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MAKSYMILIAN DRYJA and KRZYSZTOF MOSzZYNsSKI (Warszawa)

ON JEFFREYS MODEL OF HEAT CONDUCTION

Abstract. The Jeffreys model of heat conduction is a system of two par-
tial differential equations of mixed hyperbolic and parabolic character. The
analysis of an initial-boundary value problem for this system is given. Ex-
istence and uniqueness of a weak solution of the problem under very weak
regularity assumptions on the data is proved. A finite difference approxima-
tion of this problem is discussed as well. Stability and convergence of the
discrete problem are proved.

0. Introduction. The Jeffreys model of heat conduction has recently
been discussed by several authors [2], [5]-[7]. Its equations may be written
in the following general form [5]:

(0.1) T +div(Q) =0, Q¢+ DVT+Q —rkAQ =0.

Here D and k are positive (in general constant) coefficients, the scalar func-
tion T is the temperature, and the vector-valued function ) represents the
so-called heat flux. We are interested in application of the one-dimensional
Jeffreys model to describe heat waves in a thin metallic layer under a very
short laser impulse [5]. Generalizations to more space dimensions are cer-
tainly possible and do not seem to be very difficult.

Let us discuss the initial-boundary value problem for the one-dimensional
Jeffreys model in the form appearing in [5]. We are looking for two scalar
functions T' = T'(¢t,z) and Q = Q(t, ), subject to the following equations:

(0.2) T4+ Q:=0, Qi+DT,+Q—rkQyz=0
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for t € (0,tmax), € (L, P) (where 0 < tmax, L < P), and satisfying the
following Dirichlet boundary conditions:

T(t,L)=¢(t), T(,P)=0,
Q(t7 L) = w(t)v Q(t7 P) =0,

where the given functions ¢ and 1 describe the physical conditions defining
the laser heat impulse. Moreover, the initial conditions are

(04) T(O¢ :E) = To(x)v Q(Oa l‘) = Qo(x)7

with given functions 70 and QY. More complex boundary conditions, for
example in the form of linear combinations of the values of T' and @ at each
end of the interval [L, P], can be considered without any essential change in
the following text.

Our goal is to define and analyse a weak formulation of the problem (0.2),
(0,3), (0.4) which admits Dirichlet boundary conditions defined by functions
¢ and 1) of L?(0, tmayx) regularity only.

The existence and uniqueness of the solution of the problem (0.2)—(0.4)
in the weak formulation may be proved by one of the standard methods,
however the weak regularity assumption on ¢ and ) requires a special care.
Moreover, a close inspection makes it possible to explain a certain phe-
nomenon observed during the numerical treatment of the model [5]. Namely
we can clearly see why the solution (7', )) depends weakly on the boundary
conditions imposed on the function 7'

In Section 2, a finite difference approximation of the problem is discussed.
We prove the stability and convergence of the finite difference scheme pro-
posed.

In the report [3] under the same title that appeared in the proceedings of
the FVCA Conference in Duisburg we give some information about the first
version of this paper. This version was based on a different weak formulation,
implying different conclusions on existence and uniquenes of the solution
than in the present paper. The report contains only theorems without proofs.

(0.3)

1. Weak formulation. Let us first transform the differential problem
(0.2)—(0.4) in order to obtain homogeneous Dirichlet boundary conditions.
To do that we define two auxiliary functions

P—z P—-z
gb(t,(l?) - ¢(t)ma 1!’(72 33‘) - ¢(t)P I

Let us now introduce functions 7' and @ by

Tt,z) =T z)+o(tz), QU z)=Q(z)+ Yt ).
The functions T and Q satisfy the following non-homogeneous equations:
(1.1) Ty + Qo = f(t, ),
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(1.2) Qi+ DT, + Q — £Quw = g(t, ),

where

Ft,0) = g |00 = (= ) got0)|

olt.) = g | Doto) — (P =) (ot + w00 |

Note that the Dirichlet boundary condition is homogeneous:

T(t,L) = Q(t, L) = T(t,P) = Q(t, P) =0,

and the initial conditions take the form

) 7(0,) = T°(a) = () ~ 6(0) -
1.3
Q0,2) = Q°(z) = Q"(x) — ¥(0) 113 =2

The functions 7' and @ are not yet satisfactory: the initial conditions for
them involve ¢(0) and (0), which may not exist. Therefore we introduce
new functions R and S:

¢ t
R(t,xz) = ST(S,.’E) ds, S(t,z)= S@(s,x) ds.
0 0
They are more regular, and satisfy the zero initial and boundary conditions.
Let us derive equations for R and S. It is easy to see that

(1.4) R+ S; =F,
(1.5) Si + DR, + 5 — kS, =G,
where

t

(16)  Flt.2) = 5| [w(s)ds — (P~ 2)o(0)] + T(x),
0

t

[D § é(s)ds — (P — ) (w(t) + {9 (s) ds)] +Q%x).
0

0

(L7) Glta) = 5—

To define the weak formulation of our problem we introduce a space H:

DEFINITION. Let H denote the Hilbert space of all pairs (V, W) such
that

V, Vi, W; € L*(0, tmax; L*(L, P)),
W € L*(0, tyax; HL (L, P)).
Its norm is defined by
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IV, W)
ttnax

§ IV (G + W (s, G + W (s, ) IE + Vi, ) IE + W (s, )] ds
0

where |- lo = || - 22z, ).
Let R, S, V and W be sufficiently regular. Using the formulas
R, W + RW, = [RW], and Sy, W + S, W, =[S, W],
from (1.4) and (1.5) we obtain
DR,V + DS,V = DFV
and
S,W — DRW,, + [RW], + SW + kS, W, — &[S, W], = GW.

Note that W satisfies the homogeneous boundary condition. Adding the last
two equations and integrating over [L, P], we obtain

P P
1.8)  \[DRV + SW]da + | [D(S,V — RW,) + SW + kS, W,] da
L L

P
= | (DFV +GW)dx.
L

Define now bilinear forms

a,b: (L*(L,P) x Hy(L, P)) x (L*(L, P) x H}(L, P)) — R

by
P
a(U, Z;V,\W) = \ [D(Z,V = UW,) + ZW + k2, W,] dz,
L
P
b(U, Z;V,W) = | [DUV + ZW] da.
L
Observe that
P
a(U,2;,U,2) =\ [D(2,U - UZ,) + Z* + k2] dx
L
P P
=\ (2> +r2Z}) dx S 7+ Z2)dx = v|| Z|3
L

where v = min{1, k}. This means the H{ (L, P)—ellzptzczty of the form a with
respect to the second argument of the pair (U, Z). Similarly

b(U, 2:U, Z) = D|[U[s + | Z].
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Thus the form a + b is L?(L, P) x H}(L, P)-elliptic. Moreover, a is contin-
uous:

a(U, Z; V, W)
< ClIZllolW o + [ Z2lloIWello + [[U o Wello + 1| Zz o[ V']]o]

< CVIUIS+ 1215 + 1 Z: I3 VIVIE + IWIE + W3

< CWVIZIE + UG VIWIE + 1VIIE;

here and below (-, -)o, (+,*)1, || - [lo and || - ||1 are the L2(L, P) and H} (L, P)
scalar products and norms, respectively, and C, C; are positive constants.
Similarly,

b(U, Z; V,W)| < CVIUTS + I ZIB VIVIZ + WIS

Using the above notation we write (1.8) as
(1.9)  b(R(t,-), Se(t,-); VW) + a(R(E, ), S(t,-); V, W)
=b(F(t,-), G(t,-); V. W),
with initial conditions
R(0,z) =0 and S(0,z)=0.

We now define a weak formulation of the problem admitting the bound-
ary conditions (0.3) with ¢ and % in L2(0,tmax). Note that F and G, as
functions of the variable ¢, are also in L?(0, tpax)-

WEAK FORMULATION. Find a pair (R,S) € H satisfying
R(0,z) =0, S(0,z2)=0
for a.e. x in (L,P) such that for a.e. t in (0,tmax) and for all (V,W) € H,
(110)  B(Ru(t, ), Sult, ) V. W) + a(R(t, ), S(t, ); V, W)
= b(F(t,), G(t,-); V. W).

Our aim is to prove that the problem (1.10) is well posed. We first prove
the existence of a solution by the Galerkin method [4].
Let & € L?(L, P) and (, € H} (L, P), k=1,2,..., be such that {{1,...,&,}

and {(1,...,(,} are linearly independent for each n, so that the subspaces
span{¢,...,&,} and span{(y,...,(,} are of dimension n.
DEFINITION. Let 1}, s% : [0,tmax] = R for j=1,...,n,n =1,2,... Set
Ry(t,z) =Y 1P (t)&(x),  Sn(t,z) =) s7(t)¢(x).
j=1 j=1

The sequence {(R,, Sn)} is a Galerkin solution of (1.10) if:
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o 17 [0, tmax] — R and s7 : (0,%max) — R are absolutely continuous,
o for a.e. t in (0,tmax), k=1,...,n,and n =1,2,...,
b(Rni(t,-), Sne(t,-); &k, 0) + a(Rn(t, ), Su(t,); &k, 0) = b(F, G; &, 0),
b(Rni(t,-), Sne(t,); 0,Ck) + alRu(t; ), Su(t,); 0, Ck) = b(F, G, 0; (k).
LEMMA 1.1. Let us introduce the following notation:

r” = [, ... rT, §" = [s7,...,s"]7T,
((gjagk) )j,k:l,...,nv = ((CJ?Ck) )j k=1,...,n
((ijfk) )],k 1,...,m» = ((C]?(k)O)j,k:l,...,na

_fn_[fla"'afn] ) [gl) agn]Tv
t t

fo=\(F.&)ods, =1 (G, o
0 0

If (Ry,Sy) is a Galerkin solution of (1. 10), then

I
~
3
—~
~
S~—

Gr" ()+XH1§ (t)ds
0

Gas™(t) + S (G2 + kH3)s"(s) — DH11"(s)] ds = g"(t).
0

Proof. Tt is enough to use the definitions of a¢ and b and the equations
t

b(Ro(t,-); Sn(ts); ks 0) + [ a(Ru(s, ), Su(s, )i &k, 0) ds

0
t
=|b(F,G:&.0) ds
0
t
b<Rn<t7 '), Sn(tv '); 0, Ck) + Sa(Rn(S7 ')7 Sn(s, ')3 0, Ck) ds
0

¢
= b(F,G;0,¢k) ds. m
0
LEMMA 1.2. If F € L?(0,tmax; L?(L, P)) and G € L*(0, tmax; L2(L, P)),
then there exists a unique Galerkin solution of (1.10).
Proof. By Lemma 1.1 we have
t
Gir'™ + X Hys"ds = f",
0

t
Gas™ + \[(G2 + kHy)s™ — DHyr") ds = g".
0
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Note that f" and g" are absolutely continuous functions of ¢ € [0, t1ax]. Let
w = [r", s"]T; then w satisfies the following integral equation:

¢

w=A S wds +d,

0
where A is a constant 2n x 2n matrix and d : [0, tymax] — R2™ is an absolutely
continuous vector-valued function, defined by Gy, G2, Hy, Hs, f™ and g"
respectively. To prove the existence of a solution, we proceed in a standard
way. First, we construct a sequence of absolutely continuous functions:

Wo (t) = 0,
t
wi(t) = A\ wo(s) ds + d(t) = d(2),
0
t
wa(t) = Afwi(s)ds + d(t), ...
0
t
wir1(t) = Al wi(s)ds +d(t), ...
0
This sequence satisfies the estimate
Allktk
i (t) — ()] < LA Emax gy 1y, 1)
k:' te[ovtmax}
where | - | is a norm in R?". From this inequality, using the standard proce-

dure, we prove that the sequence {wy(t)} converges uniformly in [0, tmax] to
a continuous function w, which is a solution of our integral equation. The
equation implies that w is absolutely continuous since Sg w(s)ds and d are.
Uniqueness is proved in the standard way. m

LEMMA 1.3. If F € L?(0,tmax; L?(L, P)) and G € L*(0, tmax; L2(L, P)),
then the Galerkin solution (R,,S,) satisfies the following estimates:
1R (t, )G + 1Sa(t, I < K
for t € [0, tmax], and

tmax

VR (G + 1St ) IE + [1Sna (t,)13) dt < Ko,

0
where Ky and Ko are constants, determined by F and G, and independent
of n.

Proof. Since R,, S, are absolutely continuous with respect to t €
[0, tmax], for fixed k have
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b(Rne(t, ), Sne(t,-); €k, 0) + a(Rau(t, ), Sn(s; +); &k, 0)
= b(F(t,-), G(t,-); &, 0),
b(Rue(t,-), Sne(t,-); 0, Cr) + a(Ru(t,-), Sn(s,); 0, C)
=b(F(t,-), G(t,-); 0, C)
a.e. in (0, tmax). Take the linear combination of the first equations with the
coefficients r!(t), k = 1,...,n, and the linear combination of the second

equations with the coefficients s} (t), & = 1,...,n. Adding the resulting
equations, we obtain

b(Rnt(tv')7Snt(t7');Rn(tﬂ'>vs ( )>+a(R (t, ),Sn(~);Rn(t,-),Sn<t,-))
= ( (tv )7G(t7');Rn(ta')7sn(tﬂ'>)'

Using the definition of a and b, we have

D 1
S IRt 50 + 18 (E G + 119t G + 511 Sna (2, )G
= D(F(t,-), Rn(t,-))o + (G(t, ), Sn(t,-))o
a.e. in (0, tmax). Integrating both sides over (0,¢) for ¢ € [0, tyax], we have

t

glan(t,')ll?ﬂr%IISn(tw)HﬁﬂLS[IISn( G + K1l Sna (s, ) 3] ds
0

= S [D(F(Sv ')7 Rn(87 ))0 + (G(87 ')7 Sn(57 ))U] ds

0
for t € [0, tmax). Applying the e-inequality to the right-hand side, we obtain

D t
(L11) SR+ 5 s CE S S (s, )12 + £l Sna (s, 2] ds
0
D lIF(s, )3, | 1 IGGs, )3
<V s o5 ds
0 0
t t
D g2
+52HR()%®+5UM$J%%
0

Using the notation

e (s I 1 G )
o:2§._ﬁr_@+2§ 16t D18 4

D 1
Ut) = 5 [1Bat, )G + 511Sn ()15,

we get the following Gronwall inequality (see for example [1]):
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t
0<U®) <C+e\U(s)ds.
0

It yields, for example for € = 1,
0<U(t) < Ce < Celm> = K.

This implies the first statement of the lemma. Moreover, for all n,
tmax tmax
V IRa(s, )5 ds < § [1Ra(s, )5+ 1Sn(s, ) I5) ds < K,
0 0

where K3 is a constant which depends on F' and G only. From (1.11) we

have
t

§ 1S (s, )5 + £l S (s, ) 13] ds

0

t
D |F(s)lF 1 IGGs)lE D o > € 2
< S [5 T2 + 5 T = + 5¢ [ R (s, o + 5”‘977«(87 o | ds

0
Using the estimate for U(t), for € = 1 we get

tmax

[ 110 (s, )R + 61 Sna(s, )lIZ] ds < C + Celmotypa = K.
0
Hence,

tmax

VIR (s, )G + 190 (s, )G + 1Sna (s, ) 13] ds < Ko,
0
where K5 is a constant. m

LEMMA 1.4. Let F € L?(0,tmax; L*(L, P)) and G € L?(0, tmax; L2(L, P)).
Then there exists a constant K, determined by F and G, such that for
the Galerkin solution (R, Sy,) of (1.10) and for n = 1,2,... the following
estimate holds:

tmax

V(1R (s, I IEHI1Sn (s, M5+ 1S (8, G+ Bt (5, 5+ Sne (s, ) [5] ds < K.
0

Proof. The proof reduces to showing that for some constant M,

tmax

(1.12) [ 1Rne(s, I3 + 1Sne(s, V3] ds < M.
0

Proceeding as in the proof of Lemma 1.3, we get
b(Rni(t,-); Snie(t, -); Rue(t,-),0) + a(Rn(t, ), Sn(t, -, ); Rne(t, ), 0)
=b(F(t,-),G(t,-); Rut(t,),0).
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Hence,

|(Rnt(t,-)s Rt (t,))ol < [(Sna(ts ), Rue(ts ))ol + [(F(¢, ), Rat(t, -))ol
< |Sna(t, ol Bne(t, )llo + 1, ) llol| Rt (£, )0,
and so
[Rnt(t,)llo < [[Sna(t, Yo + [[F(2, ) llo-

Integrating this inequality over (0,t) for ¢ € [0, tmax], We get

t t t
(1.13) VI Rua(s,)lo ds < § [1Sna(s, ) llods + § [|F (s, -)llo ds,
0 0 0

which is bounded in view of Lemma 1.3. Similarly, by the definition of a
Galerkin solution, we have

(Snt(t, ), Sne(t,-))o — D(Ru(t, ), Snat(t,-))o + (Sn(t, ), Sne(t, -))o
+ £(Sna(t, 1), Snat(s,))o = (G(X,-), Sne(t, +))o-
After integration over (0,t) for ¢ € [0, tmax], We obtain

(1.14)  V1ISne(s, )15 ds = DY (Ru(s,-), Snae(s,-)o ds
0 0
+1(Sn(s,7), Snt(s,))o ds + 5| (Sna(s, ), Snat(s,))o ds
0 0

t

= S (G<3ﬂ ')7 Snt<3a ))O ds.
0
Observe that

§ (S5 ), Suals, Do ds = 51156, )13

and

S(Snz(s")asnact(sa'))o ||S7w?( )HOa

)
_X(Rn(sa')asnxt(sa ))o ds:S(Rnt(Sa )y Sna(8,-))ods—(Rn(t, "), Snz(t,-))o-
0

Using the e-inequality for the second term, we get

‘i(Rn(Sa )5 Snat(8,°))o ds‘
0

SIISnz( G ds + 2§ [ Rue (s, )5 ds + Cll Ru(t, )15 + HSm:( ol
0 0
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Using (1.13), we obtain

§ (R (s,+), Snat(s,+))ods
| |

0
t t 52
<4\ (|Sna(s, )5 ds + 2§ [|F(s, )15 ds + 5 1S (£ )5 + Cll Rt )lIG
0 0

where C' is a constant introduced by the e-inequality. To estimate the term
SB(G(S, ), Snt(s,+))o ds, we again use the e-inequality:

t t t
§(Gs,), S, Do ds| < CY UGS, ) [3ds + 22 [ 1 Swals, ) ds.
0 0 0

Using these estimates in (1.14), we get
‘ 1 1
(1 =) § 11Sne(s, )5 ds + S ISn(t: G + 5 (5 = D)8 (t, )]G

0
t t t
< CH 1E (s, )G ds + § 11G (s, )15 ds + 1Rt )G+ § 1100 (s, )15 ds |
0 0 0

where C' is a positive constant. The terms of the right-hand side with R,
and S, are estimated by Lemma 1.3. From this, (1.13) and Lemma 1.3, the
inequality (1.12) follows. m

Let us comment on the results obtained. Lemmas 1.3 and 1.4 imply
that if F,G € L*(0,tmax; L*>(L, P)), then any Galerkin solution is in the
space H. This justifies our choice of the space H for the weak formulation
of the problem.

THEOREM 1.1. Assume that

® ¢, 1 € L*(0, tmax),
o T° Q¢ L%(L, P).

Then in H there exists a solution (R,S) of the problem (1.10).
Proof. Let

X, = {Zgjcj ‘ Cj € Hl(O,tmax)},
j=1

Y, = {jz:gjdj ‘ d; Hl(O,tmax)},

where ¢; and (; are as in the Galerkin solution. Observe that X,, C X411
and Y,, C Y, 41 for all n, and that

X, xY, C H.



340 M. Dryja and K. Moszynski

We can assume that the subspaces X, and Y,, satisfy the following approx-
imation condition:

For all (z,y) € H and for all n there exist x,(x) € X,, and y,(y) € Yy,
such that

[(@n (), yn(y) — (#,9)|lH — 0 asn— oo
Let (R, S,) be the Galerkin solution of the problem (1.10). By Lem-
mas 1.3 and 1.4 it follows that the sequence {(R,,Sy)} is bounded in the
Hilbert space H, hence it has a subsequence, denoted also by {(R.,,S»)},
weakly converging to some (R, S) € H. We prove that (R, S) is a solution
of the problem (1.10). Fix m, and take n > m. For k = 1,...,m we have
b(Rnt(t7 ‘)7 Snt(t7 )7 gk'v O) + G(Rn(t, ')7 Sn(ta )7 glﬂ 0)
b(Rnt(ta ')a Snt(ta '); 0, Ck) + a(Rn(t’ ')a Sn(ta '); 07 Ck)
= b(F(tv ')7 G(ta '); 07 Ck)a
a.e. in (0,tmax). Taking linear combinations with coefficients cg,d; €
H*Y(0, tmayx) for the first and second equations respectively and k = 1,...,m,
and adding the resulting equations, we get
b(Rnt(t7 ‘)7 Snt(t7 )7 ‘/7 W) + G(Rn(t, ')7 Sn(t7 )7 ‘/7 W)
= b(F(t7 ')’ G(t7 '); Vi W)7
a.e. in (0,tmax), for all V- € X, and W € Y,,. Letting n — oo and taking
into account the continuity of the forms a and b in H, we see that
a.e. in (0,tmax), for all V € X,,, and W € Y,,, and any m, and hence for all
(V,W) = H, by the approximation property of the subspaces X,, and Y,,. m

THEOREM 1.2. Under the assumptions of Theorem 1.1, the problem
(1.10) has a unique solution in H.

Proof. Suppose that (R, S) and (R1,S1) are two solutions of (1.10) in H.
For (U,Z) = (R — Ry,S — S1) we have

b(Ut(tv ')7 Zt(ta '); v, W) + a(U(S’ ')a Z(5> '); v, W) ds =0,

where U(0,-) = Z(0,-) =0 for all (V,W) € H, a.e. in (0, tmax)-
Setting now V = U and W = Z and using the definition of a¢ and b, we
get

DU, U)o+ (Ze, Z)o + |1 2|13 + Kl Za || = 0.

Integrating this equation over (0,t) for ¢ € (0, tmax), We obtain
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t

D 1 ¢
S UG, NG+ 512, WG+ 120,115 ds + 1\ 122 (s, )15 ds = 0
0 0

for all t € [0, tyax], which implies that R = Ry and S = 5. =
REMARK 1. It follows from Lemmas 1.3 and 1.4 that the problem (1.10)
is stable with respect to F' and G, i.e.
IR, S)l[e < ClUIFI L2(0 tmans22(£,P)) + 1Gll2(0 tmaiz2 @ P
where C' is independent of F' and G.

REMARK 2. Theorems 1.1 and 1.2 imply that we may attribute to the
original problem (0.2)—(0.4) a generalized solution (7, Q) satisfying

S (s,z)]ds,

0
S (s,z)]ds,

where (R, S) € H is the solutlon of (1.10). It follows that
t

T, Q, {T(s,") ds € L*(0, tmax; L*(L, P)),
0

however

[Q(s,) ds € L0, tmax; H'(L, P)).
0

Note that 7" and even S T(s,-)ds are in LQ(O tmax; L2(L, P)). In fact the
initial and boundary Values for (T,Q), T°(x), Q°(x), &(t,0), and ¥(t,0)
enter into the problem via the right-hand sides of the equations for (R,.5),
but 7(0,z), Q(0,x), T(t,0) are not well defined. This explains why the
computed approximate solution (7', Q) of the original problem only weakly
depends on the boundary condition on 7. The function @ is more regular,
hence its behaviour is slightly different.

2. Numerical model. On the rectangle 2 = [0, tymax) X [L, P], we define
the grid
t,=m™m, n=0,1,....N, xp=L+hk, k=0,1,...,.M+1,
where tax = 7N and (M +1) = P — L.

Let f = {fr}r=0,1,...m+1 be a real grid-function. The following notation
is used for finite differences:

Afy = fre1 — fr  (forward difference),
Vfe=ft— fem1 (backward difference).
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We denote by (-, ), and || - ||, the L? (L, P) inner product and norm, respec-
tively:

M M
(fo9)n=hY_ fuge,  IfIE =0 f.
k=1 k=1

The values T}, Q}, . . . of grid-functions correspond to T'(¢,,, zx), Q(tn, k), - - -
where (T, Q) is the solution of (0.2)—(0.4) (see Section 1).

Let us now define the relevant discrete problem. The difference equations
for the grid-functions {T}'} and {Q}} are

(21) T - Tp 4 S (A V)@F Q) = 0,
(22) Qp" - @+ A+ V)R + N T@r Q)

(VA)(Qk +Qy) =0,
where A = 7/h and pu = 7/h?.
For these equations we impose initial conditions for the grid-functions
(2.3) T, Q) k=1,...M,
and the following boundary conditions:
(24) Ty =9¢", Ty, =0, Qy=v¢", Qyui1=0 n=01...N.
The right-hand sides of these conditions are given by certain averages of

the functions T°, Q¥ in L?(L, P) or ¢ and ¢ in L?(0, tyax) respectively. For
example

o tng1 o L1
o :; txn P(s)ds, :; tsn Y(s)ds,

and so on. Introducing, as in Section 1, the grid-functions

o7 :¢"<1— %) and 4} :w"<1— %)
k=0,1,....M+1, n=0,1,...
and
Ty =T¢ —of, Qi =QF — o,
we write down equations for T and @:

~ )\
TPt — T8+ V)(QF + Q) = Fpr,

QT - Qi+ Q(A + V(T + T + Q(Qk + Q)

(VA)(Qk +Qp) =G
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Here
n n+1 kh
G = 3 g (@ + 0 = [0 -y 0 “)] (1-527):

Let us finally introduce grid-functions R} and S7:
gy kh
§j=0

Sp—r> 0L s - T[Qi ~vo(1- —thL)]
5=0

Multiplying both sides of the last two equations by 7 and then adding them
for j =0,1,...,n, we get equations for {R}} and {S} }:

(2.5) Ry — R+ A(A + V)(Sp+ St = 7oy,
n mn D)\ n n n n
(2.6) STt - S; +T(A+V)( k+Rk+1)+§(Sk +5¢1)

FI/M n n n
- VAT + Sy =

where

=Ty + = (Qk+1 Q2_1)+M+1_ Y(t;)
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For the original functions T} and @} we have

Rn+1 — RV Sg'f'l — SZ
T

n+1 __ k k n n+1 __ n
Lt =——— +o, ko= + Y-

Let now {fx}r=01,.. m+1 and {gx}r=01,.  m+1 be two grid-functions.
We need the following facts:

LEMMA 2.1. If fM+1 =go = O, then

M M
ngAfk = — Z fxVar.
=1 =1

Proo f We have

M+1
ngAfk = ka+1gk - kagk = Z fegr—1 — kagk
M
= fulgr—1—g&) + faryr9m — fron
k=2

—ka gk—1 = gk) + f1(90 — g1) kang .

LEMMA 2.2, [If fo =gpm+1 =0, then

M M
S V== fulgi.
k=1 k=1

Proof. Exchange fj ar:d Ji. m
LEMMA 2.3. If go = gara1, then

M M
S o VAL ==Y Afrlg.
k=1 k=0

Proof Let Fi, = Afy. We have

ngVAfk = ngFk - Z Frgria
k=1 k=0

M-—-1
=Y Filgk — grs1) + gmFur — 91 Fo
k=1

M-1

Fi(9k+1 — gx) + 9 Frnr — gv1 Fu
k=1

M

= —Fyg1 + Fogo = ZFk Gk+1 — Jk) ZAkagk "
=0
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LEMMA 2.4 (Gronwall inequality). Let uy, > 0, v, > 0, v < Ypt1,¢ >0
forallm=0,1,2,... If
n—1
0 < uy S'yn+cZuj foralln=0,1,...,
§=0
then
0<wu, <e"™(yn+uy) foralln=0,1,...

Proof. Let us proceed by induction. We have 0 < ug < (y9 + up) =
€% (y0 + up). Assume the statement to be true for u;, 0 < j < n. Then

n n
0<upt1 <Ypg1+ Czuj < VYnt1 + Czejc(’)’j + up)
j=0 j=0

n

< Ynp1 ¢ (i + o)

j=0
S Yn+1 |:1 + CZ(@C)]} —+ UpC Z(ec)j.
=0 j=0
Observe that
n 4 ec(n+1) -1 ec(nJrl) -1
eNj — e - d 1 - - c(n+1).
cZ(e ) =c¢ =1 an +c - e
7=0
But ¢ < e® — 1, hence
n ) c(n+1) _ 1
e
OV <l T & pe(ntl)
cZ(e ) <e . <e .
7=0
Hence
Unt1 < Ynt1 [1 + CZ(ec)j] +uge Y _(€) < e (g1 4 ug). w
§=0 §=0

We are now in a position to state the first stability result. For an arbitrary
grid-function {U}! }x=1,... .M, let

ur=[up,..., Uyt

THEOREM 2.1. There exists a positive constant K, independent of T
and h, such that for m =0,1,...,N — 1 (N < timax/7),

-----

m
DIIR™[I; + IS™|I7 < K[HEOH?L + 1S5 + 7 Y (12¥ )17 + ||_W’“||i)]-
k=0

Proof. Multiply (2.5) and (2.6) by Dh(R}™ + R}) and h(Sp' + Sp)
respectively and sum each of them over kK = 1, ..., M. Summing the resulting
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two equations for n =0,1,...,m, we get

AD
D[|R™ | — I B°|I7] + T > (A+ V)" + 8™, R + R,
n=0

=7D) (8",R"+R"")y,
n=0
and

m AD n n n n
18 “Hi—HSOHth—Z«AJrV)(E + R, S 4 57,

n=0

+ 2 D IIST + SR = S D ((VAYS + 8, S+ 5,
n=0 n=0

=7y (@, 8"+ 8",
=0

Adding the resulting equations, by Lemmas 2.1-2.3 we have

m m M
m n T n n K n n
DIE™ 8" R+ 5 SIS +8" R+ D DT hIA(S + 57

n=0 n=0 k=0
=7DY (S",R"+ R )y +7Y _ (@",8" + 8" + DRI} + 1IS°l3.
n=0 n=0

Applying now the e-inequality to the terms (@™, R" + E”H)h and (¥,
S™+ §"+1)h, we obtain

(2.7) D(1— 2gr)||Rm“||i + (1 —2e7)||S™ 1|2

m M n+1

n=0 k=0

< 2:r Y DIRYE + 87E)
n=0

+ DIIB|7, +IS" 117 + Kar ) [DI2" 7 + 127 7]:

n=0
Set
Ums1 = DR + ST,
K, - 2 2 D 02 1 0|2
Ml = D||®" g R SEI%,
ot = Toge7 S DI+ 1R+ g R+ e IR
2e

71 e
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and apply the Gronwall inequality (Lemma 2.4). This implies, for 0 < m <
N g tmax/Tv

DR + 8™} < enr2e/4-37
Kl n n D 012 1 012
< e TZ (DI + 127 3) + T2 IR + 518”13

We can choose a constant K such that for all n with 0 <n < N,

m

DIR™ | +118™ 17 < K[r S (12" + 127 13) + 1B + 15°17]
n=0

since mT < N7 < tpax. ®
We now state the second stability result.

THEOREM 2.2. There is a positive constant K independent of T and h
such that for m=1,...,N —1 (N < tyax/7),

DHRm+1H2+HSm+1H2
n+1
oy R o e

n=0 k=0
N

< K[ + 1977) + 1B +11S°3]

n=0

Proof. For sufficiently small ¢ the inequality (2.7) implies

m m M n+1
DIR™ 7 487 3423 187+ 8™ + ZZM[—)]
n=0 n*Ok 0
< DI R™ 1|2 gm+12 T gn 4 gntly2
< DIE™ I+ 18" + 3y ZH_ + 52

ey 2o 3 [ A

=0 k=0

K
< (D" 28
< 1_25;;) |27 + 13

D 1
RO SO 2
+ IR+ IS

2eT - n |2 mni||2
+ 1—257’2[13”3 17 + 1S [I%]-

n=0




348 M. Dryja and K. Moszynski

Applying now Theorem 2.1 to the last sum and taking into account that
Tm < TN = tnax, we obtain the assertion with some constant K. =

REMARK 3. Theorems 2.1 and 2.2 give the stability of the finite dif-
ference scheme (2.5), (2.6). Theorem 2.1 gives the stability in the discrete
norm, the max norm with respect to ¢ and the discrete L? norm with respect
to z. Theorem 2.2 gives the stability in some stronger norm. By well-known
theory, the convergence in the corresponding norms follows from the stabil-
ity [8].

We now derive a stability result for the scheme with the grid-functions
{T} and {Q}}, corresponding directly to the original problem (0.2)-(0,4).
For that we introduce divided differences (R"** — R™) /7 and (S" "1 —S8™) /7.

It is convenient to use the following simple estimate:

Let f=1[f1,..., fu]" and fo = fars1 = 0. Then

M
(2.8) A+ V)f7 <4 h(Af)?
k=0

THEOREM 2.3. There exists a constant K independent of T and h such
that for all m < N = typax /T,

m—1 2 m—1 2

Rn+1 Rn §n+1 ﬁn - ASm
> - S s oa(SF)
n=0 h n=0

M
AS n n
<K[\|R°Hh+us°rh+zh( k) P g Hh]

n=0 n=0

Proof. From (2.5) we deduce

R _ R | A+V
T h 8
and by (2.8), summing with respect to m < N = tax/7, we get
En-ﬁ-l _En 2 S M A(Sn —|—S .
T — §§ZhZ[T} +2TZ||¢ 3.
n=0 h n=0 k=0

This gives the estimate

(29 7>
n=0

for a constant K independent of 7 and h. Using Lemmas 2.1 and 2.2, we

Rn+1 R’n 2

N
| = K U+ N+ 1R 15
n=0

T
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deduce from (2.6) that

m Sn+1 Sn 2 - Asm+1
T HS +1H2—|— hZ( )
n=0
102 K AS’g
S Hh+2h2( :
k=0
PSSt st mp
n=0 k=1
m Sn+1 Sn
()
We have
m M
ZhZ[ : <Sk+l—5k>}<Rk“+Rk>
n=0 k=1
m M 1 —1
B AtV (B Ry R - Ry
- [S] (F
M ITA+v A+V
—hZ[TSE}(R +R}) +h2[ Sm“}( m 4 R
and hence
m Sn+1 g 2 . Astrl
AEE |+ Lz + hz( )
n=0

102 K ASY
= 515715 + §hz <T

k=0
2 i R’n+1 En B En _Enfl
4 — T T h
+2 M§07EO+E1 _D A—i_vSerl Rm+1 +Rm
i\ n . A\ h .

+TZ<@" Sl Sn) .
h

Using the e-inequality twice, we obtain
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m

M m+1\ 2
_ 1 m+1)|2 K AST
193 s 4 glsm+ (5 )hz( i
1 ASY
5rso||h+f<hz< 31

SnJrl Sn

m M A 2
+TKZZh(ES}§>

n=1 k=0
Rn+1 o R’n 2 R’n o R?’L*l 2
O ) [t & B -2
ot T T h

+ K||R°|[; + K|IRY|7 + KIIB™ |7 + K|R™7 + K277
n=0

Using now the Gronwall inequality (Lemma 2.4) to the terms ZkMzo(%Sg)Q,
inequality (2.9), Theorems 2.1 and 2.2, we get the final result. m

Figure 1
Functions T(tx) and Q(t.x) for t=02 ps, D=0.35, kappa=0.01

14
----- Q=Q(0.2x)
s T=T(02x)
10 i
o b
2 6 % e
© !
= N
i\
i\
2ET
,/' \:\
-2
0 2 4 6 8 10

x = distance from heat source

REMARK 4. The last theorem gives the stability and convergence for
the finite difference scheme, directly for the original grid-functions {77’}

and {Q7}.
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REMARK 5. We now briefly discuss certain numerical experiments which
confirm our results. The numerical solution of the problem (0.2)—(0.4) with
D = 0.35 and k = 0.01 is obtained by the scheme (2.1)—(2.4) for the original
problem. The graph shown in Fig. 1 corresponds to experiments described
in [1] and [4]. Two curves T'(t,x) and Q(t,x) are given, both for ¢ = 0.2 pi-
coseconds (time from the beginning of the experiment). For both functions
the zero initial conditions and zero Dirichlet boundary conditions at z = P
are imposed. The heat impulse is modelled by the boundary conditions of
the Dirichlet type at x = L, which depend on t. For T' this impulse is con-
stantly equal to zero, while Q(¢, L) is a discontinuous rectangular impulse
lasting 0.096 picoseconds. A weaker regularity of the function T' (temper-
ature) compared to @ (heat flux) is visible: see oscillations near the left
boundary, and then a sudden jump and stabilization at a positive level, be-
fore the wave peak. This means that the zero boundary condition imposed
at x = L for T does not play any role even very close to the start point of
the heat impulse. The heat flux ) behaves in a more regular way. It is a
travelling wave of the form of smoothed initial impulse.
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