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POLYNOMIALS ASSOCIATED WITH
EXPONENTIAL REGRESSION

Abstract. Fitting exponentials a + becx to data by the least squares
method is discussed. It is shown how the polynomials associated with this
problem can be factored. The closure of the set of this type of functions de-
fined on a finite domain is characterized and an existence theorem derived.

1. Introduction. Suppose we are given integers Xi and real numbers
Yi for i = 1, . . . , t. It is convenient if Yi are integers but not necessary.
The Xi and Yi are not random variables, we are dealing with a numerical
assignment. Instead of using a+ b exp(cx) we prefer the model a+ bRx and
ask for a, b, and R > 0 that would minimize

∑
(a + bRXi − Yi)2. If there

is such a minimum, then the partial derivatives with respect to a, b, R are
equal to zero at a point at which the minimum is located and, if b 6= 0, we
are led to the equations

at+ b
∑

RXi −
∑

Yi = 0,

a
∑

RXi + b
∑

R2Xi −
∑

YiR
Xi = 0,

a
∑

XiR
Xi + b

∑
XiR

2Xi −
∑

YiXiR
Xi = 0.

If there exists a solution to this system of equations for some R, then
a, b, −1 are the coefficients of a linear combination of the columns of the
matrix 
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yielding the zero vector.
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That can only happen if the column vectors are linearly dependent, for
which a necessary and sufficient condition is that the determinant of the
matrix is zero for a given R. If the values of Xi are nonnegative integers,
the determinant may be written as a polynomial function of one variable.
The positive roots of the polynomial give the values for which the sum of
squares may be minimal.

We know that a polynomial does not have more roots than its degree. In
our case it is three times the maximum of Xi. If Xi take on values 1 through
5, the determinant gives a polynomial of degree fifteen. It is generally known
that finding roots of polynomials of high degrees is numerically very difficult.

This method and other details may be found in Gregg et al. (1964) (see
also the survey paper Pimentel-Gomes (1953)). The origin of the idea is
attributed to Pimentel-Gomes and Malavolta (1949).

2. Basic properties. Let X = (X1, . . . ,Xt)′ and Y = (Y1, . . . , Yt)′ be
vectors for which we define the determinant D(R,X, Y ) as above. We can
see immediately that

D(R,X, Y ) = −D(1/R,−X,Y ),

D(R,X, Y ) = −D(R,X,−Y ),

D(R,X, Y ) = D(1/R,−X,−Y ).

Let E be the vector consisting of ones and u a positive constant. We also
have

D(R, uE +X,Y ) = RuD(R,X, Y ),

D(R,X, uE + Y ) = D(R,X, Y ),

D(R,X, uY ) = uD(R,X, Y ),

D(R, uX, Y ) = uD(Ru,X, Y ).

We can use these facts to modify X to get a smaller degree of the poly-
nomial. We can subtract, for example, the minimal value of X from all its
entries or we can divide all the entries by their greatest common divisor. We
can also change the vector Y to keep the coefficients of the polynomial as
small as possible.

We conclude that if Z ′ = uE′ + vY ′, where u, v are constants and E′ =
(1, . . . , 1), then the polynomials obtained from the determinants D(R,X,Z)
= vD(R,X, Y ) differ only by a constant factor v. This is obvious but it is
less obvious that the converse is also true. If the polynomials D(R,X,Z)
and D(R,X, Y ) differ only by a constant factor, then Z ′ = uE′ + vY ′ for
some u and v. The proof of this fact is tedious and too long to be presented
here.
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3. Factoring D(R,X, Y ) as a polynomial in R. The fact that (R−1)3

divides D(R,X, Y ) when the components of X are equidistant, is men-
tioned in Pimentel-Gomes (1953) and is attributed to Nogueira (1950). It is
straightforward but tedious to extend it to the general case.

If we let R = 1, we see that the value of the determinant is zero. Even
though the value R = 1 does not have any suitable interpretation, this
root enables us to factor the polynomial. We can try to investigate the
determinant as a function of R and calculate its derivative at R = 1. As a
reward we get a surprise, this derivative is zero no matter what X and Y
look like. We even get a bigger surprise when we find out that the second
derivative is always zero at R = 1 regardless of X and Y . It took a while
to calculate the third derivative at R = 1; it is, after skipping the obvious
subscripts,

3
∑

X
(∑

X2
∑

Y X +
∑

X3
∑

Y −
∑

X
∑

Y X2
)

+ 3t
(∑

X2
∑

Y X2 −
∑

X3
∑

Y
∑

X
)
− 3

∑
X2
∑

X2Y.

The Taylor expansion centered at R = 1 of the polynomial P (R) of some
degree M is

P (R) = P (1) + P ′(1)(R− 1) + P ′′(1)(R− 1)2/2

+ P ′′′(1)(R− 1)3/6 + . . .+ P (M)(1)(R− 1)M/M !.

Since P (1) = P ′(1) = P ′′(1) = 0, (R − 1)3 is a factor of P (R). It is not
only the decrease in the degree of the polynomial that we achieve, we also
discard multiple roots which can cause trouble in numerical calculations.

4. Examples. We give three examples to illustrate various situations.

Example Example Example
1 2 3

y x y x y x
0 0 1 0 0 0
0 1 2 1 5 1
0 2 3 2 2 2
1 3 1 3 7 3

Only four observations were considered in each example and data made
up to suit the given purpose. We cannot present data with a larger number
of observations because the degrees of polynomials would be prohibitive.

The purpose of these examples is to show that difficulties a routine use
of statistical software may cause are for real. It is obvious that the usual
numerical methods of finding minima will fail if the minima are not there.
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Example 1. We get the polynomial 2R3 + 3R2 + 4R+ 1. Positive coef-
ficients mean no positive root and no a, b,R > 0 at which a local minimum
would be located. The infimum of the sum of squares is zero since we can
pick R = N , a = 0, b = 1/N3, where N is a positive integer, and the sum
of squares is

(0− 1/N3)2 + (0−N/N3)2 + (0−N2/N3)2 + (1−N3/N3)2 < 3/N2.

For every ε there is an R such that the sum of squares is less than ε, thus
its infimum is zero. For no positive value of R can this infimum be attained,
because a + bRx is strictly monotone for R > 0, disregarding R = 1 and
b = 0.

Example 2. This example yields the polynomial 2R3 + 7R2 + 6R + 5.
When we try an iterative method, it is a gross error to believe that the
parameters converge to a minimal solution. After repeated starts we can see
that they diverge even though the sum of squares is stable. It is interesting
to try to fit a straight line to this set of data by the least squares method.
The sum of squares is equal to 4.2. No matter how hard we try, we never
get a smaller sum of squares using a + bRx, even the best guesses gave a
little bit more than 4.2.

Example 3. The polynomial we get is

P (R) = R3 − 3R2 − 3R+ 1 = (R+ 1)(R2 − 4R+ 1),

the equation R2−4R+1 = 0 has R1 = 2+
√

3 and R2 = 2−
√

3 as its roots.
It can be shown that there are no local minima at R1 or R2. It can also be
seen that local minima are obtained in the closure of but outside the set of
functions a+ bRx.

5. Closure. We have dealt with some examples first to make it clear
that the set of functions a+ bRx is not closed in the sense that a convergent
sequence of functions from this set need not have a limit in this set.

Let us consider the closure of the set of functions a + bRx defined on a
finite set. If there is, in this closure, another function with the sum of squares
smaller than the sum of squares for any of the functions a+ bRx, then there
is no minimal solution among the functions a + bRx. It is conceivable that
there might even be some local minima with the sum of squares greater than
the infimum but the infimum could be attained by a function in the closure
different from a + bRx. It would be nice to know what kind of functions
form this closure. We could then find the function with the minimal sum of
squares in the closure and the question would be resolved.

6. Characterization of the closure. Let us assume that we have t
points 0 = x1 < . . . < xt and let us consider the set of all functions defined
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at these points. All these points and function values do not have to be
integers any more. It is essential that, without loss of generality, we may
indeed assume x1 = 0 and F (x1) = 0, since we can always add a constant
or use a substitution to translate the original problem into one with x1 = 0
and F (x1) = 0 and backwards.

We take a Euclidean metric for the values of the functions as a distance
d(F,G) = (

∑
(F (xi)−G(xi))2)1/2 where F and G are two functions defined

at xi for i = 1, . . . , t. The distance d(F,G) corresponds to the sum of squares
of differences in an obvious manner.

By definition, a function F is in the closure of a set of functions if there
is a sequence of functions in this set converging to F with respect to the
distance d(F,G). Since the number of points 0 = x1 < . . . < xt is finite, it
is easy to see that the convergence of a sequence of functions with respect
to the distance d(F,G) is equivalent to the pointwise convergence. This fact
is important because the pointwise convergence is easier to work with.

Assume that F is in the closure of functions a+bRx defined on 0 = x1 <
. . . < xt. Then there is a sequence aN +bNR

xi
N converging to F (xi) for every

i = 1, . . . , t. The aim is to show what properties F has.
We may start with a special but illustrative case first. The case of bN = 0

may be treated by discarding aN + bNR
x
N with bN = 0 if there are finitely

many members with bN = 0. In the case of an infinite subsequence with
bK = 0, it does not matter what RK is; if bK = 0 then aK + bKR

x
K = aK .

Since F (x1) = 0, we get lim aK = 0 and, as a result, F (xi) = lim(aK +
bKR

xi
K ) = lim aK = 0 for all i, that is, F (x) must be a constant function. It

obviously does not matter what the rest of the sequence aN + bNR
x
N may

look like, it converges and it does so to F (x). This is the basic idea that the
proofs are based on.

If we now assume that bN 6= 0 for all N, the proof will depend on the
assumptions about RN and, accordingly, the classification of the limits of
aN + bNR

x
N will be made. Our basic assumption is that RN > 0 for all N,

no assumptions are made at this point regarding aN or bN 6= 0 and the
questions of convergence of aN or bN are studied only when they are needed
to determine the convergence of aN + bNR

x
N as functions.

After the case that RN is unbounded we get the fact that RN is bounded
and, therefore, we can pick a subsequence RK that is convergent. Various
possibilities of limits of this subsequence are then discussed.

7. The case of RN unbounded. If the sequence RN is not bounded,
there must be a subsequence aK + bKR

x
K , convergent to F (x) at x1, . . . , xt,

for which RK goes to infinity. We could even pick RK increasing. At x1 = 0,
the value of aK + bKR

x
K is equal to aK + bK for any R. If aK + bKR

0
K

converges to F (x1) = 0, lim(aK + bK) = 0 must hold. Since RK converges
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to infinity and xt > 0, bK must go to zero, otherwise there would be ε > 0
such that |bK | > ε for infinitely manyK, |bK |(RxtK−1) would not be bounded
and aK + bKR

xt
K = aK + bK + bKR

xt
K − bK = (aK + bK) + bK(RxtK −1) would

not be bounded, thus lim bK = 0 must hold and we get lim aK = 0.
Now we can see that lim bKR

xt
K = F (xt) and lim bKR

xi
K is, for i < t,

equal to lim bKR
xt
K /(R

xt−xi
K ). Since the numerator has a finite limit F (xt)

and the denominator goes to infinity, the limit of the fraction is zero.

8. Subsequence RK going to zero. Let there exist a subsequence RK
converging to zero. As before, it is clear that lim(aK + bK) = F (0) = 0. It
follows from the boundedness of aK + bKR

x
K that there is a B1 such that

|aK + bK + bKR
x
K − bK | = |aK + bKR

x
K | < B1

for all K and from lim(aK + bK) = 0 it follows that there is a B2 for which
|bK(RxK − 1)| < B2. Therefore |bK | < B2/(1 − RxK) starting from some K,
thus bK is a bounded sequence, because limRxK = 0. Thus bKRxK converges
to zero for x > 0 and we must have limaK = F (x2) = . . . = F (xt).

9. Subsequence with a positive limit other than one. Let there
be a subsequence RK with limRK = R, where R is positive, finite, and
different from one. We again have lim(aK + bK) = 0 and we know that
lim(aK + bKR

xt
K ) = F (xt). Since aK + bKR

xt
K = aK + bK + bKR

xt
K − bK =

aK +bK +bK(RxtK −1) converges to F (xt), we have lim bK(RxtK −1) = F (xt).
We know, because of continuity, that lim(RxtK − 1) = Rxt − 1, and the
following will also hold:

lim bK = lim bK(RxtK − 1)/(RxtK − 1) = F (xt)/(Rxt − 1).

Set b = lim bK . Then we can see that a = lim aK = −b. Thus aK+bKRxK
converges to a+ bRx.

10. Subsequence with limit one. (a) If there is a subsequence RK
with all elements one, then aK + bKR

x
K = aK + bK . We know that the limit

of this sequence is zero, which implies that F (xi) = 0 for all i.
(b) Let each RK be different from one. Set UK(x) = aK + bKR

x
K . Then

UK(0) = aK + bK . Define DK(x) = UK(x)− UK(0). Then we get DK(x) =
bK(RxK − 1). This difference will be treated separately and its limit will be
added to lim(aK + bK) = 0. We will need the following limit for R going to
one while x and xt are fixed:

lim
R→1

(Rx − 1)/(Rxt − 1) = x/xt.

Since aK + bKR
xt
K converges to F (xt) or limUK(xt) = F (xt) and at the

same time limUK(0) = F (x1) = 0, we have limDK(xt) = F (xt). Thus

limDK(xt) = lim bK(RxtK − 1) = F (xt).
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We can use the limit we found beforehand to get

limDK(x) = lim bK(RxK − 1) = lim bK(RxtK − 1)
RxK − 1
RxtK − 1

.

That gives limDK(x) = xF (xt)/xt and shows that the limit of DK(x) exists
for x > 0 and is proportional to x.

As the limit of aK+bKRxK is zero for x1 = 0 and the value of the function
F is the sum of its value at zero and the difference, we conclude that F is a
linear function mx, where m = F (xt)/xt.

11. Completion of characterization. Now we can work our way back
and see that the closure consists of functions we get by adding a constant
or by linear substitution. As a result, we can describe the functions in the
closure in the following manner.

Theorem. If there are t ≥ 3 points x1 < . . . < xt, then the closure of
the set of functions a + bRx, where 0 < R 6= 1, defined at these points is
formed by the following functions:

(1) the functions constant except at the first point x1, that is, F (x1) is
arbitrary , F (x2) = F (x3) = . . . = F (xt);

(2) the functions constant except the last point xt, that is, F (x1) =
F (x2) = . . . = F (xt−1), arbitrary F (xt);

(3) a+mx;
(4) a+ bRx;

Proof. What is left to prove is that all the functions of the four types
are in the closure. Let F (xi) = 0 for i < t and F (xt) = 1. As in Example
1, let a = 0, b = 1/Nxt , and R = N, N positive integer. We get the sum of
squares

(0−Nx1/Nxt)2 + . . .+ (0−Nxt−1/Nxt)2 + (1−Nxt/Nxt)2

< (t− 1)/N2(xt−xt−1).

As xt − xt−1 > 0, by choosing N sufficiently large the sum of squares can
be made arbitrarily small. The general case can be obtained by choosing
suitable a and b.

When F (x1) = 1 and F (xi) = 0 for i > 1, we proceed in the similar
manner. Let a = 0, b = 1/Nx1 , and R = 1/N, N natural, and write down
the sum of squares of deviations.

Let F (x) = q +mx, m 6= 0. Choose any sequence RN convergent to one
with all RN different from one. The sequences aN and bN can be obtained
from the equations

aN + bNR
0
N = q,

aN + bNR
xt
N = q +mxt.

The determinant of the system is RxtN − 1 6= 0 and we obtain the sequence
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aN + bNR
x
N . Define DN (x) = UN (x)− UN (0) = bN (RxN − 1) and compute

limDN (x) = lim bN (RxtN − 1)
RxN − 1
RxtN − 1

= mxt(x/xt) = mx,

because bNR
xt
N − bN = aN + bNR

xt
N − (aN + bNR

0
N ) = q + mxt − q = mxt

by definition of aN and bN .

12. Existence of a minimal solution in the closure. The closure
of the set of functions a + bRx has been described and what is left is the
proof of the existence of a minimal solution in this closure.

Theorem. Let (yi, xi) for i = 1, . . . , t be pairs of real numbers with at
least three x’s distinct. Among the functions F (x) in the closure of functions
of the type a+bRx defined at x1, x2, . . . , xt there exists a function F0(x) that
minimizes the sum of squares

∑t
i=1(F (xi)− yi)2.

Proof. We consider (yi, xi) for i = 1, . . . , t. We may have xi = xj for
some i 6= j, which is what statisticians call repeated observations. We can
choose one fixed function a0 + b0R

x
0 and determine the sum of the squares

of the deviations from yi. By a closed ball B0 in the set of functions defined
on the xi for i = 1, . . . , t we will mean the subset of those functions for
which

∑
(F (xi) − yi)2 ≤ ∑(a0 + b0R

xi
0 − yi)2. We are not dealing exactly

with a closed ball as usually defined in topology because we have to consider
repeated observations. It is clear that this ball B0 is nonempty, closed and
bounded, because the sum of squares is a continuous function and the image
under this mapping is a closed interval. One of its endpoints is

∑
(a0 +

b0R
xi
0 − yi)2; the other endpoint is the sum of the squares of the deviations∑

(Fmin(xi)−yi)2 of the function Fmin, the values of which are arithmetical
averages of yi calculated for each value xi, for these averages minimize the
sum of squares of deviations at each value of xi separately.

If there are repeated values of xi, we may not have exactly a ball. This
is especially the case when for some i 6= j the values of yi and yj may be
different, whereas xi and xj are the same. On the other hand, if, for some
i, xi is different from all other xj , j 6= i, we have Fmin(xi) = yi.

To show that the sums of squares of deviations take on all the values in
the interval we set FC(xi) = Fmin(xi) for i > 1 while FC(x1) = Fmin(x1)+C
for i = 1. Thus, by picking the right C ≥ 0, we get any desired sum of squares
of deviations from

∑
(Fmin(xi)− yi)2 to infinity.

The intersection of the closed ball B0 with the closure of the set of
functions a + bRx is nonempty, closed and bounded, thus it is a nonempty
and compact set and we know that a continuous mapping, such as the sum
of squares of deviations, as a mapping of F, takes on its infimum on a set
like that at some point F0.



Polynomials associated with exponential regression 255

13. Applications and comments. Another model may be given by
the function b exp(cx) = bRx defined on a finite set. To find out how the
closure of the set of functions of this type looks like, we would have to discuss
three cases: RK unbounded, RK going to zero, and RK going to some finite
positive limit. R = 1 is acceptable for it defines a constant function.

Other frequently used models derived from a+ bRx are the logistic func-
tion and the Gompertz function, the former being just the reciprocal of
a + bRx, the latter the exponential function of a + bRx. It is clear that in
both cases the closure can be described in a similar manner. It is just that
one has to be careful about the division by zero.

Since it is hard to find all the positive real roots of polynomials of large
degrees, users of statistical software will use iterative methods to minimize
the sum of squares. But we now know that the result has to be compared
against minimal sums of squares of other types of functions in the closure
of the set of exponential ones.

To determine if the reciprocal of a linear function yields a better sum
of squares than the logistic one we have to deal with two nonlinear regres-
sion problems. The graphical visualization of the reciprocal of the logistic
function is of great value to see how close it is to the straight line.
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