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MEDIAN FOR METRIC SPACES

Abstract. We consider a Köthe space (E, ‖·‖E) of random variables (r.v.)
defined on the Lebesgue space ([0, 1],B, λ). We show that for any sub-σ-
algebra F of B and for all r.v.’s X with values in a separable finitely compact
metric space (M,d) such that d(X,x) ∈ E for all x ∈ M (we then write
X ∈ E(M)), there exists a median of X given F, i.e., an F-measurable r.v.
Y ∈ E(M) such that ‖d(X,Y )‖E ≤ ‖d(X,Z)‖E for all F-measurable Z.
We develop the basic theory of these medians, we show the convergence of
empirical medians and we give some applications.

1. Introduction. It has been a long time since M. Fréchet [14] and
S. Doss [8] defined the notion of expectation of a random variable (r.v.) X
with values in a metric space. The development of this theory proceeded
through the work of [17], [18] where the metric space has negative curvature
and for example [12] and [25] for manifolds. More recently, let us quote [27]
for a study of the law of large numbers and [13] for the construction of a
canonical barycentre.

In contrast, we had to wait for the 1980s to see the concept of median
for vectorial r.v. appear out of the discrete case (see for example [4], [10],
[15] and [30]). In dimension 1, the median is a point where the expected
absolute deviation is minimized. In dimension ≥ 2, the point from which
the expected distance to a random point of the distribution is the smallest
can be called the spatial median. The reader can find a survey of work up to
1990 in Small [29], and the paper of Kemperman [20] is used as a reference
for statisticians. We can find some applications in Schuster [28], and certain
algorithms in Drezner [9].
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The definitions of expectation and of median for an integrable r.v. X
exhibit certain similarities. Both are solutions of inequalities: for the expec-
tation

(1) |x−m| ≤ E[|X − x|], ∀x ∈ R,
and for the median

(2) E[|X −m|] ≤ E[|X − x|], ∀x ∈ R.
Just as for the expectation, the medians are a fundamental tool for estima-
tion.

The passage to r.v.’s with values in a metric space (M,d) leads from (1)
to the definition of Doss expectation: a point b ∈ M is an expectation (in
the sense of Doss) of a r.v. X if

d(x, b) ≤ E[d(X,x)], ∀x ∈M.

The condition (2), which was considered only in the case of Banach spaces,
allows us to define, formally, a median: a point m ∈M is a median of X if

(3) E[d(X,m)] ≤ E[d(X,x)], ∀x ∈M.

Note that the above two definitions are related to the L1-norm of the r.v.’s
d(X,x). We will assume that d(X,x) belongs to a Banach space (E, ‖ · ‖E)
of r.v.’s, more precisely, to a Köthe space.

The condition (3) becomes our starting point in the following form: a
point m ∈M is a median of X if

‖d(X,m)‖E ≤ ‖d(X,x)‖E, ∀x ∈M.

Finally we note that if m is a median of X, then (3) can be interpreted to
say that m is a best approximant of X with respect to the trivial σ-algebra
[5], [19].

More generally, our problem is formulated as follows: Let (E, ‖ · ‖E) be
a Banach space of real r.v. (on ([0, 1],B, λ)), let X be a r.v. with values in
a metric space (M,d) such that d(X,x) ∈ E for all x ∈ M , and let F be a
sub-σ-algebra of B. An F-measurable random variable Y with values in M
is called a conditional median (or F-median) of X given F if

‖d(X,Y )‖E ≤ ‖d(X,Z)‖E for all F-measurable Z.

Let ME(F,X) denote the set of all F-conditional medians of X for E. When
F = {∅, [0, 1]}, one simply says median for F-median and writes ME(X) for
the set of medians.

In [22], C. A. León and J.-C. Massé give a counterexample to the exis-
tence of an L1-median (also called spatial median) for some Banach spaces.
Therefore we must specify the metric space (M,d).
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Koltchinskii [21] develops a class of extensions of the univariate case
(M-quantiles), related in a certain way to M-parameters of probability dis-
tributions and their M-estimators.

When M is a Banach lattice and |x| = x+ + x−, Heinich [16] adopts an
alternative definition: an F-measurable r.v. Y is an F-median of X for the
order if for any other F-measurable r.v. Z,

‖ |X − Y | ‖E ≤ ‖ |X − Z| ‖E.
1.1. Summary of main results. For simplicity, we assume all r.v.’s are

defined on the Lebesgue probability space ([0, 1],B, λ).
Let (M,d) be a separable metric space which is finitely compact (i.e.,

the closed balls are compact). Moreover, E is a rearrangement invariant
(r.i.) and weakly sequentially complete (w.s.c.) Köthe space (see Appendix).
A random variable X defined on the Lebesgue space ([0, 1],B, λ) with values
in M is E-integrable (written X ∈ E(M)) if for all x in M , d(X,x) is in E.

Theorem 1. For every X ∈ E(M) there exists a median of X. If E =
L1 then for every finite sub-σ-algebra F and every X ∈ L1(M) there exists
an F-median for X.

This theorem is extended and proved in Theorem 5 below.
To obtain a generalization to Köthe spaces and any sub-σ-algebras, we

prove the following measure-theoretic theorem:

Theorem 2. If (M,d) is Doss convex , then the space E(M) of E-
integrable r.v.’s is sub-weakly sequentially complete.

For the definition of Doss convexity and the proof of this result, see
Appendix (Theorem 10). As a consequence of Theorem 6 below, we obtain

Theorem 3. If (M,d) is Doss convex , then for every sub-σ-algebra F

and for every X ∈ E(M), there exists an F-median for X.

With a view to statistical applications, we also have

Theorem 4. The empirical medians of X form a relatively compact set
in M whose limit values are medians of X.

The paper concludes with examples and applications of medians to para-
metric estimation. In the Appendix we find the main facts on Doss expec-
tation, Köthe spaces and the proof of Theorem 10.

2. Medians and conditional medians

2.1. Existence of medians. In this subsection we show the following the-
orem which generalizes Theorem 1. The finite compactness hypothesis can
be weakened [6].
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Theorem 5. Let (M,d) be a separable metric space with the property
that if (xn) ⊂ M is a sequence such that d(xn, y) converges for all y ∈ M
then there exists x ∈M with d(x, y) ≤ lim d(xn, y). Let E be a Banach space
of real r.v.’s with the Fatou property (see Appendix ). Then

(a) ME(X) := {m ∈M : ‖d(X,m)‖E ≤ ‖d(X, y)‖E, ∀y ∈M} 6= ∅.
(b) If F is a finite sub-σ-algebra and E = L1, then ME(F,X) 6= ∅.
Proof. For an E-integrable r.v. X, the function x 7→ ‖d(X,x)‖E is contin-

uous. Let (xn) ⊂ M be a sequence with ‖d(X,xn)‖E → infy∈M ‖d(X, y)‖E.
The sequence (xn) is bounded and passing to a subsequence we can suppose
d(xn, y) converges for all y ∈M (see Appendix, proof of Theorem 10). Then
there exists x ∈ M such that d(X,x) ≤ lim d(X,xn), and Fatou’s property
gives (a).

The second part results from Proposition 1 below.
Let F be a finite σ-algebra generated by a partition {B1, . . . , Bn}. For

fixed Bi denote by λi the trace of λ on Bi, and by Mλi(X) the set of
medians of X for λi. We remark that Mλi(X) 6= ∅ (consider the function
x 7→ Eλi [d(X,x)]).

Proposition 1. For F finite, we have Y ∈M(F,X) if and only if

Y =
n∑

i=1

xi
�
Bi where xi ∈Mλi(X).

Proof. The r.v. Y =
∑n
i=1 xi

�
Bi is F-measurable and

E[d(X,Y )] =
n∑

i=1

E[d(X,xi)
�
Bi ] =

n∑

i=1

E[d(X,xi
�
Bi)].

But
1

λ(Bi)
E[d(X,xi)

�
Bi ] = Eλi [d(X,xi)] ≤

1
λ(Bi)

E[d(X, a)
�
Bi ]

for all a ∈M . Therefore E[d(X,xi)
�
Bi ] ≤ E[d(X, a)

�
Bi ] for all a ∈M , and

consequently, E[d(X,Y )] ≤ ∑n
i=1 E[d(X, a)

�
Bi ] for all a ∈ M . This shows

that

E[d(X,Y )] ≤ E[d(X,Z)], ∀Z F-measurable (i.e. Y ∈M(F,X)).

Conversely, for Y ∈M(F,X), let xi be the value of Y on the set Bi; we
show that xi is a median of X for λi.

Set J := {j : xj 6∈ Mλi(X)}. For each j ∈ J , there exists aj ∈ M such
that Eλi [d(X, ai)] < Eλi [d(X,xi)]. The r.v. Z =

∑
i6∈J xi

�
Bi +

∑
j∈J aj

�
Bj

is F-measurable and satisfies E[d(X,Z)] < E[d(X,Y )], which is a contra-
diction. Thus J = ∅ and so Proposition 1 and Theorem 5 are proved.
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Remark. This case is classical, both for spatial medians and L1-med-
ians. It enables one to connect the conditional medians with medians. We
have a similar situation to that of the conditional expectation which, in the
case of a finite σ-algebra, is calculated starting from the expectation with
respect to the trace probabilities.

2.2. Existence of conditional medians. We will generalize Theorem 7 of
Bru and Heinich [5], which ensures the existence of conditional medians:

“Suppose a Köthe space E has one of the following two properties:

• E is weakly sequentially complete;
• E has Fatou’s property and its bounded parts are L1-uniformly inte-

grable.

Then, for every sub-σ-algebra F and every real random variable f in E, there
exists an F-measurable real r.v. g0 in E such that ‖f − g0‖E ≤ ‖f − g‖E for
every F-measurable real r.v. g.”

Furthermore the following theorem extends Theorem 3 above.

Theorem 6. Let M be a Doss convex finitely compact metric space, and
E a Köthe space with one of the two following properties:

• E is weakly sequentially complete;
• E has Fatou’s property and its bounded parts are L1-uniformly inte-

grable.

Then, for every sub-σ-algebra F and every r.v. X in E(M), there exists an
F-conditional median of X.

Proof. Let X be in E(M) and F be a sub-σ-algebra. A sequence (Xn)
of F-measurable r.v.’s is an approximant sequence of X given F if

‖d(X,Xn)‖E → inf{‖d(X,Y )‖E : Y F-measurable}.
For a in M , let Yn := Xn

�
Bc
n

+ a
�
Bn where Bn is a sequence of events of F

such that λ(Bn)→ 0. Then

d(Xn,X)
�
Bn + d(X,Yn) = d(a,X)

�
Bn + d(Xn,X).

This relation allows one to show, as in the real case [5], that the sequence
(d(x, Yn)) is E-uniformly integrable for all x in M , hence it is σ(E,E′) rel-
atively compact. Consequently, as in Theorem 10, we obtain a subsequence
(denoted as the initial sequence) such that d(x, Yn) weakly converges in E.

The inequality d(X,Yn) ≤ d(x,X) + d(x, Yn) shows that (a subsequence
of) (d(X,Yn)) converges for σ(E,E′); denote by U its weak limit.

By using Theorem 10, denote by Y∞ the a.s. “sub-limit” of the sequence
(Yn), i.e., d(x, Y∞) ≤ fx.
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Let us show that U ≥ d(X,Y∞) a.s. Suppose firt X is a simple r.v., i.e.,
X =

∑
xi

�
Ai where the sets Ai form a Borel partition of [0, 1]. We saw that

the sequence d(x, Yn) =
∑
d(xi, Yn)

�
Ai converges weakly in E to

U =
∑

fxi
�
Ai ≥

∑
d(xi, Y∞)

�
Ai .

This proves the property for X simple.
In the general case, consider the sequence (fk) (see [13]) such that fk(X)

is a r.v. with finite values in M and ‖d(fk(X),X)‖E → 0. One has

|d(fk(X), Yn)− d(X,Yn)| ≤ d(fk(X),X) E→ 0 as n→∞.
And, since fk(X) is simple, without loss of generality, for all k we have

d(fk(X), Yn)
σ(E,E′)−−−−→ Uk ≥ d(fk(X), Y∞).

Let us show the convergence of Uk to U in E. Let φ be a r.v. such that
‖φ‖E′ ≤ 1. Then
∣∣∣

�
φ(Uk − U)

∣∣∣ =
∣∣∣lim
n

�
φ(d(fk(X), Yn)− d(X,Yn))

∣∣∣ ≤ ‖d(fk(X),X)‖E.

Hence ‖Uk−U‖E → 0. Taking the limit in the inequality Uk ≥ d(fk(X), Y∞),
we get the required relation U ≥ d(X,Y∞).

To conclude, notice that Y∞ is F-measurable because all the Xn are.
Finally,

‖d(X,Y∞)‖ ≤ ‖U‖ ≤ lim ‖d(X,Yn)‖ = inf{‖d(X,Z)‖ : Z F-measurable}.
The r.v. Y∞ is thus an F-conditional median of X.

2.3. Properties of conditional medians. In order to simplify the state-
ments, throughout this subsection we suppose (M,d) is a finitely compact
and Doss convex separable metric space; and E is a r.i. and w.s.c. Köthe
space (see Appendix). We also write M(·) for ME(·).

Proposition 2. (i) ME(X) depends only on the law of X.
(ii) The set M(F,X) is closed and convex (in Doss’s sense).

(iii) If E is strictly convex then for all Y1 and Y2 in M(F,X), we have
d(Y1,X) = d(Y2,X) a.s.

(iv) If Xn converges to X in E(M) and Yn ∈M(F,Xn) then (Yn) is an
approximant sequence of X.

(v) If Y is an F-conditional median of X, then

‖d(x, Y )‖E ≤ 2‖EF[d(x,X)]‖E a.s.

Proof. The assertion (i) is obvious.
(ii) If Y1 and Y2 are two medians of X given F, then the r.v. Y =

1
2Y1 + 1

2Y2 (Doss expectation) is a median of X. Indeed, Y is F-measurable
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and for all x in M ,

‖d(x, Y )‖E ≤ 1
2 (‖d(x, Y1)‖E + ‖d(x, Y2)‖E),

‖d(X,Y )‖E ≤ 1
2 (‖d(X,Y1)‖E + ‖d(X,Y2)‖E),

which proves the assertion.
(iii) When E is strictly convex, assume Y1 6= Y2; the last inequality above

is then a strict inequality, which contradicts the fact that Y1 and Y2 are two
distinct medians.

(iv) For Y ∈ E(F,M), we have ‖d(Yn,Xn)‖E ≤ ‖d(Y,Xn)‖E. Therefore

‖d(Yn,X)‖E ≤ ‖d(Yn,Xn)‖E + ‖d(X,Xn)‖E ≤ ‖d(Y,Xn)‖E + ‖d(X,Xn)‖E.
(v) The inequalities d(x, Y ) ≤ d(x,X) + d(X,Y ) and ‖d(X,Y )‖E ≤

‖d(x,X)‖E give the required result.

Remark. When in (iii) we replace “E is strictly convex” by “E is strictly
monotone” (i.e., 0 ≤ f ≤ g, ‖f‖E = ‖g‖E implies f = g a.s. [5]), we obtain:

(iii)′ If E is strictly monotone, then for all Y1, Y2 ∈M(F,X) we have

d(Y1,X) = d(Y2,X) a.s.

The adaptation of Proposition 8 of [5] gives:

Proposition 3. If E is a uniformly monotone Köthe space, then
M(F,X) is weakly compact in E(M).

Proof. Let (Yn) ⊂ M(F,X). This sequence is an approximant sequence
of X given F. By Theorem 10, for all x in M, d(x, Yn) is L1-uniformly
integrable and, as E is uniformly monotone, (d(x, Yn)) is E-uniformly in-
tegrable. The sequence (d(X,Yn)) admits a subsequence which has a finite
weak limit U . Moreover, by Theorem 11 and the Fatou property, there exists
an F-measurable r.v. Y such that d(X,Y ) ≤ U , i.e.,

‖d(X,Y )‖E ≤ ‖d(X,U)‖E ≤ lim ‖d(X,Xn)‖E,
which completes the proof.

We can complete the preceding proposition by:

Proposition 4. Suppose that E is a uniformly monotone Köthe space
with the Kadec property : “if fn → f weakly in E and ‖fn‖E → ‖f‖E, then
‖fn − f‖E → 0”. Then from any approximant sequence we can extract a
subsequence converging to a median and M(F,X) is compact in E(M).

Kemperman’s paper [20] concerns the case E = L1 and convexity of a
norm on Rd. We obtain a version of the preceding assertions (iii) and (iii)′.

Proposition 5. If M is d-strictly convex and E is strictly monotone,
then the set M(F,X) is a singleton.
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Proof. For two different r.v.’s Y1 and Y2 belonging to M(F,X), the r.v.
Y = 1

2 (Y1+Y2) is also in M(F,X) and d(Y,X) < 1
2 (d(Y1,X)+d(Y2,X)) a.s.,

which contradicts the equalities ‖d(Y,X)‖E = ‖d(Y1,X)‖E = ‖d(Y2,X)‖E.

For (M,d) = (Rd, ‖ · ‖), d > 1, the Euclidean norm is strictly convex
if the points are not on the same line. So, one recovers Theorem 2.7 of
Kemperman [20], when the support of X is not a.s. on the same line.

3. Convergence of empirical medians. In this section we study the
convergence of empirical medians. The next theorem gives the convergence
of the medians when Xn → X.

Theorem 7. Suppose that M and E satisfy the conditions of Theorem 5.
Let (Xn) ⊂ E(M) be such that ‖d(Xn,X)‖E → 0, and mn ∈ M(Xn). Then
there exists m ∈M(X) such that d(m,a) ≤ limn d(mn, a) for all a ∈M . In
particular if M is finitely compact , then there exists a subsequence such that
mni → m ∈M(X).

Proof. By Proposition 2(v), the sequence (mn) is bounded. The proof of
Theorem 10 shows there exists m such that

d(m,a) ≤ lim
n
d(mn, a), ∀a ∈M.

The Fatou property implies ‖d(m,X)‖E ≤ lim ‖d(mn,X)‖E. Hence
m ∈M(X). Indeed, the inequality d(mn,X) ≤ d(mn,Xn) + d(Xn,X) gives
‖d(mn,X)‖E ≤ ‖d(a,Xn)‖E + ‖d(Xn,X)‖E, so ‖d(m,X)‖E ≤ ‖d(a,X)‖E.
The rest of Theorem 7 is easy.

The convergence of empirical measures is a key point to statistics. We
show the Glivenko–Cantelli Theorem, which is a tool for convergence of
empirical medians.

For two probability measures P and Q on M , we define the Kantorovich–
Köthe functional [1] by K(P,Q) = inf{‖d(X,Y )‖E : X ∼ P, Y ∼ Q}.

Theorem 8. Suppose that M and E satisfy the conditions of Theorem 5
and E is a r.i. Köthe space such that Lp ⊂ E ⊂ L1 for 1 ≤ p <∞. Let (Xn)
be a sequence of i.i.d. random variables having the same law as X ∈ E(M),
X ∼ P . Set µtn = n−1∑n

i=1 δXi(t). Then, a.s., K(µtn, P )→ 0 and for a ∈M ,

n−1∑n
i=1 d(Xi, a) E→ E[d(X, a)].

Proof. We have the convergence in law of the empirical laws to P . The
Skorokhod Theorem on stochastic representation [11] ensures the existence
of a sequence Y tn(·) of r.v.’s defined on the canonical space, with law µtn
and converging a.s. to a r.v. Y t with law P . The sequence (d(Y tn, a))n is

E-uniformly integrable and converges a.s. Furthermore d(Y t
n, a) E→ d(Y t, a).
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By Proposition 9 (Appendix), we obtain the second assertion. The first part
is a consequence of Theorem 6 (see [1]).

We can state the following result:

Theorem 9. Suppose that M and E satisfy the conditions of Theorem 8.
For an i.i.d. sequence (Xn) having the same law as X ∈ E(M), denote by
Y tn(·) a r.v. with law µtn = n−1∑n

i=1 δXi(t) and mt
n ∈ M(Y tn). Then there

exists m ∈ M(X) such that a.s. d(m,a) ≤ lim d(mt
n, a) for all a ∈ M . In

particular , if M is finitely compact , then the sequence (mt
n)n is relatively

compact in M and its limit points are medians of X. Moreover , if E is
strictly convex , then the sequence (mt

n)n converges to the median of X.

Proof. To simplify the notations, we write mn for mt
n and Yn for Y tn. By

Proposition 2(i) and the Skorokhod Theorem, we can replace X by a r.v.
Y ∼ X and choose a sequence (Yn) E-uniformly integrable which converges
a.s. and in E, i.e., ‖d(Yn, Y )‖E → 0. Then the assertion is a consequence of
Theorem 7.

4. Examples and applications

4.1. Medians on R2

1) Let M1, . . . ,Mn be n non-collinear points of R2. The median M0 of
these points is determined by

∑n
i=1
−→
Ui = 0 or

∑n
i=1 cos(θi) = 0 where

−→
Ui,

respectively θi, is the unit vector joining M0 to Mi, resp. the angle formed
by the vector M0Mi and a fixed direction (cf. [15]).

2) Let X have a uniform law on the triangle with vertices {(0, 0); (1, 1);
(1,−1)}. With the usual length, we have (0, 0.79313 . . .) = ML1(X) and
(0, 3/4) = ML2(X).

3) Pac-man median. Let X be a r.v. with uniform law on the Pac-man
(see below). It is easy to see that the median m of X is the number m which
minimizes

3π/4�

0

1�

0

√
%2 − 2%m cos θ % d% dθ.

*
m

We find m = 0.25.
4) Poincaré’s half plane. This framework can naturally be adapted to

the hyperbolic space H = M formed by Poincaré’s half-plane which satisfies
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the conditions of our study. LetX be a r.v. with law 1
5 (δ(0,y)+δ(1,1)+δ(−1,1)),

where y > 2.10487, defined on H. Then (0, 2.10487) ∈ML1(M).

4.2. Medians on N. LetX be a r.v. with law P (X = n) = exp(−λ)λn/n!.
N is naturally a metric space and we will find M(X). For k ∈ N let f(k) =∑

(λn/n!)|n− k|. The sign of f(k + 1)− f(k) shows that the median is [λ]
or [λ] + 1, where [x] ∈ N and [x] ≤ x < [x] + 1.

4.3. Estimate of a translation parameter. We suppose that a distance on
R is translation invariant. Let X be a real r.v. with density f differentiable
and symmetric with respect of 0, i.e., f(−x) = f(x). Then E[d(X,x)] <∞
⇒ 0 ∈ML1(X). Indeed,

d

dx
E[d(X,x)]|x=0 = E

[
d

dx
d(X,x)

∣∣∣∣
x=0

]
= 0.

By Theorem 7, we obtain:

Proposition 6. Suppose d(x, y) = d(x− y, 0) and X is a r.v. such that
X ∼ −X and E[d(X, 0)] <∞. Then a ∈ML1(X + a).

We can use this fact to estimate a translation parameter from an n-
sample. We consider the Cauchy law. As we have supposed that the r.v.’s are
integrable, we must take some other equivalent distance on R, for example,
the distance d1(x, y) =

√
|x− y| which makes the Cauchy law integrable:

�
d1(x, a)

1
1 + x2 dx <∞.

One can also take the bounded distance d2(x, y) = |x− y|/(1 + |x− y|) (in
this case the space (R, d2) is not finitely compact).

An application is, for example, the determination of the parameter of
translation of the Cauchy law. The following values are the realization of a
20-sample of the standard Cauchy law:

x1 := 8.04984124; x2 := 5.02404057; x3 := −7.17135224;

x4 := 1.09634317; x5 := 0.75504330; x6 := 0.01115475;

x7 := 4.38616372; x8 := 1.82269607; x9 := 0.14906384;

x10 := −0.03833015; x11 := −0.32844966; x12 := −.91846761;

x13 := 4.21925516; x14 := −0.22843143; x15 := 7.92810925;

x16 := −0.73455212; x17 := 0.24745305; x18 := −0.03568694;

x19 := −1.82256075; x20 := −1.54843756.

For d1, the median estimator is θ̂ = x6 = 0.01115475.

Remark. For the distances considered below, R is not Doss convex.
Nevertheless M(x1 . . . , xn) ⊂ {x1 . . . , xn} and the determination of medians
is given by rearrangement.
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4.4. Traffic. We are interested in the following type of problem: where
should we put a bus-stop in order to serve an area whose population distri-
bution follows a given law? In a similar way, where can a car-park be put
in order to optimize the travels? The variations are numerous.

Only a very simplified version of this problem is studied here: a binary
tree A,B,C,D,E whose edges are of length one. Various hypotheses are
considered:

(H1) The r.v. X has law 1
5 (δA + δB + δC + δD + δE).

(H2) The law of X is uniform on the edges (A,B); (C,B); (B,D); (D,E).

We can also suppose for example that the law is uniform on the edges
(A,B); (C,B); (B,D); (B,E).

Let x be a point of (B,D) situated at a distance x from B. Then we can
show that

x = 0 ∈ML1(X); x = 1/5 ∈ML2(X),(H1)

x = 0 ∈ML1(X); x = 1/4 ∈ML2(X).(H2)

A

C

B D

E

x
*

4.5. Medians of probability measures. Let P1 be the set of probability
measures, P , such that � |x| dP < ∞. On this space we consider the l1-
distance (Wasserstein metric) defined by

l1(P,Q) =
�

R
|F (t)−G(t)| dt =

1�

0

|F−1(t)−G−1(t)| dt,

where F and G are the distribution functions (d.f.) of P and Q and F−1(t) =
inf{F (x) ≥ t} ([26], [24], [28]). For α ∈ [0, 1] we can define the Doss expec-
tation of µ = αδP + (1 − α)δQ to be αF + (1 − α)G which is the d.f. of
αP + (1− α)Q. We can also choose αF−1 + (1− α)G−1 = H−1; then H is
the d.f. of the probability measure αP ⊕ (1−α)Q. So (P1, l1) is Doss convex
but not strictly convex.

Let N be a r.v. with values in (P1, l1). Then N defines a kernel by
N(t, A) = N(t)(A). We want to find M(N).

For the discrete case, we suppose

N(t) =
2n+1∑

n=1

Pi
�

[(i−1)/(2n+1),i/(2n+1)[(t),



202 N. Belili and H. Heinich

and set F (t) = median of {Fi(t) : i = 1, . . . , 2n + 1}, Fi d.f. of Pi. It
is easy to see that F is the d.f. of a probability measure P belonging to
ML1(N). The odd case gives the same result for a suitable choice of medi-
ans. Theorem 9 gives the general case. Let us remark we can also achieve
F−1(t) ∈M(F−1

1 , . . . , F−1
n ). We obtain

Proposition 7. Let N be a r.v. with values in (P1, l1) with l1(N(·), Q)
∈ L1 for some Q ∈ P1. There exists P ∈ P1 such that

E[l1(N(·), P )] ≤ E[l1(N(·), P )], ∀Q ∈ P1.

The d.f. of P is given by F (x) where F (x) is a median of the r.v. t 7→
N(t, ]−∞, x]) = Ft(x), i.e.

1�

0

|Ft(x)− F (x)| dt ≤
1�

0

|Ft(x)− y| dt, ∀y.

We can also take F such that F−1(x) is a median of t 7→ F−1
t (x).

4.6. L1 conditional medians. Here, we study conditional medians of
(X,Y ) given X, when E = L1. The result is the same as the classical one
for conditional expectation. Let F be the σ-algebra generated by X; for
example, in the case of R2, F = B(R)⊗ R.

Proposition 8. There exists a measurable function m, x 7→ mx, such
that mx ∈ML1(Y \X = x) and m ∈ML1(F, (X,Y )).

Proof. Let us start with a r.v. X with finite values. We find an F-
measurable map f such that
∑

d

((
xi
yi

)
,

(
xi

f(xi)

))
≤
∑

d

((
xi
yi

)
,

(
xi
g(xi)

))
, ∀g F-mesurable.

Considering the conditional law of Y given X = xi and mxi ∈ ML1(Y |
X = xi), we can see it suffices to take f(xi) = mxi .

The general case is given by Theorem 7 or by a selection theorem [7].

Appendix

5.1. Doss expectations. In what follows, (M,d) is a separable complete
metric space endowed with its Borel σ-algebra. A r.v. X defined on a prob-
ability space (Ω,A, P ) with values in M is integrable if for some (and then
for any) point a in M the r.v. d(X, a) is integrable. For an integrable r.v.
X, the set

{E[X]} := {m ∈M : d(a,m) ≤ E[d(a,X)], ∀a ∈M}
is the expectation of X in the sense of Doss. The set {E[X]} is closed (pos-
sibly empty) and depends only on the law of X; we also write {E[µ]} if µ is
the law of X.
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The space M is called Doss convex (resp. Doss strictly convex ) if for
every probability measure µ := 1

2 (δx + δy), the set {E[µ]} is non-empty
(resp. is a singleton); δa denotes the Dirac mass at the point a.

If M is Doss convex, then for a ∈M , the function x 7→ d(x, a) is convex,
i.e., if z is an expectation of αδx + (1 − α)δy, α ∈ ]0, 1[, then d(z, a) ≤
αd(x, a) + (1− α)d(y, a).

If M is Doss strictly convex , then for all (x, a) ∈ M 2, x 7→ d(x, a) is
strictly convex, i.e., for all y ∈ M , y 6= x, if z is an expectation of αδx +
(1− α)δy, then d(αx+ (1− α)y, a) < αd(x, a) + (1− α)d(y, a), α ∈ ]0, 1[.

Let F be a sub-σ-algebra of B. An M -valued r.v. Y is a conditional
expectation of X given F if

(i) Y is F-measurable;
(ii) for all a in M, d(a, Y ) ≤ EF[d(a,X)] a.s.

We denote by {EF[X]} the set of all r.v.’s Y satisfying (i) and (ii).
Let us note the following property: if F1 and F2 are two sub-σ-algebras

such that F1 ⊂ F2 then EF1(EF2) ⊂ EF1 .
A sequence (Yn)n adapted to a monotone filtration (Fn)n is a martin-

gale if Yn ∈ {EFn [Yn+1]}. Let us recall the theorem on a.s. convergence of
martingales according to [8] or [3]:

If M is finitely compact , then any martingale (Yn) satisfying Doob’s
condition (i.e., supnE[d(x, Yn)] <∞ for all x ∈M) converges a.s.

5.2. Köthe spaces. A Banach space (E, ‖·‖E) of real r.v.’s defined on the
Lebesgue space ([0, 1],B, λ) is called a Köthe space if

(i) L∞ ⊂ E ⊂ L1, the injections are continuous;
(ii) if X and Y are two r.v.’s defined on ([0, 1],B, λ) such that |X| ≤ |Y |

with Y ∈ E, then X ∈ E and ‖X‖E ≤ ‖Y ‖E.

We adopt the terminology of [23]; in particular E∗ denotes the topological
dual of E and E′ := {Y ∈ L1 : XY ∈ L1 for all X ∈ E}. Let us recall that:

(a) E′ = E∗ if and only if E has a continuous norm with respect to the
order, i.e., if Xα ↓ 0 then ‖Xα‖E ↓ 0;

(b) E = E′′ if and only if E has the Fatou property, i.e., for every sequence
(Xn) ⊂ E such that Xn ↑ X and sup ‖Xn‖E < ∞ we have X ∈ E and
lim ‖Xn‖E = ‖X‖E.

Moreover, as we want to study functional relations between the laws of
r.v.’s it is natural to require the norm of X ∈ E to depend only upon the
law of X. This is the justification of the following definitions.

An automorphism τ of ([0, 1],B, λ) is a map of [0, 1] onto [0, 1] such that
B ∈ B if and only if τ(B) ∈ B and λ(τ(B)) = λ(B). In particular, any
automorphism τ of [0, 1] induces a non-negative isometry on L1.
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A Köthe space E is rearrangement invariant (r.i.) if for all X ∈ E, we
have X ◦ τ ∈ E and ‖X‖E = ‖X ◦ τ‖E for every automorphism τ . In fact,
we can always renorm E to become r.i.

We have the following lemmas.

Lemma 1 ([1], [23]). A Köthe space E is r.i. if and only if for any r.v.’s
X and Y on ([0, 1],B, λ) such that X ∼ Y and X ∈ E, we have Y ∈ E and
‖X‖E = ‖Y ‖E.

Lemma 2 ([1]). Let E be a r.i. Köthe space having the Fatou property
and let (Xn) ⊂ E be a bounded sequence with respect to ‖ · ‖E such that Xn

converges in law to X0. Then X0 ∈ E and ‖X0‖E ≤ lim ‖Xn‖E.

A Köthe space E is said to be uniformly monotone if for each ε > 0,
there exists η such that if X,Y ∈ E+ (where E+ denotes {X ∈ E : X ≥ 0}),
‖X‖E = 1 and ‖X + Y ‖E ≤ 1 + η then ‖Y ‖E ≤ ε.

The concept of uniformly integrable sequences, which is equivalent in the
L1 space to being relatively compact for σ(L1,L∞), can be generalized to
Köthe spaces as follows ([5], [6]).

A sequence (Xn) ⊂ E is called E-uniformly integrable if for every An ∈ B
such that λ(An)→ 0, we have ‖Xn1An‖E → 0.

Let us recall (see [1]):

“If E is a r.i. Köthe space, (Xn) ⊂ E is E-uniformly integrable and
Yn ∼ Xn for all n ∈ N, then the sequence (Yn) is E-uniformly integrable.”

Proposition 9 ([1]). Let E be a r.i. Köthe space. Then the following
statements are equivalent :

(i) The sequence (Xn) is E-uniformly integrable and converges in prob-
ability.

(ii) The sequence (Xn) converges in E.

A r.v. X with values in a metric space (M,d), is called E-integrable if
d(x,X) ∈ E for all x ∈M ; we then write X ∈ E(M). We denote by E(F,M)
the subset of E(M) formed by the F-measurable r.v.’s. When M = R one
writes E(F) instead of E(F,R).

5.3. The space E(F,M) is sub-weakly sequentially complete. To study
the existence of conditional medians on a separable finitely compact metric
space, we have to adapt the classical theorem on weak convergence. It is
possible to replace the “finitely compact” assumption by the condition of
Theorem 5.

The following theorem shows that if the Köthe space E is weakly sequen-
tially complete (w.s.c.), then, in a sense, so is E(M).

Theorem 10. Let E be a w.s.c. Köthe space of r.v.’s defined on ([0, 1],
B, λ) and let F be a sub-σ-algebra of B. If a sequence (Xn) ⊂ E(M) is
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such that for all x in M , the sequence (d(Xn, x)) is relatively compact for
σ(E,E′), then there exists a sequence (ni) and a r.v. Y ∈ E(F,M) such that :
for each x ∈M , the sequence (d(Xni , x))i converges weakly to a real r.v. fx

and d(Y, x) ≤ EF(fx) a.s. We say that the space E(M) is F-sub-weakly
sequentially complete, or E(F,M) is sub-w.s.c.

Proof. First, by the separability of M , let us show that there exists a
subsequence (ni) such that (d(Xni , x))i converges weakly to a real r.v. fx.

Let (ak) be a dense sequence in M . By the diagonal process, there is a
subsequence, still denoted by (ni), such that for all k, d(ak,Xni)→ fak for
the σ(E,E′) topology.

Let us show that this convergence takes place for any x in M .

To simplify, let (ni) be the initial sequence. For points x, xn, xm in M ,
the inequalities d(x, xn) ≤ d(x, aq) + d(aq, xn) and d(ap, xm) ≤ d(ap, x) +
d(x, xm) imply

d(x, xn) + d(ap, xm) ≤ d(x, aq) + d(aq, xn) + d(ap, x) + d(x, xm)

≤ d(x, aq) + d(x, ap) + d(aq, ap) + d(ap, xn) + d(x, xm),

therefore

d(x, xn)− d(x, xm) ≤ d(x, aq) + d(x, ap) + d(aq, ap) + d(ap, xn)− d(ap, xm).

If we choose the indices p and q so that ap and aq converge to x, we obtain

(∗) d(x, xn)− d(x, xm) ≤ ε+ d(ak, xn)− d(ak, xm),

as soon as these indices are large enough.
Take φ in E′+, multiply both sides of the inequality (∗) by φ and integrate

to obtain
�
φ(d(x,Xn)− d(x,Xm)) dλ ≤ ε

�
φ+

�
φ(d(ak,Xn)− d(ak,Xm)).

By interchanging the roles of n and m,

d(x, xm)− d(x, xn) ≤ ε+ d(ak, xm)− d(ak, xn).

Thus, as soon as n and m are large enough, we have∣∣∣
�
φ(d(x,Xn)− d(x,Xm)) dλ

∣∣∣ ≤ ε
�
φ+

∣∣∣
�
φ(d(ak,Xn)− d(ak,Xm))

∣∣∣ ≤ 2ε′.

We conclude that for all x in M , d(x,Xni) converges for σ(E,E′).

Case when F is a finite sub-σ-algebra of B. One can define a represen-
tative r.v. of EF(X), either using the canonical barycentre [13] when the
space has negative curvature, or with the axiom of the choice in the general
case. Let us present briefly this last possibility. Let F = σ(B1, . . . , Bk) and
let Ek be the Doss expectation with respect to the probability trace λk on
Bk. Then EF(X) = {∑ yk(X)

�
Bk}, where yk(X) is a point of Ek(X). By
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choosing a representative yk(X) in Ek(X), we determine a representative
r.v. of EF(X), denoted by Y .

On the other hand, the map EF : E→ E(F) is continuous and remains
continuous for the weak topologies. It is a contraction if the space is r.i. [5].
Moreover, since the σ-algebra is finite, the weak and strong topologies of
E(F) are identical.

For M finitely compact and F a finite sub-σ-algebra, let us show that the
space E(F,M) is weakly sequentially complete.

Indeed, let (Xn) in E(F,M) be such that (d(x,Xn)) is relatively compact
in σ(E,E′), for all x in M . We have seen that for a suitable subsequence,
d(x,Xni) converges weakly to a limit denoted by fx.

For Bk ∈ F, we have limd(x,Xni)P (Bk) = �
Bk
fx dλ. Therefore, the se-

quence (d(x,Xni)) is bounded and, since M is finitely compact, one can ex-
tract a new subsequence (n∗i ) such that Xn∗i converges a.s. to X in E(F,M).

Let us show that for M finitely compact and F a finite sub-σ-algebra, the
space E(M) is F-sub-weakly sequentially complete.

Now, we suppose that (Xn) ⊂ E(M) and the sequence (d(x,Xn)) is
weakly relatively compact in E for all x ∈M . Denote by Yn a representative
of EF(Xn), Y =

∑K
n=1 y

k
n

�
Bk ; let us establish that the sequence (ykn)n is

bounded, for all k. It suffices to show that any subsequence admits a new
one (n∗i ) such that (ykn∗i ) is bounded in M . For simplicity, assume that the
initial sequence (d(x,Xn)) converges weakly. Yn being in EF(Xn) implies
that

d(x, ykn)
�
Bk ≤ EF(d(x,Xn))

�
Bk a.s.

As EF(d(x,Xn)) converges strongly to EF(fx), one deduces that

lim
n
d(x, ykn)

�
Bk ≤ EF(fx)

�
Bk a.s.

By taking, as before, x in a dense countable set and by passing to the limit,
one has

lim
i
d(x, ykni)

�
Bk ≤ EF(fx)

�
Bk , ∀x ∈M,

outside a null set and for a subsequence. The spaceM being finitely compact,
we can extract a subsequence (n∗j ) such that ykn∗j converges for all k to a point

yk in M . The r.v. Y =
∑
yk

�
Bk is F-measurable and it is clear that a.s.

Yn∗i → Y, d(x, Yn∗i )→ d(x, Y ) ≤ fx in E. This proves the required assertion.

General case. Consider a finite sequence of sub-σ-algebras Fp increasing
to F and denote by Y p the r.v. corresponding to Y in the previous part, for
each p. There exists a subsequence, (ni(p))i, such that, for representatives
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Y pni(p) in EFp(Xni(p)), we have

Y pni(p) →i Y
p a.s., d(x, Y p) ≤ limEFp(d(x,Xni(p))) a.s.

Notice that we can choose the same subsequence for all p and, for this
reason, we simplify the notations by denoting this subsequence like the initial
sequence: for a fixed p, we have

(∗∗)
Y pn in EFp(Xn), Y pn →

n
Y p a.s.,

d(x, Y pn )→
n
d(x, Y p) in E, d(x, Y p) ≤ fx a.s.

The proof is easy when we can choose Y p in EFp(Y p+1). Indeed, the se-
quence (Y p) is a martingale in the sense of Doss, and Doob’s condition
suppE[d(x, Y p)] < ∞ is satisfied. Then the Doss Theorem ensures the a.s.
convergence of Y p to a r.v. Y∞ which satisfies the conclusion of the theorem.

We will circumvent this difficulty. Without loss of generality, assume that
(∗∗) holds. For any fixed p, let Ỹ pp := Yp and for all k < p, choose a r.v. Y pk
in EFk(Y pk+1). The finite sequence (Ỹ p1 , . . . , Ỹ

p
p−1, Ỹ

p
p ) is a martingale. Since

the spaces E(Fk,M) are weakly sequentially complete, we can extract from
(Ỹ pp )p a subsequence which converges. Indeed, the inequalities d(x, Ỹ pk ) ≤
EFk(Y pk+1) ≤ EFk(Y p) ≤ EFk(fx) a.s. show that the sequence (d(x, Y pk ))p
is weakly relatively compact in E.

Varying k and by the diagonal procedure, there exists a subsequence
(pi)i such that (Ỹ pik )i converges a.s. for all k. For simplicity, let the subse-
quence be the initial sequence and let Yk be the limit. For all k we have
d(x, Ỹ pk ) → d(x, Yk) in E and Yk is Fk-measurable. Since, for p ≥ k + 1,
EFk(d(x, Ỹ pk+1)) ≥ d(x, Ỹ pk ) a.s., taking the limit we deduce that

EFk(d(x, Yk+1)) ≥ d(x, Yk) a.s.

The sequence (Yk) is a martingale in the sense of Doss.
Now, we prove that (Yk) converges a.s. to a r.v. Y∞. To use the Doss

Theorem, it suffices to verify that supk E[d(x, Yk)] <∞. This results from

E[d(x, Yk)] = limpE[d(x, Ỹ pk )] ≤ lim
p
E[d(x, Y p)] ≤ lim

n
E[d(x, Yk)]

= E[fx] <∞.

To complete the proof of the Theorem, let us show that d(x, Y∞) ≤ fx

a.s. Let φ be a real Fk-measurable r.v. belonging to E′+ or L∞+ . For x ∈M ,
we have

�
φd(x,Xn) =

�
φEFk [d(x,Xn)]→

�
φEFk [fx] =

�
φfx.
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However if p ≥ k, then
�
φd(x,Xn) =

�
φEFp [d(x,Xn)] ≥

�
φd(x, Y pn )→

n

�
φxYk.

Consequently, d(x, Yk) ≤ EFk(fx) a.s. and taking the limit, we obtain the
desired property d(x, Y∞) ≤ fx a.s.

Here is another version of the theorem.

Theorem 11. If a space E has the Fatou property and its bounded parts
are uniformly integrable in L1, then E(M) is F-sub-w.s.c. for all sub-σ-
algebras F.

Proof. Indeed, Theorem 10 shows that L1(M) is F-sub-w.s.c. and since
the sequence (d(x,Xn)) is bounded in E, its limit is in E by Lemma 2.
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(1994), 647–702.
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Département de Génie Mathématiques
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