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Alexander Sakhanenko (Puebla)
Francisco Salem-Silva (Puebla)

ESTIMATES FOR PERTURBATIONS OF
DISCOUNTED MARKOV CHAINS ON GENERAL SPACES

Abstract. We analyse a Markov chain and perturbations of the transition
probability and the one-step cost function (possibly unbounded) defined on
it. Under certain conditions, of Lyapunov and Harris type, we obtain new
estimates of the effects of such perturbations via an index of perturbations,
defined as the difference of the total expected discounted costs between the
original Markov chain and the perturbed one. We provide an example which
illustrates our analysis.

1. Introduction. Suppose that we have two Markov chains Φ = {Φn}
and Φ̃ = {Φ̃n}, n = 0, 1, 2, . . . , taking their values in the same arbitrary
measurable space (X,B). For some nonnegative measurable functions c :
X→ R and c̃ : X→ R we define the values

(1) Vα(x) =
∞∑

n=0

αnE{c(Φn) |Φ0 = x}, Ṽα(x) =
∞∑

n=0

αnE{c̃(Φ̃n) | Φ̃0 = x},

where 0 < α < 1 and x ∈ X. Our main goal is to estimate from above the
differences

∆α(x) = Vα(x)− Ṽα(x) and ∆̃α(x) = Ṽα(x)− Vα(x)(2)

when the functions c(·), c̃(·) and the kernels

Q(A|x) = P(Φn+1 ∈ A |Φn = x), Q̃(A|x) = P(Φ̃n+1 ∈ A | Φ̃n = x)

are close in some sense, where x ∈ X, A ∈ B and n = 0, 1, 2, . . .
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This problem has the following intuitive background. Suppose that c(z) is
the cost that the chain Φ pays at time t when Φt = z. In this case the volume
Vα(x) may be called the total expected α-discounted cost when Φ0 = x. But in
practice the functions c(·) and Q(·|·) are partially known, because generally
they are obtained by measurement or by statistical estimation, making it
impossible to know Vα(x) completely. In this situation we can suppose that
we have another two known functions c̃(·) and Q̃(·|·) and some information
about the differences

c(·)− c̃(·) and dist(Q(·|·), Q̃(·|·)),
where dist(·, ·) is some probabilistic metric.

And now we want to estimate the value Vα(x) using this information. It
is clear that it is sufficient to obtain the estimates from above for the values
∆α(x) and ∆̃α(x), defined in (2).

An analogous, but more difficult, problem is known for Markov control
processes. We mean the problem of obtaining estimates for the so-called
“stability index” or “index of perturbations” (see, for example [3]–[6], [11]
and the references there). But, really, the main difficulty in the proofs of the
above-mentioned results consists in obtaining estimates for differences (2) for
two fixed Markov chains without any control. For this reason, the differences
∆α(x) and ∆̃α(x) may be called indices of perturbations.

In this paper we investigate the problem stated above without “nois-
ing control assumption”. Our aim is to obtain estimates which should con-
tain only explicitly defined functions and constants, and should have simple
proofs (see Theorem 1 and Corollary 2 below).

We emphasize that we consider Markov chains taking their values in an
arbitrary space. For countable Markov chains several estimates in similar
problems were considered earlier in [1] and [2].

The main estimates are presented in Section 2 and their proofs are gath-
ered in Section 3. In Section 4 we give an example that satisfies our condi-
tions.

2. Main results

2.1. Notations. We consider kernels

Q(A|x), Q̃(A|x) and K(A|x), x ∈ X, A ∈ B,
defined on an arbitrary space X with an arbitrary σ-algebra B and such that

∀x Q(X|x) = Q̃(X|x) = 1 and K(X|x) ≤ 1.(3)

We stress that all the notations and conventions which we introduce in
subsections 2.1 and 2.2 for the kernel K(·|·) will be used later on also for
the kernels Q(·|·) and Q̃(·|·). In these cases we will use the symbols Q or Q̃,
respectively, instead of K.
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We use the standard notations

Kn(·|x) =
�
Kn−1(·|y)K(dy|x), n = 1, 2, . . .

where K0(A|x) ≡ IA(x) is the indicator of the set A. Let

Kα(A|x) =
∞∑

n=0

αnKn(A|x), x ∈ X, A ∈ B, 0 < α < 1.

We define

Knf(x) =
�
f(y)Kn(dy|x), Kαf(x) =

∞∑

n=0

αnKnf(x)(4)

for any function f such that

∀x Kαf
+(x) <∞ or ∀x Kαf

−(x) <∞,
where we use the standard notations a+ = max{a, 0} and a− = max{−a, 0}
for positive and negative parts of a number. If Kαf(·) is defined, then it
satisfies the equality

∀x Kαf(x) = f(x) + α
�
Kαf(y)K(dy|x).(5)

Note that
∀x |Kαf(x)| <∞ iff ∀x Kα|f |(x) <∞.

For any measure µ we use the notations

µf =
�
f(x)µ(dx), µKαf =

�
Kαf(x)µ(dx).

If µ and µ̃ are two measures then |µ− µ̃| denotes the total variation of the
signed measure µ− µ̃. For any function W ≥ 0 we set

%W,m(x) =
�
W (x)|Qm(dy|x)− Q̃m(dy|x)|.(6)

For functions W (·) ≥ 0 and V (·) ≥ 0 we use the norms

‖f‖W = sup
x∈X

|f(x)|
W (x)

, ‖f‖V = sup
x∈X

|f(x)|
V (x)

, ‖f‖1+V = sup
x∈X

|f(x)|
1 + V (x)

.

Here and everywhere in the paper we assume that 0/0 = 0 and that 0/c =∞
for c > 0.

2.2. Special classes of kernels. We write K(·|·) ∈ L(V, λ, b) if the func-
tion V and the real numbers λ, b are such that

∀x 0 ≤ V (x) <∞, KV (x) ≤ λV (x) + b, K(X|x) ≤ 1,
(7)

0 ≤ λ <∞, 0 ≤ b <∞.
The function V (·) is usually called a Lyapunov function. Assumptions of

this type are used very often. See [4–6] and [7–10], for example.
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We write K(·|·) ∈ Hm(W,β,w,ν, h) if there exist a probability measure
ν, functions W and h, real numbers β and w and an integer m ≥ 1 such
that:

(8)

∀x ∈ X ∀A ∈ B Km(A|x) ≥ h(x)ν(A) ≥ 0,�
W (y)Km(dy|x) ≤ βW (x) + h(x)

�
W (y)ν(dy) <∞,

0 ≤ β <∞,
�
W (y)ν(dy) ≤ w <∞,

∀x ∈ X 0 ≤ h(x) ≤ 1 ≤W (x) <∞, K(X|x) = 1.

Remark 1. It is easy to see that the first assumption in (8) is a part of
a Harris type condition. For example, if h(x) = const · IC(x), where IC(·)
is the indicator of the set C, then C is frequently called ([10]) a small set.
Thus, assumptions (8) may be considered as a natural combination of the
Lyapunov and Harris conditions.

Assumptions (8) were used, for example, in the papers [1, 9], but with
the additional restrictions on the value � h(y)ν(dy).

We write K(·|·) ∈ Hm(W,β,w) if there exist a probability measure ν
and a function h such that K(·|·) ∈ Hm(W,β,w,ν, h). It is easy to see that

H1(V (·), λ, b) ⊂ L(V (·), λ, b) ⊂ L(1 + V (·), λ, b+ 1− λ).

2.3. Key estimates. Suppose that a kernel Q(·|·) and a function c(·)
satisfy

∀x |Qαc(x)− C0| ≤ C1W (x) <∞(9)

with some function W (·) ≥ 0 and constants C0 and C1. Introduce also the
following assumptions:

Q̃(·|·) ∈ L(V, λ, b), 0 ≤ αλ < 1, 0 ≤ α < 1,(10)

‖c̃(·)‖1+V <∞, ‖W (·)‖1+V <∞.(11)

Theorem 1. Assume that conditions (3) and (9)–(11) are satisfied. Then

∆α(x) := Qαc(x)− Q̃αc̃(x) ≤
(
V (x) +

αb

1− α

)
δ

(+)
1

1− αλ,(12)

∆̃α(x) := Q̃αc̃(x)−Qαc(x) ≤
(
V (x) +

αb

1− α

)
δ

(−)
1

1− αλ,(13)

for all x ∈ X, where

(14) δ
(±)
1 = ‖(c̃− c)±‖V + αC1‖%W,1‖V .

Thus, if we want to apply Theorem 1 we need first to obtain simple
sufficient conditions for assumption (9) to be satisfied. The simplest such
condition may be found in the following
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Theorem 2. Suppose that

Q(·|·) ∈ H1(W,β,w,ν, h) and ‖c‖W <∞.(15)

Then inequality (9) is true with

C0 = νQαc, C1 =
‖c(·)− (1− α)C0‖W

1− αβ , (1−α)C0 ≤
w‖c‖W
1− αβ .(16)

2.4. Now we may obtain several simple useful corollaries.

Corollary 1. Assume that

Q(·|·) ∈ H1(W,β,w), ‖c(·)‖W <∞, 0 ≤ αβ < 1,

and that conditions (3), (10) and (11) are satisfied. Then inequalities (12)
and (13) hold for all x ∈ X with C1 defined in (16). In particular

C1 ≤
(w + 1− αβ)

(1− αβ)2 ‖c‖
W
.

This assertion follows immediately from Theorems 1 and 2.

Corollary 2. Assume that condition (3) is satisfied and that

Q(·|·) ∈ H1(W,β,w), Q̃(·|·) ∈ H1(W,β,w),

0 ≤ αβ < 1, 0 ≤ α < 1, ‖c(·)‖
W
<∞, ‖c̃(·)‖

W
<∞.

Then, for all x ∈ X,

∆α(x) ≤
(
W (x) +

αw

1− α

)(‖(c− c̃)+‖
W

1− αβ +
C2‖%W,1‖W
(1− αβ)3

)
,

∆̃α(x) ≤
(
W (x) +

αw

1− α

)(‖(c̃− c)+‖W
1− αβ +

C2‖%W,1‖W
(1− αβ)3

)
,

where
C2 = α(w + 1− αβ) min{‖c‖W , ‖c̃‖W }.

To prove this assertion we need to apply Corollary 1 with λ := β and
b := w. But if ‖c(·)‖

W
> ‖c̃(·)‖

W
then we must repeat these arguments using

the values Q̃ and c̃ instead of Q and c, and vice versa.

2.5. Case m > 1. This case is a little more complicated. We need the
following additional notation:

Qα,mf(x) =
∞∑

n=0

αmnQmnf(x), m = 1, 2, . . . ,(17)

which may be used for any function f such that

∀x Qαf
+(x) <∞ or ∀x Qαf

−(x) <∞.
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Suppose now that a kernel Q(·|·) and a function c(·) satisfy

∀x |Qα,mc(x)− C0,m| ≤ C1,mW (x) <∞(18)

with some function W (·) ≥ 0, integer m and constants C0,m and C1,m.

Theorem 3. Assume that conditions (3), (10), (11) and (18) are satis-
fied for some m > 1. Then, for all x ∈ X,

∆α(x) ≤
(
V (x) +

αb

1− α

)
δ

(+)
m

1− αλ + δm,α(x),(19)

∆̃α(x) ≤
(
V (x) +

αb

1− α

)
δ

(−)
m

1− αλ + δm,α(x),(20)

where

(21) δ(±)
m = ‖(c̃−c)±‖

V
+αC1,m‖%W,m‖V , δm,α(x) = C1,m

m−1∑

k=1

αk%W,k(x).

The simplest sufficient condition for (18) to hold may be found in the
following

Theorem 4. Suppose that

Q(·|·) ∈ Hm(W,β,w,ν, h) and ‖c‖
W
<∞.

Then inequality (18) is true with

(22)
C0,m = νQα,mc, (1− αm)C0,m ≤

w‖c‖W
1− αmβ ,

C1,m =
‖c(·)− (1− αm)C0,m‖W

1− αmβ ≤ w + 1− αmβ
(1− αmβ)2 ‖c‖W .

The following simple corollary follows immediately from Theorems 3
and 4.

Corollary 3. Assume that

Q(·|·) ∈ Hm(W,β,w), ‖c(·)‖
W
<∞, 0 ≤ αmβ < 1,

and that conditions (3), (10) and (11) are satisfied. Then inequalities (19)
and (20) hold for all x ∈ X with C1 from (22).

Remark 2. In this paper we consider only the case when the known
kernel Q̃(·|·) satisfies the Lyapunov type condition (10), whereas for the
initial kernel Q(·|·) assumptions of another type are supposed to be valid.
But we may apply all the assertions of the paper also in the case when Q̃(·|·)
is the initial kernel that satisfies the Lyapunov type condition (10), whereas
Q(·|·) is the known kernel for which the above-mentioned assumptions of
another type are valid.



Perturbations of discounted Markov chains 45

3. Proofs

3.1. Auxiliary lemmas

Lemma 1. If

K(·|·) ∈ L(V, λ, b) and ‖f+‖
V
<∞

then the function Kαf(·) is defined , satisfies (5) and

Knf(x) ≤ ‖f+‖
V
KnV (x) ≤ ‖f+‖

V

(
λnV (x) +

∑

0≤k<n
bλk
)
,(23)

for all n = 1, 2, . . . In addition, for all α ∈ (0,min{1, 1/λ}),
Kαf(x) ≤ ‖f+‖V KαV (x), Kαf(x) ≤ ‖f+‖1+V (1 + KαV (x)),

where

KαV (x) =
∞∑

n=0

αnKnV (x) ≤
(
V (x) +

αb

1− α

)
1

1− αλ.(24)

It is not difficult to verify these inequalities immediately.

Lemma 2. Suppose that the kernel K(·|·) and functions f and F are
such that

(25)
K(·|·) ∈ L(V, λ, b), ‖f+‖1+V + ‖F+‖1+V <∞,
∀x F (x) ≤ f(x) + α

�
F (y)Q(dy|x)

and α ∈ (0,min{1, 1/λ}). Then

∀x F (x) ≤ Kαf
+(x).(26)

Proof. Lemma 1 and (5) yield

∀x Kαf
+(x) = f+(x) + α

�
Kαf

+(y)K(dy|x) <∞.(27)

Hence, for

∆(x) := F (x)−Kαf
+(x) ≤ F (x) ≤ ‖F+‖1+V (1 + V (x))(28)

we deduce from (25) and (27) that

∆(x) ≤ f(x)− f+(x) + α
�
∆(y)K(dy|x).

Thus for all n = 1, 2, 3, . . . ,

∀x ∆(x) ≤ α
�
∆(y)K(dy|x) ≤ αn

�
∆(y)Kn(dy|x).(29)

Now (23), (28) and (29) yield

∆(x) ≤ ‖F+‖1+V · αn
�
(1 + V (y))Kn(dy|x)

≤ ‖F+‖1+V

(
αn + αnλnV (x) + αn

∑

0≤k<n
bλk
)

≤ ‖F+‖1+V (αn + αnλnV (x) + αn · nb(1 + λn))→ 0
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as n→∞ because α ∈ (0, 1) and αλ ∈ (0, 1). Hence ∆(x) ≤ 0 for all x and
(26) follows from definition (28).

3.2. Proof of Theorem 1. We first prove inequality (12). We may assume
that the right hand side in (12) is finite, that is,

‖(c̃− c)+‖
V
<∞ and ‖%W,1‖V <∞.(30)

We divide the proof of (12) into several lemmas.

Lemma 3. If conditions (9)–(11) are satisfied then

‖Qαc‖1+V <∞ and ‖Q̃αc̃‖1+V <∞.(31)

In addition, the function Q̃Qαc(·) is well defined and finite.

Proof. From (9) we have

∀x |Qαc(x)| ≤ |C0|+ C1W (x)

and using (11) we obtain

‖Qαc‖1+V ≤ |C0|+ C1‖W‖1+V <∞.
The second inequality in (31) follows from (10), (11) and Lemma 1 with

K(·|·) := Q̃(·|·). The same arguments give ‖Q̃|Qαc|‖1+V < ∞. Hence, the
function Q̃Qαc(x) exists and is finite.

By Lemma 3 we may introduce the following notation:

J1(x) :=
�
Qαc(y)Q(dy|x)−

�
Qαc(y)Q̃(dy|x).(32)

Lemma 4. If conditions (3) and (9) are satisfied then

∀x |J1(x)| ≤ C1%W,1(x) and ‖J1(x)‖V ≤ C1‖%W,1‖V .(33)

Proof. Using (3) and (32) we obtain

J1(x) =
�
(Qαc(y)− C0)(Q(dy|x)− Q̃(dy|x))(34)

for any constant C0. Hence, by (34), (9) and (6),

∀x |J1(x)| ≤
�
|Qαc(y)− C0| |Q(dy|x)− Q̃(dy|x)|(35)

≤ C1

�
W (y)|Q(dy|x)− Q̃(dy|x)| = C1%W,1(x).

It is easy to see that (35) implies (33).

Lemma 5. Suppose that (30) and all the conditions of Theorem 1 are
satisfied. Then

∀x ∆(x) := Qαc(x)− Q̃αc̃(x) ≤ Q̃αV (x)δ(+)
1 ,(36)

where the value δ(+)
1 was defined in (14).
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Proof. By (5),

Qαc(x) = c(x) + α
�
Qαc(y)Q(dy|x),(37)

Q̃αc̃(x) = c̃(x) + α
�
Q̃αc̃(y)Q̃(dy|x).(38)

From (36)–(38) we obtain

∆(x) = c(x)− c̃(x) + αJ(x),(39)

where

J(x) =
�
Qαc(y)Q(dy|x)−

�
Q̃αc̃(x)Q̃(dy|x) ≡ J1(x) + J2(x).(40)

From (32) and (40) we have

J2(x) :=
�
(Qαc(y)− Q̃αc̃(y))Q̃(dy|x) ≡

�
∆(y)Q̃(dy|x).(41)

So, using (39)–(41) we obtain

∆(x) = f(x) + α
�
∆(y)Q̃(dy|x)(42)

with
f(x) = c(x)− c̃(x) + αJ1(x).(43)

It follows from (30), (33) and (43) that

‖f+‖1+V ≤ ‖f+‖V ≤ ‖(c̃− c)+‖V + ‖%W,1‖V <∞.(44)

By (36) and Lemma 3,

‖∆(·)‖1+V ≤ ‖Q̃αc̃‖1+V + ‖Qαc‖1+V <∞.(45)

From (42)–(45) we see that we may apply Lemma 2 with F (x) := ∆(x)
and K(·|·) := Q̃(·|·) to obtain

∀x ∆(x) ≤ Q̃α(c̃− c)+(x) + αQ̃αJ
+
1 (x).(46)

It is easy to see that (46) and Lemma 1 with K(·|·) := Q̃(·|·) yield

∀x ∆(x) ≤ Q̃αV (x)(‖(c− c̃)+‖
V

+ α‖J1‖V ).(47)

Now (36) follows from (33) and (47).

The desired inequality (12) is an immediate corollary of (36) and (24).
Thus inequality (12) is proved. To obtain the last assertion (13) of The-

orem 1, we only need to change in (12) the functions c and c̃ into −c and
−c̃, respectively.

3.3. Proof of Theorem 2. Suppose that all the assumptions of Theorem 2
are satisfied. Define

K(A|x) = Q(A|x)− h(x)ν(A) ≥ 0, x ∈ X, A ∈ B.(48)

Note that
Q(·|·) ∈ L(W,β,w) and K(·|·) ∈ L(W,β, 0)(49)
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as follows from (15) and the definitions of the classes L and H. Let

V0(x) = Qαc(x)− C0 and c0(x) = c(x)− (1− α)C0,(50)

where C0 is defined in (16). It follows from (37) and (50) that

V0(x) = c0(x) + α
�
V0(y)Q(dy|x).(51)

Using the definitions (48) and (16) it is easy to verify that

(52)
�
V0(y)Q(dy|x)−

�
V0(y)K(dy|x) = h(x)

�
V0(y)ν(dy)

= h(x)
( �

Qαc(y)ν(dy)− C0

)
= h(x)(νQαc− νQαc) = 0.

Thus, from (34) and (52) we have

V0(x) = c0(x) + α
�
V0(y)K(dy|x).(53)

It follows immediately from (49) and (53) that we may apply Lemma 2 with
F (·) := V0(·), f(·) := c0(·), λ := β, b := 0 and V (·) := W (·). We have
V0(x) = Kαc0(x) and so

‖V +
0 ‖W ≤ (1− αβ)−1‖c+

0 ‖W .(54)

Using (54) with −c0 instead of c0, we obtain

‖V −0 ‖W ≤ (1− αβ)−1‖c−0 ‖W .(55)

Note that (9) is a special case of (54) and (55), by definition (50).

3.4. Proof of Theorem 3. We first prove (19). We may assume that the
right hand side of (19) is finite, that is,

‖(c̃− c)+‖
V
<∞ and ‖%W,m‖V <∞.(56)

We first prove several lemmas.

Lemma 6. If conditions (10), (11) and (18) are satisfied for some inte-
ger m, then

‖Qα,mc‖1+V <∞ and ‖Q̃α,mc̃‖1+V <∞.
In addition, the functions Q̃nQα,mc(·) are well defined and finite for all
integers n.

Proof. Condition (10) and Lemma 1 yield

Q̃n(·|·) ∈ L(V, λn, bn) with bn =
∑

0≤k<n
bλk <∞

for all integers n. This allows us to repeat the proof of Lemma 3 with the
kernels Q̃n, Q̃α,m and Qα,m instead of Q̃, Q̃α and Qα, respectively.

By Lemma 6 we may introduce the following notation:

Jm.n(x) :=
�
Qα,mc(y)Qn(dy|x)−

�
Qα,mc(y)Q̃n(dy|x).(57)
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Lemma 7. If conditions (3) and (18) are satisfied then

∀x |Jm.n(x)| ≤ C1,m%W,n(x) and ‖Jm.n(x)‖
V
≤ C1,m‖%W,n‖V .

Proof. Repeating the proof of Lemma 4 we obtain

Jm.n(x) =
�
(Qα,mc(y)− C0,m)(Qn(dy|x)− Q̃n(dy|x))

for any constant C0,m. Hence,

∀x |Jm.n(x)| ≤
�
|Qα,mc(y)− C0,m| |Qn(dy|x)− Q̃n(dy|x)|

≤ C1,m

�
W (y)|Qn(dy|x)− Q̃n(dy|x)| = C1,m%W,1(x).

Lemma 8. Suppose that assumption (56) and all the conditions of The-
orem 3 are satisfied. Then

∀x ∆(m)(x) := Qα,mc(x)− Q̃α,mc̃(x) ≤ Q̃α,mV (x)δ(+)
m ,(58)

where the values δ(+)
m were defined in (21).

It is easy to see that Lemma 5 is a special case of Lemma 8 for m = 1.
On the other hand, if we repeat the proof of Lemma 5 with the kernels Q̃
and Q replaced by Q̃m and Qm, respectively, then we immediately obtain
Lemma 8.

Introduce two new kernels

Q′α,m =
m−1∑

k=0

αkQk and Q′α,m =
m−1∑

k=0

αkQ̃k.(59)

By definitions (4), (17) and (59) it is easy to see that

Qαc(x) = Q′α,mQα,mc(x) and Q̃αc̃(x) = Q̃′α,mQ̃α,mc̃(x).(60)

Hence
Qαc(x)− Q̃αc̃(x) ≡ J3(x) + J4(x)(61)

where

J3(x) = Q′α,mQα,mc(x)− Q̃′α,mQα,mc(x),(62)

J4(x) = Q̃′α,mQα,mc(x)− Q̃′α,mQ̃α,mc̃(x).(63)

Using (59) we may rewrite (62) in the following way:

J3(x) =
m−1∑

k=0

αk(Qk − Q̃k)Qα,mc(x) =
m−1∑

k=1

αk
(
Qk − Q̃k

)
Qα,mc(x),(64)

because Q0(A|x) ≡ Q̃0(A|x) ≡ IA(x) is the indicator of the set A by defini-
tion. From (57) and (64) we obtain

J3(x) =
m−1∑

k=1

αkJm,k(x).
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So, by Lemma 7,

|J3(x)| ≤
m−1∑

k=1

αkC1,m%W,k(x) ≡ δm,α(x).(65)

Using (58) we infer from (63) that

J4(x) = Q̃′α,m∆
(m)(x) ≤ Q̃′α,mQ̃α,mV (x)δ(+)

m .(66)

But (60) and (66) yield

J4(x) ≤ QαV (x)δ(+)
m ≤

(
V (x) +

αb

1− α

)
δ

(+)
m

1− αλ.(67)

The last inequality in (67) follows from (24).
The desired inequality (19) is an immediate consequence of (61), (65)

and (67). To obtain (20) we only need to change in (19) the functions c and
c̃ into −c and −c̃, respectively.

4. An example. In this section we present an example which is a special
case of the example provided in Section 5 of [4] (see also [6]). The version
that we give here satisfies all the assumptions of Corollary 2.

Consider two chains, Φ and Φ̃, with the state space X = [0,∞), defined
by the following recursive equations:

Φ0 = x, Φn+1 = (Φn + ζn)+, n = 0, 1, 2, . . . ,

Φ̃0 = x, Φ̃n+1 = (Φ̃n + ζ̃n)+, n = 0, 1, 2, . . . ,

where x ∈ X is a given state. We suppose that each of the two sequences

ζ, ζ1, ζ2, . . . and ζ̃, ζ̃1, ζ̃2, . . .

consists of independent and identically distributed random variables. In this
case, for all x ∈ X and B ∈ B we may define the kernels

(68)
Q(B|x) := P(Φn+1 ∈ B |Φn = x) = P((x+ ζ)+ ∈ B),

Q̃(B|x) := P(Φ̃n+1 ∈ B | Φ̃n = x) = P((x+ ζ̃)+ ∈ B),

where B denotes the Borel σ-algebra of X = [0,∞).
For all real q > 0 set

(69)

βq := max{Eeqζ ,Eeqζ̃},

rq :=
∞�
−∞

max{eqx, 1}|dP(ζ < x)− dP(ζ̃ < x)|.

Remark 3. Assume that

(70)
Eζ < 0, Eζ̃ < 0,

Eeτζ <∞, Eeτ̃ ζ̃ <∞,
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for some τ > 0 and τ̃ > 0. It is well known (see, for example [4, p. 232]),
that in this case

∃q > 0 : βq < 1.(71)

On the other hand, we may obtain (71) also in the case where one or both
of the expectations in (70) do not exist.

Remark 4. Assume that the distributions of the random variables ζ
and ζ̃ have densities g and g̃, respectively, with respect to some measure µ.
It is easy to see that in this case we may calculate the value rq by the formula

rq ≡
0�
−∞
|g(x)− g̃(x)|µ(dx) +

∞�
0

eqx|g(x)− g̃(x)|µ(dx).(72)

Proposition 1. Assume that the numbers α, q and βq are such that

0 ≤ α < 1, 0 ≤ αβq < 1, q > 0.(73)

Then the kernels Q(·|·) and Q̃(·|·), introduced in (68), satisfy all the as-
sumptions and assertions of Corollary 2 with

W (x) := eqx, β := βq, w := 1, ‖%W,1‖W ≤ rq.
Suppose now that, in addition to assumptions (73),

∀x c(x) = c̃(x) and |c(x)| ≤ deqx.
In this case the assertions of Corollary 2 may by written in the following
very simple form:

∀x ≥ 0 |Vα(x)− Ṽα(x)| ≤ rqd
α(2− αβq)
(1− αβq)3

(
eqx +

α

1− α

)
,

where the values Vα(·) and Ṽα(·) were defined in (1).
The rest of the section is devoted to the proof of Proposition 1. We first

prove

Lemma 9. If βq < ∞ with q > 0 then the kernels Q and Q̃ belong to
H1(W,βq, 1) with W (x) ≡ eqx.

Proof. It follows from Proposition 5.4 of [4] that

Q(·|·) ∈ H1(W,β,W (0),ν0, h) and Q̃(·|·) ∈ H1(W, β̃,W (0),ν0, h̃)

where ν0 is the Dirac measure concentrated at x = 0,

h(x) := P(x+ ζ ≤ 0), h̃(x) := P(x+ ζ̃ ≤ 0),

β = Eeqζ ≤ βq, β̃ = Eeqζ̃ ≤ βq, W (x) = eqx.

This fact implies the assertion of Lemma 9.
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Lemma 10. If W (x) ≡ eqx for some q > 0 then

‖%W,1‖W := sup
x≥0

%W,1(x)
eqx

≤ rq.(74)

Proof. Assume that the distributions of the random variables ζ and ζ̃
have densities g and g̃, respectively, with respect to some measure µ. (This
assumption does not restrict the generality, because we may everywhere put
µ(B) = P(ζ ∈ B) + P(ζ̃ ∈ B).) It now follows from the definitions (6) and
(68) that (see also [4, p. 235])

%W,1(x) =
�
eqy|dP((x+ ζ)+ ≤ y)− dP((x+ ζ̃)+ ≤ y)| ≡ J0 + J∞(75)

where

J0 = |P((x+ ζ)+ = 0)−P((x+ ζ̃)+ = 0)|= |P(ζ≤−x)−P(ζ̃≤−x)|(76)

≤
�

t≤−x
|g(t)− g̃(t)|µ(dt) ≤ eqx

�
y≤−x

|g(t)− g̃(t)|µ(dt),

and

J∞ =
�

y>0

eqy|dP(x+ ζ ≤ y)− dP(x+ ζ̃ ≤ y)|(77)

=
�

t>−x
eq(x+t)|dP(ζ ≤ t)− dP(ζ̃ ≤ t)|

= eqx
�

t>−x
eqt|g(t)− g̃(t)|µ(dt)

≤ eqx
�

t>−x
max{eqt, 1}|g(t)− g̃(t)|µ(dt).

Thus, from (75)–(77) we have

%W,1(x) ≤ eqx
∞�
−∞

max{eqt, 1}|g(t)− g̃(t)|µ(dt) ≡ eqxrq.

The latter equality follows from (72) and implies the desired inequality (74).
Now, the assertion of the proposition follows immediately from Corol-

lary 2 and Lemmas 9 and 10.
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