the
parameters of F are known. Here

VarW1 = Eh4(X1)− 4Eh3(X1) + 4Eh2(X1) = 8

since h(X1) ∼ Exp(1) gives Ehm(X1) = m!, m = 1, 2, . . . , and so

T (1)
n =

n

8
(h2(Xn)− 2h(Xn))2.

We have proved

Proposition 5. If Xn ∼ F , n ≥ 1, are independent then

(3.5) T (1)
n =

n

8
(h2(Xn)− 2h(Xn))2 D→ χ2(1).
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Now consider the case k = 2. Write U1 := X1:2 = min(X1,X2). Here from
(3.3) we have to estimate EW ′1, where W ′1 = h2(U1) − h(U1). The sample
X1, . . . ,X2n provides the sample W ′1, . . . ,W

′
n, where W ′j = h2(Uj) − h(Uj)

and Uj = min(X2j−1,X2j), j = 1, . . . , n. Then EW ′1 is estimated by

W ′n = h2(Un)− h(Un),

and
T (2)
n := n(W ′n)2/Var(W ′1) D→ χ2(1).

Taking into account that h(U1) ∼ Exp(2) we see that Var(W ′1) = 1/2. Thus
another simple asymptotic test is provided by

Proposition 6. If Xn ∼ F , n ≥ 1, are independent then

(3.6) T (2)
n = 2n(h2(Un)− h(Un))2 D→ χ2(1).

The same argument leads to a similar test for the case k = 3, . . . , n− 1
based on a sample of size kn.

We now consider the case k = n. Write Un = min(X1, . . . ,Xn). Then by
(3.3) we have to estimate E(h2(Un)− (2/n)h(Un)). The obvious estimate is
h2(Un)− (2/n)h(Un) itself, and if the parameters of F are specified the test
statistic is

T (n)
n :=

(
h2(Un)− 2

n
h(Un)

)2

.

As above, under H, h(Un) ∼ Exp(n), whence

(3.7) Rn := nh(Un) ∼ U ∼ Exp(1), n ≥ 1.

It follows that

T (n)
n =

1
n4 (R2

n − 2Rn)2

and so an equivalent test statistic is Tn := (R2
n− 2Rn)2 ∼ T := (U2− 2U)2,

n ≥ 1, which provides an exact test for H : X ∼ F .

Proposition 7 (cf. [7]). The significance probability of the test using
Tn is

Pt := P [Tn > t](3.8)

=

{
e−1−

√
1+
√
t + e−1+

√
1−
√
t − e−1−

√
1−
√
t if 0 < t ≤ 1,

e−1−
√

1+
√
t if t ≥ 1.

Proof. The significance probability P [Tn > t] associated with an ob-
served value t can be obtained by considering the graph of u2(u − 2)2 = t
and using the fact that P [U < u] = 1 − e−u. One finds readily that (3.8)
holds true.
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In particular we consider the 5% test of H, i.e. Pt = 0.05. But since

P [T > 1] = e−(1+
√

2) > 0.05

the 5% test rejects when Rn > u0, where e−u0 = 0.05, i.e. when u0 = 3.00.
Thus the exact 5% test rejects when nh(Un) > 3.

Now we show that instead of Tn = [R2
n−2Rn]2 one can use more generally

the statistics

T [m]
n := {(Rmn −m!)2 − ((2m)!− (m!)2)}2, m ≥ 1.

We note that Tn = T
[1]
n .

Writing (3.4) in the form

Ek2mh2m(X1:k)− 2m!Ekmhm(X1:k)− ((2m)!− 2(m!)2) = 0

and letting k = n (sample size), we have

E{((nh(X1:n))m −m!)2 − ((2m)!− (m!)2)} = 0.

Taking into account that Rn = nh(X1:n) ∼ Exp(1), n ≥ 1, we see that

T [m]
n = {(Rmn −m!)2 − am}2 ∼ [(Um −m!)2 − am]2

where

am = (2m)!− (m!)2.

It follows that the statistics T [m]
n have for every n ≥ 1 the distribution of

[(Um − m!)2 − am]2, and we reject H : X ∼ F if T [m]
n is large enough.

Moreover, we can state the following result.

Proposition 8. The significance probability of the test using T
[m]
n is

P
[m]
t := P [T [m]

n > t](3.9)

=





1− e−b(2)
m (t) + e−b

(3)
m (t) if 0 < t ≤ tm,

e−b
(1)
m (t) − e−b(2)

m (t) + e−b
(3)
m (t) if tm < t ≤ t′m,

e−b
(3)
m (t) if t > t′m,

where

b(1)
m (t) = (m!−

√
am −

√
t )1/m, b(2)

m (t) = (m! +
√
am −

√
t )1/m,

b(3)
m (t) = (m! +

√
am +

√
t )1/m, tm = (am − (m!)2)2, t′m = a2

m.

The proof of (3.9) is similar to the proof of Proposition 7.
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Corollary. P [1]
t is given by (3.8) and P

[2]
t is given by the formula

P
[2]
t = P [T [2]

n > t]

=





1− e−
√

2+
√

20−
√
t + e−

√
2+
√

20+
√
t if 0 < t ≤ 256,

e−
√

2−
√

20−
√
t − e−

√
2+
√

20−
√
t + e−

√
2+
√

20+
√
t if 256 < t ≤ 400,

e−
√

2+
√

20+
√
t if t > 400.

4. Tests for exponentiality. We consider corresponding tests for
X ∼ Exp(α) when α is not specified. Note that in this case h(x) =
− log(1 − F (x)) = αx. Using T

(1)
n := T

(1)
n (α), T (2)

n := T
(2)
n (α) in (3.5)

and (3.6) respectively, we replace α by the estimator α̂n. We have proved
in [7] the following results.

Proposition 9. If Xn ∼ F , n ≥ 1, are independent then

T̂ (1)
n := 2T (1)

n (α̂n) =
n

4
(X2

n/(Xn)2 − 2)2 D→ χ2(1),

where α̂n = 1/Xn.

Proposition 10. If Xn ∼ F , n ≥ 1, are independent then

T̂ (2)
n :=

4
3
T (2)
n (α̂n) =

8
3

(
U2
n −

1
α̂n

Un

)2

=
8n
3

(
U2
n

(X2n)2
− Un

X2n

)2
D→ χ2(1),

where α̂n = 1/X2n.

Proposition 11. Let T̂n := T (α̂n) = (Û2
n−2Ûn)2 where Ûn = nα̂nUn =

nUn/Xn, and let P̂t := P [T̂n > t] stand for the associated significance prob-
ability. Then limn→∞ P̂t = Pt, where Pt is given by Proposition 7.

Now by Proposition 8 we have the following generalization of Proposi-
tion 11.

Proposition 12. Let

T̂ [m]
n := T [m]

n (α̂n) = {[(nα̂nUn)m −m!]2 − am}2

and let P̂ [m]
t := P [T̂ [m]

n > t] stand for the associated significance probability.
Then

lim
n→∞

P̂
[m]
t = P

[m]
t , m ≥ 1,

where P
[m]
t is given by Proposition 8.

Proof. Since α̂n
P→ α, from (3.7) we get nα̂nUn = (α̂n/α)Rn

D→ U and
so

T̂ [m]
n

D→ [(Um −m!)2 − am]2,

which is distributed as T [m]
n .
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