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ON SECOND ORDER BOUNDARY VALUE PROBLEMS
FOR FUNCTIONAL DIFFERENTIAL INCLUSIONS

IN BANACH SPACES

Abstract. We investigate the existence of solutions on a compact interval
to second order boundary value problems for a class of functional differential
inclusions in Banach spaces. We rely on a fixed point theorem for condensing
maps due to Martelli.

1. Introduction. In this paper we shall prove a theorem which assures
the existence of solutions defined on a compact real interval for the boundary
value problem (BVP for short) of the second order functional differential
inclusion

y′′ ∈ F (t, yt), t ∈ J = [0, 1],(1)

y0 = φ, y(1) = η,(2)

where F : J×C(J0, E)→ 2E (here J0 = [−r, 0]) is a bounded, closed, convex
valued multivalued map, φ ∈ C(J0, E), η ∈ E, and E is a real Banach space
with the norm | · |.

For any continuous function y defined on the interval J1 = [−r, 1] and
any t ∈ J , we denote by yt the element of C(J0, E) defined by

yt(θ) = y(t+ θ), θ ∈ J0.

Here yt(·) represents the history of the state from time t−r up to the present
time t.

The method we are going to use is to reduce the existence of solutions
to problem (1)–(2) to the search for fixed points of a suitable multivalued
map on the Banach space C(J1, E). In order to prove the existence of fixed
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points, we shall rely on a fixed point theorem for condensing maps due to
Martelli [10].

For recent results on BVP for functional differential equations we refer,
for instance, to the books of Erbe, Kong and Zhang [4] and Henderson [5],
the survey paper of Ntouyas [12], the papers of Nieto, Jiang and Jurang
[11], Liz and Nieto [9] and the references cited therein. The methods used
are usually the topological transversality of Granas [3] and the monotone
iterative method combined with upper and lower solutions [7].

2. Preliminaries. In this section, we introduce notations, definitions,
and preliminary facts from multivalued analysis which are used throughout
this paper.

C(J0, E) is the Banach space of all continuous functions from J0 into E
with the norm

‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}.
By C(J,E) we denote the Banach space of all continuous functions from J
into E with the norm

‖y‖J := sup{|y(t)| : t ∈ J}.
A measurable function y : J → E is Bochner integrable if and only if |y|
is Lebesgue integrable. (For properties of the Bochner integral see Yosida
[13].)

L1(J,E) denotes the Banach space of functions y : J → E which are
Bochner integrable normed by

‖y‖L1 =
1�

0

|y(t)| dt for all y ∈ L1(J,E).

Finally W 2,1(J,E) denotes the Sobolev class of functions y : J → E such
that y′ is absolutely continuous and y′′ ∈ L1(J,E).

Let (X, | · |) be a Banach space. A multivalued map N : X → 2X is
convex (resp. closed) valued if N(x) is convex (resp. closed) for all x ∈ X.
N is bounded on bounded sets if N(B) =

⋃
x∈B N(x) is bounded in X for

any bounded subset B of X (i.e. supx∈B{sup{|y| : y ∈ G(x)}} <∞).
N is called upper semicontinuous (u.s.c.) on X if for each x∗ ∈ X the

set N(x∗) is a nonempty, closed subset of X, and if for each open subset B
of X containing N(x∗), there exists an open neighbourhood V of x∗ such
that N(V ) ⊆ B.

N is said to be completely continuous if N(B) is relatively compact for
every bounded subset B ⊆ X.

If the multivalued map N is completely continuous with nonempty com-
pact values, then N is u.s.c. if and only if N has a closed graph (i.e.
xn → x∗, yn → y∗, yn ∈ N(xn) imply y∗ ∈ N(x∗)).
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N has a fixed point if there is x ∈ X such that x ∈ N(x).
In the following BCC(X) denotes the set of all nonempty bounded, closed

and convex subsets of X.
A multivalued map N : J → BCC(E) is said to be measurable if for each

x ∈ E the function Y : J → R defined by

Y (t) = d(x,N(t)) = inf{|x− z| : z ∈ N(t)}
is measurable.

An upper semicontinuous map N : X → 2X is said to be condensing if
for any subset B ⊆ X with α(B) 6= 0, we have α(N(B)) < α(B), where α
denotes the Kuratowski measure of noncompactness. For properties of the
Kuratowski measure, we refer to Banaś and Goebel [1].

We remark that a completely continuous multivalued map is the easiest
example of a condensing map. For more details on multivalued maps and the
proof of known results cited in this section we refer to the books of Deimling
[2] and Hu and Papageorgiou [6].

Definition 2.1. A multivalued map F : J ×C(J0, E)→ E is said to be
L1-Carathéodory if

(i) t 7→ F (t, u) is measurable for each u ∈ C(J0, E);
(ii) u 7→ F (t, u) is upper semicontinuous for almost all t ∈ J ;

(iii) for each k > 0, there exists mk ∈ L1(J,R+) such that

‖F (t, u)‖ = sup{|v| : v ∈ F (t, u)} ≤ mk(t)

for all ‖u‖ ≤ k and for almost all t ∈ J.
Let us introduce the following hypotheses:

(H1) F : J × C(J0, E) → BCC(E) is an L1-Carathéodory map and for
each fixed u ∈ C(J0, E) the set

SF,u = {g ∈ L1(J,E) : g(t) ∈ F (t, u) for a.e. t ∈ J}
is nonempty.

(H2) There exists a function H ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{|v| ∈ F (t, u)} ≤ H(t)

for almost all t ∈ J and all u ∈ C(J0, E).

(H3) For each bounded set B ⊂ C(J1, E) and t ∈ J the set
{
φ(0) + t(η − φ(0)) +

1�

0

G(t, s)g(s) ds : g ∈ SF,B
}

is relatively compact in E, where SF,B =
⋃{SF,y : y ∈ B}.

Remark 2.1. (i) If dimE < ∞, then SF,u 6= ∅ for each u ∈ C(J0, E)
(see Lasota and Opial [8]).
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(ii) For each u ∈ C(J0, E) the set SF,u is nonempty if and only if inf{|g| :
g ∈ F (t, u)} belongs to L1(J,R+).

(iii) We note that (H3) is trivially satisfied if for each t ∈ J the multi-
valued map Ft : C(J0, E)→ 2E : u 7→ F (t, u) is completely continuous or if
dimE is finite.

Definition 2.2. A function y : J1 → E is called a solution for the BVP
(1)–(2) if y ∈ C(J1, E)∩W 2,1(J,E) and y satisfies the differential inclusion
(1) a.e. on J and the boundary conditions (2).

Our considerations are based on the following lemmas.

Lemma 2.1 [8]. Let I be a compact real interval and X be a Banach
space. Let F be a multivalued map satisfying (H1) and let Γ be a linear
continuous mapping from L1(I,X) to C(I,X). Then the operator

Γ ◦ SF : C(I,X)→ BCC(C(I,X)), y 7→ (Γ ◦ SF )(y) := Γ (SF,y),

is a closed graph operator in C(I,X)× C(I,X).

Lemma 2.2 [10]. Let X be a Banach space and N : X → BCC(X) be a
u.s.c. condensing map. If the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}
is bounded , then N has a fixed point.

3. Main result. Now, we are able to state and prove our main theorem.

Theorem 3.1. Assume that Hypotheses (H1)–(H3) hold. Then the BVP
(1)–(2) has at least one solution on J1.

Proof. Let C(J1, E) be the Banach space provided with the norm

‖y‖∞ := sup{|y(t)| : t ∈ [−r, 1]} for y ∈ C(J1, E).

We transform the problem into a fixed point problem. Consider the mul-
tivalued map N : C(J1, E)→ 2C(J1,E) defined by

N(y) :=




h ∈ C(J1, E) : h(t) =





φ(t) if t ∈ J0,

φ(0) + t(η − φ(0))

+ � 1
0G(t, s)g(s) ds if t ∈ J,





where G is the Green’s function for the BVP

y′′(t) = 0, y(0) = 0, y(1) = 0,

which is given by the formula

G(x, s) =

{
(1− x)s if 0 ≤ s ≤ x ≤ 1,

(1− s)x if 0 ≤ x ≤ s ≤ 1,
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and
g ∈ SF,y = {g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J}.

Remark 3.1. It is clear that the fixed points of N are solutions to prob-
lem (1)–(2).

We shall show that N satisfies the assumptions of Lemma 2.2. The proof
will be given in several steps.

Step 1: N(y) is convex for each y ∈ C(J,E). Indeed, if h1, h2 belong
to N(y), then there exist g1, g2 ∈ SF,y such that for each t ∈ J we have

hi(t) = φ(0) + t(η − φ(0)) +
1�

0

G(t, s)gi(s) ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for each t ∈ J we have

(αh1 + (1− α)h2)(t)

= φ(0) + t(η − φ(0)) +
1�

0

G(t, s)[αg1(s) + (1− α)g2(s)] ds.

Since SF,y is convex (because F has convex values) we see that

αh1 + (1− α)h2 ∈ N(y).

Step 2: N is bounded on bounded sets of C(J,E). Indeed, it is enough
to show that there exists a positive constant c such that for each h ∈ N(y)
with y ∈ Bq = {y ∈ C(J,E) : ‖y‖∞ ≤ q} one has ‖h‖∞ ≤ c.

If h ∈ N(y), then there exists g ∈ SF,y such that for each t ∈ J we have

h(t) = φ(0) + t(η − φ(0)) +
1�

0

G(t, s)g(s) ds.

By (H1) for each t ∈ J we have

|h(t)| ≤ |2φ(0)|+ |η|+
1�

0

‖G(t, s)g(s)‖ ds

≤ 2‖φ‖+ |η|+
1�

0

|G(t, s)|mq(s) ds.

Thus

‖h‖∞ ≤ 2‖φ‖+ |η|+ sup
t∈[0,1]

( 1�

0

G(t, s)mq(s) ds
)

=: c.

Step 3: N sends bounded sets of C(J,E) into equicontinuous sets. Let
t1, t2 ∈ J , t1 < t2 and Bq be a bounded set of C(J1, E). For each y ∈ Bq
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and h ∈ N(y), there exists g ∈ SF,y such that

h(t) = φ(0) + t(η − φ(0)) +
1�

0

G(t, s)g(s)ds, t ∈ J.

Thus we obtain

|h(t2)− h(t1)| ≤ (t2 − t1)|η − φ(0)|+
1�

0

|G(t2, s)−G(t1, s)|mq(s) ds.

As t2 → t1 the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 follows from

the uniform continuity of φ on the interval J0 and from the relation

|h(t2)− h(t1)| = |h(t2)− φ(t1)| ≤ |h(t2)− h(0)|+ |φ(0)− φ(t1)|
respectively.

As a consequence of Step 2, Step 3 and (H3) together with the Ascoli–
Arzelà theorem we can conclude that N is completely continuous, and there-
fore a condensing map.

Step 4: N has a closed graph. Let yn → y∗, hn ∈ N(yn), and hn → h∗.
We shall prove that h∗ ∈ N(y∗). Now, hn ∈ N(yn) means that there exists
gn ∈ SF,yn such that

hn(t) = φ(0) + t(η − φ(0)) +
1�

0

G(t, s)gn(s) ds, t ∈ J.

We must prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = φ(0) + t(η − φ(0)) +
1�

0

G(t, s)g∗(s) ds, t ∈ J.

Clearly we have

‖(hn−(φ(0)+ t(η−φ(0))))−(h∗−(φ(0)+ t(η−φ(0))))‖∞ → 0 as n→∞.
Now, we consider the linear continuous operator

Γ : L1(J,E)→ C(J,E), g 7→ Γ (g)(t) =
1�

0

G(t, s)g(s) ds.

From Lemma 2.1, it follows that Γ ◦ SF is a closed graph operator.
Moreover, we have

hn(t)− (φ(0) + t(η − φ(0))) ∈ Γ (SF,yn).

Since yn → y∗, it follows from Lemma 2.1 that

h∗(t)− (φ(0) + t(η − φ(0))) =
1�

0

G(t, s)g∗(s) ds
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for some g∗ ∈ SF,y∗ .
Step 5: The set

Ω := {y ∈ C(J1, E) : λy ∈ N(y) for some λ > 1}
is bounded. Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus there exists
g ∈ SF,y such that

y(t) = λ−1φ(0) + λ−1t(η − φ(0)) + λ−1
1�

0

G(t, s)g(s) ds, t ∈ J.

This implies by (H2) that for each t ∈ J we have

|y(t)| ≤ 2‖φ‖+ |η|+
1�

0

|G(t, s)|H(s) ds.

Thus

‖y‖∞ ≤ 2‖φ‖+ |η|+ sup
(t,s)∈J×J

|G(t, s)|
1�

0

H(s) ds.

This shows that Ω is bounded.
Set X := C(J1, E). As a consequence of Lemma 2.2 we deduce that N

has a fixed point which is a solution of (1)–(2) on J1.
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