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ALTMAN’S METHODS REVISITED

Abstract. We discuss two different methods of Altman for solving sys-
tems of linear equations. These methods can be considered as Krylov sub-
space type methods for solving a projected counterpart of the original sys-
tem. We discuss the link to classical Krylov subspace methods, and give
some theoretical and numerical results on their convergence behavior.

1. Introduction. Consider a system of linear equations

(1) Ax = b,

where A is supposed to be hermitian positive definite of order p, and (with-
out loss of generality) the right-hand side is supposed to be of euclidean
norm ‖b‖ = 1. In a series of papers [1–6], Altman considers the associated
problem

(2) Ay = (Ay, b)b,

which, with the help of the orthogonal projector P = I − bb∗ onto the
orthogonal complement of b, can be equivalently written as PAy = 0. Notice
that the set of solutions of (2) is given by the set of scalar multiples of A−1b,
and hence, given any non-trivial solution y of (2), a solution of (1) is given
by x = y/(Ay, b). Corresponding to (2), Altman also considers the linear
operator

r(y) := PAy = −P (b− Ay),

coinciding up to a sign with the projected residual of (1).
In the above-mentioned papers, Altman proposes essentially two iterative

methods giving approximate non-trivial solutions of (2) (and hence of (1)
after normalization). Given a y0 with (y0, b) 6= 0, the first method presented
in [1, Eqns. (5) and (6)] and further analyzed and generalized in [6] minimizes
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the norm of the projected residual

(3) yn+1 = yn + αnr(yn), αn = arg min{‖r(yn + αr(yn))‖ : α ∈ R},
leading to a generalized method of minimal residuals. In the second method
(see also [10, pp. 132–139]), Altman considers a quadratic form [2, Eqn. (7)]
closely related to the quadratic form

(4) G(y) :=

((
A− bb∗

(A−1b, b)

)
y, y

)

(Altman’s quadratic form F involves r and its inverse, defined on the or-
thogonal complement of b; see the Appendix for further details). It is not
difficult to check using formula (13) below that G(y) ≥ 0, and G(y) = 0
if and only if y is a solution of (2). Then the so-called generalized steepest
descent method introduced in [2, Eqns. (10) and (11)] and further analyzed
in [5] is given by

(5) yn+1 = yn + αnr(yn), αn = arg min{G(yn + αr(yn)) : α ∈ R}.
For completeness, let us mention that relaxation approaches for these meth-
ods have been discussed in [3, 4], and additional projections on other sub-
spaces have been investigated in [5, 6].

Both methods (3) and (5) may be considered as restarted versions (af-
ter one iteration) of generalized Krylov methods: here one minimizes on
projected counterparts of the Krylov subspaces

Kn(A, c) := span(c,Ac, . . . , An−1c)

with the starting vector c = b − Ay0. Indeed, (3) is the single-step version
of the method

(6) yn = y0 + arg min{‖r(y0 + u)‖ : u ∈ Kn(PA,P (b− Ay0))},
referred to in what follows as AMinRes, and (5) is the single-step version of
the method

(7) yn = y0 + arg min{G(y0 + u) : u ∈ Kn(PA,P (b− Ay0))},
referred to in what follows as ACG. To our knowledge, these latter methods
have not been considered before.

The purpose of this note is to show that both approaches (6) and (7)
(and thus also Altman’s work) are mathematically equivalent to the classical
algorithms of minimal residuals (MinRes) and conjugate gradients (CG),
applied to the hermitian and semi-positive-definite matrix

(8) Ã := PAP.

As a consequence, we find coupled short term recurrences for the vectors yn
of (6) and (7), as well as error estimates involving the condition number of

the matrix Ã, derived already in a different manner by Altman [1, Eqn. (16)],
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[2, Eqn. (12)]. In particular, we establish interlacing properties of the corre-
sponding eigenvalues, and conclude that both methods (6) and (7) behave
always at least as well as the corresponding classical counterparts MinRes
and CG, with an improvement of the speed of convergence only occurring
for particular right-hand sides b. In this context it is interesting to observe
that already Altman suggested first transforming the original system (1)
into Ax′ = b′, b′ = b − Ax∗, with x′ = x − x∗, where x∗ is some arbitrary
vector, but he did not give any further device how to choose this vector x∗.

The remaining part of the paper is organized as follows: in Section 2 we
explicitly state and prove the above equivalence claim, and discuss the be-
havior of MinRes/CG applied to consistent hermitian but singular systems.
In Section 3 we study convergence properties of Altman’s methods, both
in the range of linear and super-linear convergence. Section 4 is devoted to
the recursive computation of the iterates of Altman’s methods. Since the
analysis for (6) and (7) is quite similar, we concentrate in this part only
on (7). In Section 5 we present some numerical experiments confirming the
theoretical observations of Section 3. Finally, in the Appendix we discuss
two quadratic forms.

2. The equivalence. With the hermitian semi-positive-definite matrix

Ã = PAP as in (8), consider the system of linear equations

(9) Ãx̃ = b̃ := −r(y0) = −PAy0.

In the following statement we give the exact link between Altman’s algo-
rithms (and their multi-step versions (6) and (7)) and classical algorithms
like MinRes and CG, applied to (9).

Theorem 1. The sequence (yn − y0)n≥0 with yn as in (6) is obtained
by applying the MinRes algorithm with starting vector 0 to the system (9).
Similarly , the sequence (yn−y0)n≥0 with yn as in (7) is obtained by applying
the CG algorithm with starting vector 0 to (9).

Before presenting a proof of Theorem 1, let us take a closer look at the

behavior of MinRes/CG applied to (9). Since b∗b̃ = 0, we obtain

b̃ ∈ span(b)⊥ = Ker(Ã)⊥ = range(Ã),

and hence (9) is consistent, though its matrix of coefficients is singular. The
performance of Krylov subspace methods applied to inconsistent singular
systems has been discussed by several authors (see for instance [11] and the
references therein). However, for consistent hermitian singular systems, the
behavior is easily predictable: it is easily seen that

Kn(Ã, b̃) ⊂ Ker(Ã)⊥.
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Thus, all iterates of MinRes/CG with starting vector 0 applied to (9) are

elements of Ker(Ã)⊥. Notice also that (9) has a unique solution in Ker(Ã)⊥,

namely Ã†b̃, where Ã† denotes the pseudo-inverse of Ã. Thus, if one of these

two algorithms terminates (after at most dim(Kn(Ã, b̃)) ≤ p− 1 iterations),

then the corresponding iterate coincides with Ã†b̃. Moreover, the iterates of

both algorithms converge to Ã†b̃, where the rate of convergence (expressed
in terms of either the energy “norm” or the norm of the residual) can be
bounded in the same way as for non-singular hermitian systems.

In order to prove the above theorem, we consider besides P = I − bb∗
the oblique projection operator

Q = I − A−1bb∗

(A−1b, b)
.

The following properties are easily verified.

Lemma 2. The following hold :

PQ = Q,(10)

QP = P,(11)

PA = PAQ,(12)

A− bb∗

(A−1b, b)
= AQ = Q∗AQ,(13)

b̃ = −PAQy0, Ã†b̃ = −Qy0,(14)

Kn(PA,P (b− Ay0)) = Kn(Ã, b̃).(15)

Proof. By the definition of the matrices P and Q, and the fact that
‖b‖ = 1, we easily obtain the following four properties:

PQ = Q− bb∗Q = Q− bb∗ +
b(b∗A−1b)b∗

(A−1b, b)
= Q,

QP = P − A−1bb∗

(A−1b, b)
P = P − A−1bb∗

(A−1b, b)
+
A−1b(b∗b)b∗

(A−1b, b)
= P,

PAQ = PA− Pbb∗

(A−1b, b)
= PA− (bb∗ − b(b∗b)b∗)

(A−1b, b)
= PA,

Q∗AQ = AQ− bb∗Q
(A−1b, b)

= AQ−
(

bb∗

(A−1b, b)
− b(b∗A−1b)b∗

(A−1b, b)

)
= AQ.

Thus, the properties (10)–(13) are shown. By (12), we have b̃ = −PAy0 =
−PAQy0. Thus, applying (10), we deduce that

Ã†b̃ = −Ã†PAQy0 = −Ã†PAPQy0 = −Ã†ÃQy0 = −PQy0 = −Qy0.

As the vector b̃ satisfies P b̃ = b̃, we have Kn(PA,P (b−Ay0)) = Kn(PA, b̃) =

Kn(PAP, b̃) = Kn(Ã, b̃). Hence the lemma is proved.
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Proof of Theorem 1. Applying (12), (14), and (10), we see that, for any
vector u,

‖r(y0 + Pu)‖ = ‖PAy0 + PAPu‖ = ‖Ã(Qy0 + u)‖ = ‖b̃− Ãu‖.
Taking into account (15) and the fact that Kn(PA,P (b−Ay0)) = PKn(PA,
P (b− Ay0)), for yn as in (6) we get

yn − y0 = arg min{‖r(y0 + Pu)‖ : u ∈ Kn(PA,P (b− Ay0))}
= arg min{‖b̃− Ãu‖ : u ∈ Kn(Ã, b̃)},

the latter being the nth iterate of MinRes with starting vector 0 applied
to (9).

Similarly, applying (13), (10), (11), and (14), for any vector u we get

G(y0 + Pu) =

((
A− bb∗

(A−1b, b)

)
(y0 + Pu), y0 + Pu

)

= (AQ(y0 + Pu), Q(y0 + Pu))

= (ÃQ(y0 + Pu), Q(y0 + Pu)) = (Ã(Qy0 + u), Qy0 + u)

= (Ã(u− Ã†b̃), u− Ã†b̃) =: G̃(u),

and thus for yn as in (7),

yn − y0 = arg min{‖G(y0 + Pu)‖ : u ∈ Kn(PA,P (b− Ay0))}
= arg min{G̃(u) : u ∈ Kn(Ã, b̃)},

the latter being the nth iterate of CG with starting vector 0 applied to (9).
Thus Theorem 1 is shown.

3. Convergence. Before discussing bounds for the rate of convergence
of Altman’s methods, let us return to the termination property. As men-
tioned after Theorem 1, MinRes/CG with starting vector 0 applied to (9) is
terminating (with value of the minimum being equal to 0) if and only if the

corresponding iterate yn − y0 coincides with Ã†b̃, i.e. (compare with (14)),

yn = y0 + Ã†b̃ = y0 −Qy0 =
(y0, b)

(A−1b, b)
A−1b.

Thus, according to Theorem 1, the well known terminating property for Min-
Res/CG yields a corresponding termination property for AMinRes/ACG.

However, just as for other Krylov methods, one is more interested in
convergence rates before reaching the stage of termination. If one plots the
euclidean norm of the error as a function of the number of iterations on a
semi-logarithmic scale, then following Nevanlinna [12] one may observe three
different ranges which are more or less pronounced for particular examples:
In general the curve will be first convex, then linear and finally concave, cor-
responding to the ranges of sublinear, linear, and superlinear convergence.
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In this description we do not take into account the effect of finite precision
arithmetic, which of course in practical applications may lead to more com-
plicated convergence curves. In case of a symmetric system (1) with general
right-hand sides, the linear convergence behavior is quite well described in
terms of the condition number of the underlying matrix of coefficients (see,
e.g., [13, Theorem 6.6, Eqn. (6.105), and Corollary 6.1] for MinRes and CG).
In contrast, the superlinear convergence behavior depends essentially on the
eigenvalue distribution of the underlying matrix of coefficients; see [7–9] for
a quantification of this statement. Roughly speaking, the superlinear conver-
gence is pronounced if the eigenvalue distribution, especially for extremal
eigenvalues, is far from the arcsine distribution on the convex hull of the
spectrum.

Let us study here the behavior of ACG and AMinRes. Using the facts

that, for u ∈ Ker(Ã)⊥,

‖u− Ã†b̃‖2 ≤ ‖Ã†‖G̃(u), ‖u− Ã†b̃‖ ≤ ‖Ã†‖ ‖b̃− Ãu‖,
we obtain as a consequence of our findings of the preceding section

∥∥∥∥yn −
(y0, b)

(A−1b, b)
A−1b

∥∥∥∥
2

= ‖yn − y0 − Ã†b̃‖2

≤
{
‖Ã†‖2 ‖r(yn)‖2 for AMinRes,

‖Ã†‖G(yn) for ACG.

The relative decrease of ‖r(yn)‖ or G(yn) is known from the corresponding
classical decrease rates for MinRes/CG [13, Theorem 6.6, Eqn. (6.105), and
Corollary 6.1], which are summarized in the following statement.

Corollary 3 (Linear convergence). With κ(Ã) = ‖Ã‖ ‖Ã†‖ and

q := (

√
κ(Ã)− 1)/(

√
κ(Ã) + 1) < 1

we have for the iterates of AMinRes

‖r(yn)‖
‖r(y0)‖ ≤

2

qn + q−n
≤ 2qn,

and for the iterates of ACG
√
G(yn)

G(y0)
≤ 2

qn + q−n
≤ 2qn.

In particular, for n = 1 we obtain the upper bound

2

q1 + q−1
=
κ(Ã)− 1

κ(Ã) + 1
≤ κ(A)− 1

κ(A) + 1
,
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the last inequality following from the next lemma. In particular, we recover
Altman’s error estimates [1, Eqn. (16)] and [2, Eqn. (12)] for the single-step
methods (3) and (5).

Finally, in the range of superlinear convergence, the convergence curve of
both methods (6) and (7) (or equivalently MinRes/CG for (9)) is determined

by the eigenvalue distribution of Ã, which according to the following result
is essentially the same as that for A. In what follows we write λ1(B) ≥ · · · ≥
λp(B) for the eigenvalues of any hermitian matrix B of order p.

Lemma 4 (Superlinear convergence). For the matrices A of (1) and Ã
of (8) we have

λ1(A) ≥ λ1(Ã) ≥ λ2(A) ≥ λ2(Ã) ≥ . . . ≥ λp(A) > λp(Ã) = 0.

Proof. It is clear that b is an eigenvector of Ã corresponding to the
eigenvalue 0. Denote by Hb the orthogonal complement of span(b). Then we
find an orthonormal basis of eigenvectors v1, . . . , vp−1 ∈ Hb, vp ∈ span(b) of

the matrix Ã such that Ãvi = λi(Ã)vi. Thus it remains to show that, for
any i ∈ {1, . . . , p− 1},

λi+1(A) ≤ λi(Ã) ≤ λi(A).

Define Si = span(v1, . . . , vi). Using the Courant–Fischer Minmax Theorem,
we get

λi(A) = max
dim(S)=i

min
y∈S
y 6=0

y∗Ay
y∗y

≥ min
y∈Si
y 6=0

y∗Ay
y∗y

= min
y∈Si
y 6=0

y∗P ∗APy
y∗y

since Si ⊆ Hb

= min
y∈Si
y 6=0

y∗Ãy
y∗y

= v∗i Ãvi = λi(Ã),

and hence λi(A) ≥ λi(Ã). Similarly, with Vp−i = span(vi, . . . , vp−1) of di-
mension p− i,

λi+1(A) = min
dim(S)=p−i

max
y∈S
y 6=0

y∗Ay
y∗y

≤ max
y∈Vi
y 6=0

y∗Ay
y∗y
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= max
y∈Vi
y 6=0

y∗P ∗APy
y∗y

since Vi ⊆ Hb

= max
y∈Vi
y 6=0

y∗Ãy
y∗y

= v∗i Ãvi = λi(Ã).

The last two results enable us to compare ACG and CG for the sys-
tem (1): according to Lemma 4, the convergence behavior in the superlin-
ear range should be similar, but, according to Corollary 3, in the linear
range there might be a different behavior, depending on whether κ(A) =

λ1(A)/λp(A) is “much” larger than κ(Ã) = λ1(Ã)/λp−1(Ã), this latter link
depending on the choice of the right-hand side b. We will confirm these
claims by some numerical experiments reported in Section 5.

4. The algorithm ACG. In the CG algorithm applied to (9) one con-

structs recursively Ã-conjugate bases p0, . . . , pn−1 of Kn(Ã, b̃), leading to
one-dimensional minimization problems and thus coupled short-term recur-
rences. Observing that

r̃n := b̃− Ã(yn − y0) = b̃− PA(yn − y0) = −r(yn),

we obtain from Theorem 1 the following coupled system of recurrence rela-
tions (we keep the notations of CG as stated, e.g., in [13, Algorithm 6.17])
for the iterates yn of ACG:

Initialize r̃0 = p0 = −r(y0)

Compute for n = 0, 1, . . . until ‖r̃n‖ is sufficiently small

αn =
(r̃n, r̃n)

(Ãpn, pn)
=

(r̃n, r̃n)

(r(pn), pn)
=

(r̃n, r̃n)

(Apn, pn)
,

yn+1 = yn + αnpn, r̃n+1 = r̃n − αnÃpn = r̃n − αnr(pn),

β̃n =
(r̃n+1, r̃n+1)

(r̃n, r̃n)
, pn+1 = r̃n+1 + β̃npn.

As a consequence, for the sequence xn = yn/(Ayn, b) approaching the solu-
tion of (1) we obtain the residual

rn := b−Axn =
1

(Ayn, b)
((Ayn, b)b−Ayn) = −r(yn)/(Ayn, b) = r̃n/(Ayn, b),

and the substitution zn = pn/(Ayn, b) leads to

xn+1 =
(Ayn, b)

(Ayn+1, b)
(xn + αnzn) =

xn + αnzn
1 + αn(Azn, b)

,
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zn+1 = rn+1 + β̃n
(Ayn, b)

(Ayn+1, b)
zn = rn+1 + βn(1 + αn(Azn, b))zn,

βn =
(rn+1, rn+1)

(rn, rn)
.

Hence we get following equivalent formulation of ACG:

Initialize r0 = z0 = b− Ax0

Compute for n = 0, 1, . . . until ‖rn‖ is sufficiently small

αn =
(rn, rn)

(Azn, zn)
, νn := 1 + αn(Azn, b),

xn+1 =
1

νn
(xn + αnzn),

rn+1 =
1

νn
(rn − αnr(zn)) =

1

νn
(rn − αnPAzn)

=
1

νn
(rn − αn[Azn − (Azn, b)b]),

βn =
(rn+1, rn+1)

(rn, rn)
, zn+1 = rn+1 + νnβnzn.

Notice that this method, as MinRes and CG, requires one matrix-vector
product by iteration.

We conclude this section with the observation that the last identity for
rn+1 in the algorithm ACG can be written as

rn+1 =
1

νn
rn −

αn
νn

(
Azn −

νn − 1

αn
b

)
=

1

νn

(
rn − αnAzn

)
+

(
1− 1

νn

)
b.

For n = 0 this observation gives rise to the following interpretation: the
residual of the one-step version (5) of ACG is obtained by taking a convex
combination of the residual of steepest descent (i.e., one iteration of CG
applied to (1)) and the original residual. Such a relaxation interpretation
was already mentioned by Altman in [4].

5. Numerical experiments. Let us now give some numerical results
illustrating the ACG method and compare it to the classical conjugate gra-
dient algorithm for solving Ax = b with two different kinds of test matrices
A. All the computations were performed in MATLAB and all norms are
Euclidean.

We first present an example of a system (1) with a matrix A of dimension
p = 50 resulting from the discretization of the one-dimensional Laplacian
on [−1, 1], the right-hand side b and the starting vector y0 being chosen
randomly. Here the eigenvalue distribution of A approaches the worst case
of an arcsine distribution, and hence superlinear convergence should only
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occur for very special right-hand sides b (compare with [9]). As expected,
we observe in Figure 1 that the convergence rate is essentially linear, up to

0 10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration

E
rr

or
ACG and CG

Conjugate Gradient
Altman. C.G.

Fig. 1. ACG (dashed line) versus CG (solid line) for A = tridiag([−1, 2,−1]) of dimension
50 resulting from the discretization of the one-dimensional Laplacian.

the stage where the termination property of CG/ACG suddenly gives con-

vergence. We also notice that, by Lemma 4, the quantity κ(Ã) lies between
κ(A) = λ1(A)/λp(A) and λ2(A)/λp−1(A), which for our example give the

numerical values 1.05 · 103 and 0.26 · 103. Thus the condition number of Ã
is not essentially smaller than that of A, and the convergence behavior of
CG and ACG should be similar. This is clearly confirmed by the results
presented in Figure 1: for this example we find that ACG, compared to CG,
allows one to gain only one iteration.

The second group of examples were performed using the matrix A =
QDQ∗, where

Q = (I − 2w3w
∗
3)(I − 2w2w

∗
2)(I − 2w1w

∗
1),

w1, w2 and w3 are unitary random vectors, D = diag(λ1, . . . , λp) is a di-
agonal matrix whose components are λi = ε + (i − 1) for i = 1, . . . , p, and
ε > 0 is a scalar which will vary below. In our tests reported below we use
p = 1000, the starting point y0 = (1, . . . , 1)∗ ∈ Rp for ACG, and the starting
point x0 = (1, . . . , 1)∗ ∈ Rp for CG. The solution x of system (1) (and hence
the right-hand side b = Ax) will be chosen either randomly, or in terms of
the eigenvector vi corresponding to the eigenvalue λi(A) of A.

In Table 1, we report the results for seven different choices of parameters,
namely, the choice of the variable ε and/or the solution x, the resulting
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Table 1. Number of iterations for CG versus ACG

Example ε Solution x cond(A) cond(Ã) CG ACG

I 10−6 vp 9.9e+08 9.9e+02 243 194

II vp + 10−8vp−1 9.9e+08 9.9e+02 237 188

III vp + 10−3vp−1 9.9e+08 4.9e+08 245 235

IV random 9.9e+08 9.9e+08 274 274

V 10−3 vp 9.9e+05 9.9e+02 240 187

VI random 9.9e+05 9.9e+05 238 235

VII 1 vp 1e+03 5e+02 180 180

condition numbers of the matrices A and Ã, and the resulting number of
iterations used to obtain an error norm ‖xk−x‖ ≤ 10−8 by the CG and the
ACG method.

We first provide some explanation for the CG convergence behavior for
these seven examples. The convergence behavior for the case of equidistant
eigenvalues and ε = 1 and general right-hand sides was considered in [7,
Corollary 3.2]; here one essentially has only superlinear convergence for CG,
and no range of linear convergence occurs (see also the plot of Example VII
in Figure 4). For ε approaching zero, the condition number of A becomes
worse. Here the superlinear convergence is delayed by some non-trivial range
of linear convergence, corresponding to the quasi-horizontal part on the left-
hand side of the CG curves for examples I, II and III (which are essentially
the same) and V and VI (again essentially the same).

Concerning the convergence behavior of ACG, we note that, for small ε,
there is an important gap between κ(A) = λ1(A)/λp(A) and λ2(A)/λp−1(A),
and thus a potential improvement of ACG on CG in the range of linear con-
vergence. Indeed, for examples I, II and V we get an essential improvement
for the number of iterations (see Table 1 and Figures 2 and 3). However, for
general right-hand sides as in examples III, IV, and VI, no essential improve-
ment is found even in the range of linear convergence (compare with Table 1
and Figures 3 and 4), confirming our theoretical observations at the end of
Section 3. Moreover, for ε = 1 and hence well conditioned A as in example
VII (see Figure 4), the two methods CG and ACG behave identically.

We terminate our discussion of this second group of examples by some
concluding remarks. The work in [7–9] is based only on the (asymptotic)
eigenvalue distribution, and gives some weak asymptotics for the error of
Krylov subspace methods. For many examples, the bounds obtained in [7]
not only describe the error asymptotically, but also provide an upper bound
without passing to the limit, yet this latter experimental observation has no
theoretical justification. In our case, it seems that, in the superlinear range,
the slopes of all twelve convergence curves (CG and ACG) only depend on



364 C. Roland et al.

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration

E
rr

or
ACG and CG

Conjugate Gradient
Altman. C.G.

0 50 100 150 200 250
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

iteration

E
rr

or

ACG and CG

Conjugate Gradient
Altman. C.G.

Fig. 2. ACG (dashed line) versus CG (solid line), examples I (top) and II (bottom)
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Fig. 3. ACG (dashed line) versus CG (solid line), examples III (top) and V (bottom)
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Fig. 4. ACG (dashed line) versus CG (solid line), examples VI (top) and VII (bottom)
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the ratio of the iteration index and of p, and coincide with the slope pointed
out in [7]. But for the error there seems to be an additional multiplicative
factor depending on the condition number, and, more importantly, due to
this factor, the beginning of superlinear convergence seems to be delayed.
In this context we should mention that the effect of ill-conditioning of the
matrix of coefficients (which is related to [7, condition (iii)]) was essentially
neglected in [7], and its exact role for (non-asymptotic) upper bounds for
the CG in the superlinear range remains open.

Appendix: Representation of the quadratic form. Denote by Hb

the orthogonal complement of span(b). In [2], Altman uses the quadratic
form

(16) z ∈ Hb : F (z) := (r−1(z), z).

In order to justify that this formula makes sense, Altman first shows that
the restriction r : Hb 7→ Hb is hermitian, self-adjoint and positive-definite,
and thus the inverse of r exists on Hb. In fact, for u ∈ Hb we have r(u) =

PAu = PAPu = Ãu, and thus r−1(u) = Ã†u.
This observation allows us to relate the quadratic form F of (16) to the

quadratic form G of (4): for any vector y we have, according to (12) and
(10),

F (r(y)) = (Ã†r(y), r(y)) = (Ã†PAy, PAy) = ((PA)∗Ã†PAy, y)

= ((PAQ)∗Ã†PAQy, y) = (Q∗ÃÃ†ÃQy, y)

= (Q∗ÃQy, y) = (Q∗AQy, y),

and thus (13) implies that F (r(y)) = G(y).
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