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ON THE PROBABILISTIC
MULTICHAIN POISSON EQUATION

Abstract. This paper introduces necessary and/or sufficient conditions
for the existence of solutions (g, h) to the probabilistic multichain Poisson
equation

(a) g = Pg and (b) g + h− Ph = f,

with a given charge f , where P is a Markov kernel (or transition probabil-
ity function) on a general measurable space. The existence conditions are
derived via three different approaches, using (1) canonical pairs, (2) Cesàro
averages, and (3) resolvents.

1. Introduction. Let (X,B) be a measurable space, and P (x,B) a
Markov kernel (or transition probability function) on (X,B), that is, P (x, ·)
is a probability measure on B for every fixed x ∈ X, and P (·, B) is a mea-
surable function on X for every fixed B ∈ B. For a real-valued measurable
function h on X, we denote by Ph the function

Ph(x) :=
�

X

P (x, dy)h(y), x ∈ X,

whenever the integral is well defined. The Poisson equation (P.E.) for P is

(a) g = Pg and (b) g + h− Ph = f,(1.1)

where f : X → R is a given measurable function, called a charge. If (1.1)
holds, then the pair (g, h) is said to be a solution to the P.E. with charge f .
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If it is known that P admits a unique invariant probability measure, then
(1.1) is called the unichain P.E.; otherwise, (1.1) is called the multichain (or
general) P.E. The problem we are concerned with in this paper is to obtain
necessary and/or sufficient conditions for the existence of solutions to the
multichain P.E.

The P.E. for discrete (or continuous) time Markov processes occurs in
many areas of applied and theoretical probability, including potential theory,
stochastic approximation and stochastic control [10, 11–14, 17, 18, 25, 26,
28–31, 36, 41, 42]. In particular, in the analysis of average (or ergodic) cost
problems for Markov control processes, (1.1) is a special case of the so-called
average-cost optimality equation, also known as Bellman’s equation, and the
existence of solutions to this equation is, among other things, required to
analyze the policy iteration (or Howard’s) algorithm [1, 6, 13, 14, 30].

A relevant question then is: How can we ensure the existence of solutions
to the P.E.? There are two cases in which the answer to this question is well
known. One is when the state space X is a countable set (see Remark 2.6
below), and the other is the above-mentioned unichain case, in which the
function g in (1.1) turns out to be a constant (for a special situation, see
Remark 3.6). In these two cases, a key probabilistic fact used to obtain a
solution to (1.1) is that the “ergodic decomposition” of X in “recurrent”
and “transient” parts is well understood. These concepts, however, do not
have a unique meaning in the multichain situation with a general space X;
namely, one can have several types of “ergodic decompositions” (Doeblin’s,
Harris’, Hopf’s, . . . ), and even then to obtain (1.1) one further needs suitable
topological assumptions on X and/or probabilistic hypotheses (for instance,
the Feller condition) on the transition probability P . A consequence of this
is that if one wishes to study the multichain P.E. with general X and P ,
a “probabilistic” approach does not look very promising. We have to try
other methods. Here we try several alternative, basically functional-analytic
approaches.

In this paper we follow three (related) approaches to study (1.1). In
Section 2 we show that the existence of a solution to (1.1) is equivalent
to the existence of a canonical pair (Definition 2.1). The latter shows in
particular the close relation between (1.1) and the existence of limits (as
n→∞) of Cesàro averages

Anf := n−1
n−1∑

k=0

P kf.

Hence, in Section 3 we turn our attention to the Mean Ergodic Theorem
of Yosida and Kakutani [40], which gives a precise description of the set of
functions f for which Anf converges (see Theorem 3.2), and allows us to
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fully determine (Theorem 3.7) the set of solutions to (1.1). An alternative
description of this set is obtained in Section 4 (Theorem 4.3) using the well
known relation between the limiting behaviour of the Cesàro averages Anf
and the limit as α ↑ 1 of (1− α)Rαf , where

Rαf :=
∞∑

k=0

αkP kf with 0 < α < 1,

is the resolvent (or α-potential) of P . The results in Sections 3 and 4 are
strongly influenced by the work of previous authors on the existence of so-
lutions to linear equations in Banach spaces [2, 23, 33, 35]. (In a somewhat
related context but using a technically different approach, via a generalized
Farkas theorem, existence results are also presented in [12, 16].) Finally, the
paper concludes in Section 5 with a brief description of some open prob-
lems.

2. Canonical pairs. Let (X , ‖ · ‖) be a normed vector space of real-
valued bounded measurable functions on (X,B). [In most applications of
Markov processes, X is in fact a Banach space, for instance, X = Lp(X,B, µ)
for some σ-finite measure µ and 1 ≤ p ≤ ∞, or the space X = B(X) of
bounded measurable functions on (X,B) with the supremum norm.] Unless
otherwise stated, convergence in X is always in the strong (norm) topology:
“fn → f strongly” means ‖fn− f‖ → 0. In this case, we write f = s-lim fn.
For operators on X strong convergence T := s-limTn means Tf = s-limTnf
for all f ∈ X .

We shall assume that the transition probability function P defines a
linear operator on X into itself given by

(Pf)(x) :=
�

X

P (x, dy)f(y), ∀f ∈ X , x ∈ X.

As usual, Pn denotes the n-step transition function, which is given recur-
sively by

Pn(x,B) =
�

X

Pn−1(x, dy)P (y,B), n = 1, 2, . . . ,

where P 0(x, ·) is the Dirac measure at x; we also write P 0 := I, the identity
operator. For n = 1, 2, . . . , let

Sn := I + P + . . .+ P n−1 and An :=
1
n
Sn.(2.1)

The An are sometimes called the Cesàro (or ergodic) averages of P .
The following definition is an adaptation of the concept of canonical

triplet introduced by Yushkevich [41] (see also [6] or [13]) for Markov control
processes.



228 O. Hernández-Lerma and J. B. Lasserre

Definition 2.1. Let f be a given function in X . A pair (g, h) of func-
tions g and h in X is said to be an f -canonical pair if

Snf + Pnh = ng + h ∀n = 1, 2, . . .(2.2)

It turns out that (2.2) is equivalent to the multichain P.E. (1.1) in the
following sense.

Theorem 2.2. (g, h) is an f -canonical pair if and only if (g, h) is a
solution to the multichain P.E. with charge f .

Proof. “⇒” Let (g, h) be an f -canonical pair. Then, with n = 1, (2.2)
yields (1.1)(b). Now, to obtain (1.1)(a), apply P to both sides of (1.1)(b) to
get

P 2h = Pg + Ph− Pf,
and, on the other hand, note that (2.2) with n = 2 yields

P 2h = 2g + h− f − Pf.
The last two equations give (1.1)(a) since they imply

Pg − g = g + h− Ph− f = 0,

where the latter equality comes from (1.1)(b).
“⇐” Conversely, suppose that (g, h) satisfies (1.1). Then g = Pg implies

g = P kg for all k = 0, 1, . . . and, therefore,

ng =
n−1∑

k=0

P kg = Sng ∀n = 1, 2, . . .(2.3)

Now write (1.1)(b) as h = (f − g) + Ph and iterate to obtain

h = Sn(f − g) + Pnh = Snf − ng + Pnh [by (2.3)],

which is the same as (2.2).

Although Theorem 2.2 is quite straightforward, it has important conse-
quences. In particular, we will derive from it additional necessary and/or
sufficient conditions for the existence of solutions to the multichain P.E.
Recall that the norm of an operator T on X is defined as

‖T‖ := sup {‖Tf‖ | f ∈ X , ‖f‖ ≤ 1} ,
and that T is said to be power-bounded if there is a constant M ≥ 0 such
that ‖Tn‖ ≤M for all n = 0, 1, . . .

Corollary 2.3. Let (g, h) be an f -canonical pair. Then:

(a) g = s-limnAng.
(b) If Pnh/n → 0 (pointwise or strongly), then limAnf = limAng = g

(pointwise or strongly , respectively).
(c) If P is power-bounded , then supn ‖Sn(f − g)‖ <∞.
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Proof. Part (a) follows from (2.3). Moreover, from (2.3) and (2.2),

Sn(f − g) = h− P nh.(2.4)

This yields (b) [see (a)], and also (c) since ‖Sn(f −g)‖ ≤ (1+M)‖h‖, where
M is such that ‖P n‖ ≤M for all n = 0, 1, . . .

Remark 2.4. (a) Observe that if (1.1)(b) holds, so that f−g = (I−P )h,
we can also obtain (2.4) from the general expression:

Sn(I − P ) =
n−1∑

k=0

P k(I − P ) = I − Pn ∀n = 1, 2, . . .(2.5)

(b) The hypotheses in parts (b) and (c) of Corollary 2.3 obviously hold
if P is a contraction operator, i.e., ‖P‖ ≤ 1. This is the case if, for instance,
X = B(X) is the Banach space of bounded measurable functions on (X,B)
with the sup norm, or if X = Lp(X,B, µ) with 1 ≤ p ≤ ∞ and µ a P -
invariant probability measure, i.e., µ is a (not necessarily unique) probability
measure such that

µ(B) =
�

X

µ(dx)P (x,B) ∀B ∈ B.(2.6)

The following theorem gives another characterization of a solution
to (1.1).

Theorem 2.5. Let f, g and h be functions in X , and suppose that :

(a)P is bounded (i.e., ‖P‖ ≤M for some constant M), and
(b)Pn/n→ 0 strongly.

Then the following two assertions are equivalent.

(i) (g, h) is the unique solution of the P.E. (1.1) for which

s-limAnh = 0.(2.7)

(ii) g = s-limAng = s-limAnf , and

h = s-lim
1
N

N∑

n=1

n−1∑

k=0

P k(f − g) = s-lim
1
N

N∑

n=1

Sn(f − g).(2.8)

Proof. (i)⇒(ii). If (i) holds, then the first condition in (ii) follows from
Corollary 2.3(b). On the other hand, by (2.4),

h =
1
N

N∑

n=1

Sn(f − g)− 1
N

N∑

n=1

Pnh ∀N = 1, 2, . . .(2.9)

Hence, (2.8) follows from (2.9) and (2.7).
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(ii)⇒(i). If g = s-limAng = s-limAnf , then (1.1)(a) holds [since, by
assumption (a), we can interchange P and s-lim], and also

s-limAn(f − g) = 0.(2.10)

To prove (1.1)(b) first note that, by (2.5),

(I − P )
n−1∑

k=0

P k(f − g) = (I − P n)(f − g).(2.11)

Therefore, applying I − P to both sides of (2.8) and using assumption (a)
again, we get

(I − P )h = s-lim
1
N

N∑

n=1

(I − P )
n−1∑

k=0

P k(f − g)

= (f − g)− s-lim 1
N

N∑

n=1

Pn(f − g)

= f − g [by (2.10)],

i.e., (1.1)(b) holds. Hence, the pair (g, h) is a solution to (1.1); it only remains
to show that it is unique. Before doing this, let us note that (2.8) and (2.9)
together imply (2.7). Now let (g1, h1) and (g2, h2) be two f -canonical pairs
satisfying the conditions in (ii). Then

g1 = s-limAnf = g2, i.e., g1 = g2 =: g.(2.12)

Furthermore, since (I − P )hi = f − g for i = 1, 2, the function u = h1 − h2
satisfies (I − P )u = 0, and, therefore, u = P ku for all k = 0, 1, . . . , which
implies

u = s-limAnu = s-limAnh1 − s-limAnh2 = 0 [by (2.7)],

i.e., h1 = h2.

In the following section we show that the results in Theorem 2.5, as
well as those mentioned in Remark 2.6, below, are valid in a more general
context.

Remark 2.6. If the state space X is a finite set, in which case the
transition probability P is a square matrix, it is well known [1, 6, 18, 25, 30]
that the limiting matrix

Π := lim
n
An = lim

n
n−1

n−1∑

k=0

P k (componentwise)(2.13)

exists, and that I − P +Π is nonsingular; its inverse

Z := (I − P +Π)−1(2.14)
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is called the fundamental matrix associated with P . Moreover, the matrix

H := lim
N→∞

1
N

N∑

n=1

n−1∑

k=0

(P −Π)k(I −Π)(2.15)

satisfies

H = (I − P +Π)−1(I −Π) = Z(I −Π)(2.16)

and is called the deviation matrix associated with P (or the Drazin inverse
of I − P ); P −Π is sometimes called the approach matrix [36]. The above
facts are also true if X is a countable set. What we wish to remark is that
the solution pair (g, h) in Theorem 2.5(i),(ii) is precisely

g = Πf and h = Hf.(2.17)

In Theorem 3.7 we will show that (2.16) and (2.17) hold in a much more
general setting.

Remark 2.7. The choice of the underlying space X is important. For
instance, consider the countable set X = {1, 2, . . .} with the discrete topol-
ogy, and let X be the Banach space of bounded functions on X with the
supremum norm ‖u‖ := supx |u(x)|. Further, let {q(x)}, x ∈ X, be a proba-
bility distribution on X, that is, q(x) ≥ 0 for all x and

∑
x q(x) = 1, which

is assumed to have a finite “mean value”:

q :=
∑

x

xq(x) <∞,

and let P (x, y) ≡ P (x, {y}) be the Markov kernel given by

P (x, x− 1) := 1 ∀x ≥ 2, and P (1, y) := q(y) ∀y ≥ 1.

Finally, consider the Poisson equation (1.1) with charge f ∈ X defined by

f(1) := 1− q, and f(x) := 1 ∀x ≥ 2.

Then one can easily check that (1.1) has a solution (h, g) with g(·) ≡ 0 and

h(x) = f(1) + x− 1 ∀x ∈ X.(2.18)

In fact, except for an additive constant, any solution h to (1.1) is of the
form (2.18), which is not a bounded function. In other words, the charge f
is in X and the P.E. is “solvable”, but the solution is not in X . This kind
of situation can often be remedied by suitably enlarging the space X . For
example, consider the weighted norm

‖u‖w := ‖u/w‖ = sup
x
|u(x)|w(x)−1,

where w(x) = x for all x ∈ X, and let Xw be the Banach space of functions u
on X with finite w-norm, i.e., ‖u‖w <∞. It is clear that Xw contains X (in
fact, since w ≥ 1, we have ‖u‖w ≤ ‖u‖ <∞ if u is bounded) and, moreover,
the function h in (2.18) belongs to Xw. That is, the P.E. does not have a
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solution in X , but it does in Xw. Moreover, it is straightforward to check
that P is still a bounded linear operator on Xw. Under some additional
assumption on the distribution q (for instance, if q has a finite “moment
generating function”), one can show that P is in fact power-bounded.

3. The Cesàro-averages approach. It follows from the results in
Section 2 that the existence of solutions to the multichain P.E. (or, equiva-
lently, the existence of canonical pairs) is closely connected with the limiting
behaviour of the Cesàro averages An := n−1Sn. In this section we obtain
necessary and/or sufficient conditions for the existence of such solutions by
identifying the limits of An. To do this we shall use the Mean Ergodic The-
orem of Yosida and Kakutani [40] (see also [39] or [5]), which requires the
following assumption.

Assumption 3.1. X is a Banach space and P maps X into itself. More-
over,

(a) Pn/n→ 0 strongly, and
(b) supn ‖An‖ <∞.
Note that (a) and (b) trivially hold if P is power-bounded, in particular,

if P is a contraction [see Remark 2.4(b)].
Now let A(P ) be the set of functions whose Cesàro averages converge,

i.e.,
A(P ) := {f ∈ X | Anf converges strongly as n→∞}.

The set A(P ) is non-empty [it contains (at least) the constant functions] and
the following Mean Ergodic Theorem (for a proof see the above-mentioned
references) provides a description of it. We use the notation Ker := kernel
(or null) space and Ran := range.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then A(P ) is the
closed linear manifold given by

A(P ) = Ker(I − P )⊕ Ran(I − P ).(3.1)

Furthermore, the operator Π that maps f 7→ Πf := s-limAnf is a projection
on A(P ) with

Ran(Π) = Ker(I − P ), Ker(Π) = Ran(I − P ),(3.2)

and satisfies
ΠP = PΠ = Π2 = Π.(3.3)

If , in addition, X is reflexive then P is mean ergodic, i.e., A(P ) = X .

Remark 3.3. Concerning the last statement in Theorem 3.2, the con-
dition that X be reflexive is sufficient but not necessary for P to be mean
ergodic. For instance, suppose that µ is a P -invariant probability measure
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[see Remark 2.4(b)] and let X = L1(X,B, µ). Then X is not reflexive but
it is well known that A(P ) = X . Moreover, Πf is given by a conditional
expectation [8, 31], say

Πf = E(f |I) ∀f ∈ X = L1(X,B, µ)

(where I is the σ-algebra of “invariant” sets), and, on the other hand, if X
is a locally compact separable metric space and B is the corresponding Borel
σ-algebra, then (with a.a. = almost all)

Πf(x) =
�

X

Π(x, dy)f(y) for µ-a.a. x ∈ X,

where Π(x,B) is a transition probability function. (See [15].)

We shall now derive necessary conditions for the existence of solutions to
(1.1); sufficient conditions are considered in the second half of this section.

Let (g, h) be a solution of the multichain P.E. with charge f , and suppose
that Assumption 3.1 holds. Then, by (3.1) and (1.1), g and f are both
in A(P ), and in fact, by Corollary 2.3(a),(b),

g = Πf.(3.4)

Hence, in particular, we may rewrite (1.1)(b) as

(I − P )h = (I −Π)f.(3.5)

On the other hand, by (3.4), g is necessarily unique but this need not be
the case for h because (g, h+Πh′) is also a solution of the multichain P.E.
for any h′ in A(P ); indeed, by (3.3),

(I − P )(h+Πh′) = (I − P )h = (I −Π)f.

For h to be unique it suffices to add the constraint

Πh = 0.(3.6)

In other words, as in the last part of the proof of Theorem 2.5, we have:

Proposition 3.4. If (g, h1) and (g, h2) are two solutions of the multi-
chain P.E. and h1, h2 satisfy (3.6), then h1 = h2.

Proof. From (3.5), we have (I − P )(h1 − h2) = 0, i.e., u := h1 − h2 is
in Ker(I − P ) = Ran(Π) [by (3.2)]. This implies u = Πu, so that, by (3.6),
u = h1 − h2 = 0.

Finally, we shall use (2.5) to re-state Corollary 2.3 in the context of
this section. Actually, the following proposition almost amounts to a trivial
remark but it is important because it gives an idea of the rate of convergence
of Anf to Πf .
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Proposition 3.5. Suppose that Assumption 3.1 holds. If f and h sat-
isfy (3.5), with f in A(P ), then

Anf −Πf =
1
n

(I − Pn)h→ 0 strongly.(3.7)

If , in addition, P is power-bounded then

‖Anf −Πf‖ ≤M‖h‖/n.(3.8)

for some constant M .

Proof. From (3.5) and (2.5),

Sn(I −Π)f = Sn(I − P )h = (I − P n)h.

Since Sn(I −Π) = Sn − nΠ, we get (3.7), hence also (3.8).

Remark 3.6. The convergence in (3.8) can be greatly improved by im-
posing suitable assumptions on the transition probability function P . In
particular, there is a large variety of conditions ensuring a geometric rate of
convergence, that is, there exists a constant 0 < β < 1 such that

‖Pnf − µ(f)‖ ≤ cβn ∀f ∈ X and n = 0, 1, . . . ,(3.9)

where µ(f) := � f dµ = Πf for some P -invariant probability measure µ, and
c is a constant (that may depend on f). See [4, 10, 11, 17, 28].

Note that if (3.9) holds, then the operator H0 introduced below is defined
for all f ∈ X .

To state sufficient conditions for the existence of solutions to the multi-
chain P.E., consider two operators H0 and H defined as

H0f := s-lim
n→∞

n−1∑

k=0

(P k −Π)f =
∞∑

k=0

(P k −Π)f,

and

Hf := s-lim
N→∞

1
N

N∑

n=1

n−1∑

k=0

(P k −Π)f.(3.10)

The domain of H is Dom(H) := {f ∈ A(P ) | the limit in (3.10) exists}, and
similarly for H0. If a sequence {hn} in X converges strongly to h, then so
does the sequence of averages n−1∑n−1

k=0 hk. Thus, taking

hn :=
n−1∑

k=0

(P k −Π)f,

we see that H is an extension of H0, that is, Dom(H0) ⊂ Dom(H) and

Hf = H0f ∀f ∈ Dom(H0).

In fact, these remarks were intended mainly to illustrate the relation be-
tween (3.9) and H0, whence between (3.9) and H. But what we are really
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interested in is the following result, which in particular gives the precise do-
main and range of H. [Compare Theorem 3.7 and Remark 2.6, noting that
(P −Π)k(I −Π) = P k −Π for all k = 0, 1, . . . , by (3.3).]

Theorem 3.7. Under Assumption 3.1 we have:

(a) f is in Dom(H) if and only if the pair (g, h) given by g = Πf and

h := Hf = s-lim
N→∞

N−1
N∑

n=1

n−1∑

k=0

(P k −Π)f(3.11)

is the unique solution of (3.4)–(3.6).
(b)Dom(H)=Ran(Π)⊕(I−P )Ker(Π) [=Ker(I−P )⊕(I−P )Ran(I−P ),

by (3.2)].
(c) Ran(H) = Ker(Π) [= Ran(I − P ), by (3.2)].
(d) The restriction of H to Ran(H) = Ker(Π), call it Z, is the inverse

of I − P +Π, i.e.,

Zf = (I − P +Π)−1f ∀f ∈ Ran(H) [= Ker(Π), by (c)];(3.12)

hence, the function h in (3.11) can be written as

h = Hf = Z(I −Π)f ∀f ∈ Dom(H).(3.13)

Proof. (a) Suppose that f is in Dom(H), and let g := Πf and h := Hf .
Then observing that [by (3.3)]

P k(I −Π)f = (P k −Π)f ∀k = 0, 1, . . . ,

we see that the function h = Hf in (3.11) is the same as the function h
in (2.8) with g = Πf . Hence the implication “⇒” in (a) follows from the
implication “(ii)⇒(i)” in Theorem 2.5. Similarly, the converse follows from
“(i)⇒(ii)” in Theorem 2.5.

(b) Let f be in Dom(H) and let g := Πf and h := Hf . Then from
part (a), (3.5) and (3.6) yield

f = Πf + (I − P )h with h ∈ Ker(Π);

hence
f ∈ Ran(Π)⊕ (I − P ) Ker(Π).(3.14)

Now suppose that f satisfies (3.14). Then there are functions f1 in A(P )
and f2 in Ker(Π) such that f = Πf1 + (I −P )f2. Obviously [by (3.3)], Πf1
is in Dom(H) and HΠf1 = 0. Moreover, since [by (3.3) again]

(P k −Π)(I − P ) = P k − P k+1,

H(I − P )f2 = f2. Summarizing, if f satisfies (3.14), then f is in Dom(H)
and Hf = f2.

(c) Suppose h = Hf is in Ran(H). Then since Π is bounded (Theorem
3.2), we can interchange Π and s-lim in (3.10), which combined with (3.3)
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yields
Πh = ΠHf = 0, i.e., h ∈ Ker(Π),(3.15)

so that Ran(H) ⊂ Ker(Π).
Now to prove that Ker(Π) ⊂ Ran(H), let h be in Ker(Π) and let f :=

(I − P )h. Then, by (3.3) and (2.5),
n−1∑

k=0

(P k −Π)f =
n−1∑

k=0

(P k −Π)(I − P )h = (I − P n)h.(3.16)

Thus, (3.10) yields Hf = h−Πh = h, i.e., h is in Ran(H).
(d) Suppose that f is in Ran(H) = Ker(Π) and let h = Hf . Then,

by (a), (3.5)–(3.6) yield (I − P )h = (I −Π)f = f and Πh = 0, so that

(I − P +Π)h = (I − P )h+Πh = f,

i.e., (I−P +Π)H = I on Ker(Π). By a similar argument, H(I−P +Π) = I
on Ker(Π).

Finally, to prove (3.13), let f be any function in Dom(H). Then part (a)
yields that h = Hf satisfies (3.5)–(3.6), so that

(I − P +Π)Hf = (I − P )h+Πh = (I −Π)f,

and (3.13) follows.

Remark 3.8. (a) Arguing as in (3.16) we can show that

H(I − P )f = (I −Π)f ∀f ∈ Dom(H),

so that in addition to (3.13) we have

H(I − P +Π)f = H(I − P )f = (I −Π)f.

(b) The operator H0 defined above is sometimes called the ergodic po-
tential of P , and H1 :=

∑∞
k=0 P

k is called the potential [29, 31, 36]. In the
following section we study the α-potential (or resolvent) Rα in (4.1).

4. The Abelian approach. For every 0 < α < 1, let Rα be the oper-
ator defined by

Rα := (I − αP )−1 =
∞∑

k=0

αkP k.(4.1)

The close connection between the limits of the Cesàro averages An [see (2.1)]
as n → ∞ and the limits of the “Abelian means” (1 − α)Rα as α ↑ 1 has
been widely exploited in a variety of contexts. In this section we use that
connection to study the multichain P.E. (1.1). First, to ensure that, among
other things, Rα is well defined, we let X be as in Section 3 [i.e., X is a
Banach space of bounded measurable functions on (X,B)] and suppose:
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Assumption 4.1. P is power-bounded, i.e., there is a constant M such
that ‖Pn‖ ≤M for all n = 0, 1, . . .

Assumption 4.1 obviously holds, in particular, if P is a contraction [see
Remark 2.4(b)]. On the other hand, note that Assumption 4.1 implies As-
sumption 3.1 and, therefore, all the results of Section 3 are valid. Moreover,

sup
0<α<1

‖(1− α)Rα‖ ≤M (<∞),(4.2)

which, since P is positive (f ≥ 0 ⇒ Pf ≥ 0), is in fact equivalent to the
condition supn ‖An‖ < ∞ in Assumption 3.1(b) (see, for instance, [7]). In
addition, a well known result [2, 32] yields that, under Assumption 4.1, the
set A(P ) in (3.1) is the same as the set of all f ∈ X for which the strong
limit s-lim

α↑1
(1− α)Rαf exists, and in fact coincides with Πf :

s-lim
n→∞

Anf = Πf = s-lim
α↑1

(1− α)Rαf ∀f ∈ A(P ).(4.3)

(See Remark 4.4 below.)
We will next extend to our present context a result in [3], which turns

out to be related to Proposition 3.5.

Proposition 4.2. Suppose that Assumption 4.1 holds, and let f be a
function in X . Then

(a) αn(Pn − I)Rαf = (
∑n−1

k=0 α
k)(1− α)Rαf −

∑n−1
k=0 α

kP kf for all α ∈
(0, 1), n = 1, 2, . . .

(b) For every n = 1, 2, . . . , the limit

Gnf := s-lim
α↑1

(Pn − I)Rαf(4.4)

exists if and only if f is in A(P ), in which case [by (a) and (4.3)]

Gnf = n ·Πf − Snf ∀n = 1, 2, . . . ,(4.5)

so that s-limn→∞Gnf/n = 0.
(c) For a given f in A(P ), a function h satisfies the P.E. (3.5) if and

only if
Gnf = Pnh− h ∀n = 1, 2, . . .(4.6)

Proof. (a) From (4.1), we get

Rα = I + αPRα.

Iteration yields

Rα =
n−1∑

k=0

αkP k + αnPnRα ∀n = 1, 2, . . . , 0 < α < 1.
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Subtracting αnRα from both sides of this equation and recalling that

1− αn = (1− α)
n−1∑

k=0

αk,

we obtain (a).
(b) In (a) take both lim inf and lim sup as α ↑ 1 to get

s-lim inf
α↑1

(Pn − I)Rαf = n · s-lim inf
α↑1

(1− α)Rαf − Snf

≤ n · s-lim sup
α↑1

(1− α)Rαf − Snf

= s-lim sup
α↑1

(Pn − I)Rαf.

Thus, in view of (4.3), we conclude that (4.4)–(4.5) hold if and only if f is
in A(P ).

Finally, (c) follows from (4.5) and the equality in (3.7) [or (2.2) with
g = Πf ].

With n = 1, Proposition 4.2(a) implies the following expression for
(I − P )Rα = Rα(I − P ):

αRα(I − P )f = f − (1− α)Rαf ∀f ∈ X .(4.7)

Therefore, from (4.3) [or from (4.5) with n = 1],

s-lim
α↑1

Rα(I − P )f = (I −Π)f if f ∈ A(P ).(4.8)

We will now employ (4.7) and (4.8) to obtain a result similar to Theorem
3.7 but using Rα instead of An.

First, following [2] (see also [33]) let P0 denote the restriction of P to
A(P ) and define

Jf := s-lim
α↑1

Rαf

whenever the limit exists.

Theorem 4.3. Under Assumption 4.1:

(a) Dom(J) = Ran(I − P0) and Ran(J) = Ker(Π).
(b)f is in Dom(J) if and only if

h = s-lim
α↑1

Rαf [= Jf ](4.9)

is the unique solution of the Poisson equation (g = 0 and)

(I − P )h = f with Πh = 0.(4.10)

(c) f is in Dom(J) if and only if the pair (g, h) with g = Πf and h as in
(4.9) is the unique solution of the multichain P.E. (1.1) satisfying Πh = 0.
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(d) The restriction of J to Ran(J) = Ker(Π) is the inverse of I − P0,
i.e.,

(I − P )Jf = f = J(I − P )f ∀f ∈ Ker(Π).(4.11)

Proof. (a) To show that Ran(I − P0) ⊂ Dom(J), let f be a function in
Ran(I − P0). Then there is a function h in A(P ) such that f = (I − P )h
and (4.8) entails that f is Dom(J) and

Jf = s-limRα(I − P )h = (I −Π)h.(4.12)

Suppose now that f is in Dom(J) and let Jf = h, i.e.,

s-lim
α↑1

Rαf = h.(4.13)

Then multiplying the latter equality by 1− α we obtain, by (4.3),

Πf = s-lim
α↑1

(1− α)Rαf = s-lim
α↑1

(1− α) · h = 0.

This in turn yields [by (4.8); recall also that P is bounded]

f = s-lim
α↑1

Rα(I − P )f = (I − P ) · Jf = (I − P )h.(4.14)

Finally, by (4.13),

h = s-lim
α↑1

Rαf = s-lim
α↑1

Rα(I − P )h [by (4.14)],

which, by (4.12), yields h = h−Πh; hence

Πh = 0.(4.15)

Thus from (4.14) and (4.15) we conclude that f is in Ran(I − P0). This
completes the proof of Dom(J) = Ran(I − P0).

On the other hand, note that (4.13) and (4.15) imply Ran(J) ⊂ Ker(Π).
Now let h be in Ker(Π), and let f := (I − P )h. Then (4.8) yields

Jf = s-lim
α↑1

Rα(I − P )h = (I −Π)h = h,

i.e., h is in Ran(J). In other words, Ker(Π) ⊂ Ran(J).
(b) This follows from (a). Namely, the implication “⇒” follows from

(4.14) and (4.15), and the converse follows from (4.12). The uniqueness
comes from Proposition 3.4.

(c) “⇒” If f is in Dom(J), it follows from (4.5)–(4.6) and (2.2) that
(Πf, h) is an f -canonical pair. Thus, by Theorem 2.2 and Proposition 3.4,
(Πf, h) is the unique solution of (1.1) satisfying (3.6).

“⇐” This follows from part (b): In (4.9) and (4.10), replace f by f−Πf .
(d) The first equality in (4.11) follows from (4.9)–(4.10), and the second

follows from (4.8) [or (4.12)].
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Remark 4.4. An informal way of arriving at the second equality in
(4.3) as well as at

Jf = s-lim
α↑1

Rαf(4.16)

in (4.9) is as follows. In (4.1) replace P k by Π + (P k −Π) to get

Rα =
Π

1− α +
∞∑

k=0

αk(P k −Π).(4.17)

This immediately suggests the second equality in (4.3) if P k −Π converges
to zero sufficiently fast, for example, as in (3.9). In particular, using

αk = 1− (1− α)
k−1∑

j=0

αj for k = 1, 2, . . . ,

by elementary calculations on (4.17) we get

Rα =
Π

1− α +H0 − (1− α)
∞∑

k=0

αk
∞∑

n=k+1

(Pn −Π),(4.18)

where, as in Section 3,

H0 :=
∞∑

k=0

(P k −Π) = s-lim
n→∞

n−1∑

k=0

(P k −Π).(4.19)

Thus, if the sequence in (4.19) converges, (4.18) yields the second equality
in (4.3) as well as (4.16) with Jf = H0f for f in Ker(Π). These calculations
can be made precise even in the uniform (instead of the strong) operator
topology; see, e.g., [20, 21, 24, 34]. Finally, note that expressions such as
(4.18) can be used to obtain, for instance, rates of convergence of (1−α)Rα
to Π as α ↑ 1.

5. Closing remarks and open problems. We have presented a de-
tailed analysis of the problem of existence of solutions to the multichain P.E.
(1.1) in a very general context, using the concept of canonical pairs (Sec-
tion 2), Cesàro averages An (Section 3), and α-potentials Rα (Section 4).
There remains, however, a lot to be done. In particular, some important
open problems are the following.

1. To develop approximation schemes to solve (1.1), perhaps iteratively. If
the state space X is finite, some computational algorithms are available—
see the references in Remark 2.6. For the case of general X, some of the
techniques in [2, 23, 33, 35] and their references might be useful.

2. Theorem 3.2 provides an “ergodic decomposition” of the domain X
of P , expressing X as the (disjoint) union of A(P ) and its complement
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X \ A(P ). This, in turn, is used to obtain the domain and range of the op-
erators Π, H, J , and so on. It would be interesting to obtain a more precise
form of these sets for particular classes of Banach spaces X (for instance,
X an Lp space) used in probability applications. There are, on the other
hand, well known ergodic decompositions of the chain’s state space X, such
as, for instance, Hopf’s and Doeblin’s decompositions; see [8, 27, 37, 39].
These typically give more information on the Markov chain’s probabilistic
behaviour and, therefore, it would be important to relate them to the dif-
ferent sets appearing in Theorems 3.2, 3.7 and 4.3. In other words, the basic
question is to find the relation (if any) between an ergodic decomposition of
X and one of X.

3. An important issue in some Markovian control problems is to deter-
mine the validity of a Laurent expansion of the form [cf. (4.18)]

Rα = Π/(1− α) +
∞∑

n=0

(−α)nHn(5.1)

where H is the “deviation operator” in (3.10) [see also (3.13) and (2.15)]. To
our knowledge, (5.1) has only been studied under very strong assumptions
[30, 38, 42], and it turns out to be related to a sequence of “nested” Poisson
equations.

4. In Remark 3.3 we mentioned that, under appropriate hypotheses, the
projection operator Π is determined by a transition probability function
Π(x,B), which has nice implications. It would be useful to obtain a similar
result for (1− α)Rα [see (4.3)].

5. In the unichain case, there is a well known relation between the exis-
tence of solutions to the Poisson equation and probabilistic conditions such
as the Doeblin and Harris conditions [22, 31]. What can be said about this
relation in the multichain case?

6. The results in this paper are for the “discrete-time” Poisson equa-
tion (1.1), in the strong topology. What are the corresponding results for
the continuous-time case (when P − I is replaced by the generator of a
continuous-time Markov semigroup Pt, t ≥ 0) and/or in the uniform or
weak (operator) topologies? What can be said about the “adjoint” Poisson
equation ν = νP ∗, µ(I −P ∗) = θ− ν, for a given “charge” θ in X ∗? (See [2,
21, 23, 24, 29, 33–36].)
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