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MINIMAX PREDICTION
UNDER RANDOM SAMPLE SIZE

Abstract. A class of minimax predictors of random variables with multi-
nomial or multivariate hypergeometric distribution is determined in the case
when the sample size is assumed to be a random variable with an unknown
distribution. It is also proved that the usual predictors, which are minimax
when the sample size is fixed, are not minimax, but they remain admissible
when the sample size is an ancillary statistic with unknown distribution.

1. Introduction. In this paper we derive the minimax predictor of a
random variable Y on the basis of the observation of a random variable X, in
the case when X and Y have the multinomial or multivariate hypergeomet-
ric distribution with the same unknown parameter. We assume that the loss
function is given by (2) below and the sample size N is an ancillary statistic
(i.e. a statistic whose distribution does not depend on the unknown pa-
rameter). Moreover, we assume that this distribution is unknown. A widely
held notion about ancillary statistics is that their distribution should be
irrelevant to statistical inference. Therefore the minimax predictor for the
case of fixed sample size may seem to be the best candidate for the mini-
max predictor when the sample size is random. However, we prove that it is
not minimax in our case. The first example of this ancillarity paradox was
given by Brown (1990). Further examples were presented by He (1990) and
Amrhein (1995).

There are a lot of practical situations which emphasize the importance
of considering a random sample size. For instance, there are so-called non-
response models that take into account that for certain units in the sample,
it may not be clear to which stratum they belong. Non-response typically
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occurs in surveys concerning sensitive data, such as drug abuse or tax eva-
sion. To model this so-called phenomenon of non-at-homes, we assume that
selected units, independent of each other and independent of their strata,
fail to answer with the same probability. The effective sample size is then
an ancillary statistic with a binomial distribution with an unknown suc-
cess probability. (For other examples, see Chaudhuri and Stenger (1992),
Chap. 11.)

2. Minimax prediction for the multinomial distribution. Let
X = (X1, . . . ,Xr)T be an observation such that X |N = n, n = 0, 1, 2, . . . ,
has the multinomial distribution with parameters (n, p), i.e.,

Pp(X = (x1, . . . , xr)T )

=





n!
x1! . . . xr!

px1
1 . . . pxrr if xi ∈ {0, 1, . . . , n} and x1 + . . .+ xr = n,

0 otherwise,

where p ∈ P = {p = (p1, . . . , pr)T : pi ≥ 0, i = 1, . . . , r; p1 + . . .+ pr = 1} is
unknown. We observe the value of these random variables X, N and using
an estimate d(X,N) = (d1(X,N), . . . , dr(X,N))T , we want to predict the
value of the random variable Y = (Y1, . . . , Yr)T which has the multinomial
distribution with parameters (m, p). We assume that m is known, that the
unknown distribution of N given by the probability function

(1) f(n) = P (N = n)

does not depend on p, that X and Y are independent and that the loss
connected with the estimator d(X,N) is of the form

(2) L(Y, d) = (d− Y )TC(d− Y ) =
r∑

i,j=1

cij(di − Yi)(dj − Yj),

where C = (cij) is a nonnegative definite, symmetric matrix.
Denote by

R(p, d, f) = EN{E(X,Y )[L(Y, d(X,N)) |N ]}
the risk function connected with the predictor d(X,N). We are interested
in finding the minimax predictor of Y , say

d∗(X,N) = (d∗1(X,N), . . . , d∗r(X,N))T ,

for which

sup
p∈P, (f(n))∈F

R(p, d∗, f) = inf
d∈D

sup
p∈P, (f(n))∈F

R(p, d, f),

where D is the set of all predictors for which the risk function is finite, and
F = {(f(n)) : f(i) ≥ 0, i = 0, 1, . . . ,

∑∞
i=0 f(i) = 1}.
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Set c = (c11, . . . , crr)T . The following theorem determines the minimax
predictor of Y in the case when the distribution of the sample size N is
known (Jokiel-Rokita (1997)).

Theorem 1. Suppose that the distribution of the sample size N given
by (1) is known. Define a predictor of the random variable Y by

d0(X,N) =





mβ0 if N = 0,

m

(
1

N + α0
X +

α0

N + α0
β0

)
if N > 0,

whenever

(3) m

[
f(0)−

∞∑

i=1

f(i)
i

]
− 1 < 0,

and

d0(X,N) =

{
mβ0 if N = 0,
m

N
X if N > 0,

whenever

(4) m

[
f(0)−

∞∑

i=1

f(i)
i

]
− 1 ≥ 0,

where α0 is a solution to the equation

mEN
[
α2 −N

(N + α)2

]
− 1 = 0,

and β0 is the point (β0
1 , . . . , β

0
r )T for which

(5) cTβ0 − βT0 Cβ0 = max
β∈P

(cTβ − βTCβ).

Then d0(X,N) is minimax under the loss function given by (2) with C
nonnegative definite.

The following theorem determines a minimax predictor of Y in the case
when the distribution of the sample size N is unknown.

Theorem 2. Under the loss function given by (2) with C nonnegative
definite, the predictor of Y defined by

(6) d∗(X,N) =

{
mβ0 if N = 0,
m

N
X if N > 0,

where β0 is a solution to equation (5), is minimax.
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Proof. The predictor d∗(X,N) coincides with the minimax predictor
d0(X,N) derived under the assumption that the inequality (3) is false. The
risk function R(p, d∗, f) of d∗(X,N) is

R(p, d∗, f) = f(0)[(m2 −m)pTCp+m2βT0 Cβ0 − 2m2βT0 Cp+mcT p]

+ (cT p− pTCp)
∞∑

i=1

(m2/i+m)f(i),

and

R(p, d∗, f) ≤ f(0)[(m2 −m)pTCp+m2βT0 Cβ0 − 2m2βT0 Cp+mcT p]

+ (cT p− pTCp)(m2 +m)
∞∑

i=1

f(i)

≤ (m2 −m)pTCp+m2βT0 Cβ0 − 2m2βT0 Cp+mcT p

= R(p,mβ0, f0),

where f0 is the probability function of the distribution concentrated at zero.
Thus the risk function of d∗(X,N) is bounded from above by the risk func-
tion of mβ0, the minimax predictor of Y in the case when the ancillary
statistic N has distribution given by f0 (Jokiel-Rokita (1998)). Therefore,
this bound must be attained by any decision used to predict Y under the
unknown distribution of N .

Remark 1. The minimax predictor d0(X) of Y , in the case when the
sample size is fixed (Wilczyński (1985)), given by

(7) d0(X) =




m

(
1

n+ α0
X +

α0

n+ α0
β0

)
if n > 0,

mβ0 if n = 0,

where

α0 =
n+

√
m2n+mn(n− 1)
m− 1

if n > 0,

and β0 is a solution to equation (5), is not minimax in the case when the
sample size n is a random variable with an unknown distribution.

Remark 2. In contrast to the case when the distribution of the random
sample size N is known (but is not concentrated at a point) (Jokiel-Rokita
(1997)), the minimax predictor d0(X) based on a fixed sample size, given by
(7), remains admissible in the case when the distribution of N is unknown.
This follows from the fact that d0(X) is the unique Bayes predictor (Jokiel-
Rokita (1998)) when the ancillary statistic N is concentrated at a point.
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3. Minimax prediction for the multivariate hypergeometric dis-
tribution. Let X = (X1, . . . ,Xr)T be an observation such that X |N = n,
n = 0, 1, . . . ,W, has the multivariate hypergeometric distribution with pa-
rameters (W,M,n), i.e.,

Pp(X = (x1, . . . , xr)T )

=





(
M1

x1

)
. . .

(
Mr

xr

)

(
W

n

) if xi ∈ {0, 1, . . . ,Mi}, i = 1, . . . , r,
x1 + . . .+ xr = n,

0 otherwise,

where M1 + . . . + Mr = W , W > 2 is known, r ≥ 2, 0 < n ≤ W ,
and p = (M1/W, . . . ,Mr/W )T is an unknown parameter. Moreover, sup-
pose that N has an unknown distribution given by the probability function
f(n) = P (N = n) which does not depend on the unknown parameter p. We
want to find the minimax predictor d∗(X,N) = (d∗1(X,N), . . . , d∗r(X,N))T

of the random variable Y = (Y1, . . . , Yr)T which has the multivariate hyper-
geometric distribution with parameters (W,M,m). We assume that X and
Y are independent, and that m is known.

The following theorem determines the minimax predictor of Y in the
case when the distribution of the sample size N is known (Jokiel-Rokita
(1997)).

Theorem 3. Suppose that the distribution of the sample size N given
by (1) is known. Define a predictor of the random variable Y by

d0(X,N) =





mβ0 for N = 0,

m

[
W + α0

W (N + α0)
X +

α0(W −N)
W (N + α0)

β0

]
for N > 0,

whenever




m

[
f(0)−

W∑

i=1

f(i)(W − i)
i(W − 1)

]
− W −m

W − 1
< 0,

m
W∑

i=1

f(i)
(W − i)(W − i− 1)

W (W − 1)
− W −m

W − 1
> 0;

by

d0(X,N) =

{
mβ0 for N = 0,
m

W
[X + (W −N)β0] for N > 0,
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whenever

m
W∑

i=1

f(i)
(W − i)(W − i− 1)

W (W − 1)
− W −m

W − 1
= 0;

and by

d0(X,N) =

{
mβ0 for N = 0,
m

N
X for N > 0,

whenever

(8) m

[
f(0)−

W∑

i=1

f(i)(W − i)
i(W − 1)

]
− W −m

W − 1
≥ 0,

where α0 is a solution to the equation

mEN
[

(W −N)2(α2 −N)− (W −N)(N + α)2

W (W − 1)(N + α)2

]
− W −m

W − 1
= 0,

and β0 is a solution to equation (5). Then d0(X,N) is minimax under the
loss function given by (2) with C nonnegative definite.

The following theorem determines a minimax predictor of Y in the case
when the distribution of the sample size N is unknown.

Theorem 4. Under the loss function given by (2) with C nonnegative
definite, the predictor of Y defined by

(9) d∗(X,N) =

{
mβ0 for N = 0,
m

N
X for N > 0,

where β0 is a solution to equation (5), is minimax.

Proof. The predictor d∗(X,N) coincides with the minimax predictor
d0(X,N) derived under the assumption that the distribution of the ran-
dom sample size satisfies (8). The risk function R(p, d∗, f) of d∗(X,N) is

R(p, d∗, f)

= f(0)
[(
m2−mW−m

W−1

)
pTCp+m2βT0 Cβ0 − 2m2βT0 Cp+m

W−m
W−1

cT p

]

+ (cT p− pTCp)
W∑

i=1

(
m2(W − i)
i(W − 1)

+m
W −m
W − 1

)
f(i),
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and

R(p, d∗, f)

≤ f(0)
[(
m2−m W−m

W−1

)
pTCp+m2βT0 Cβ0−2m2βT0 Cp+m

W−m
W−1

cT p

]

+ (cT p− pTCp)
(
m2 +m

W −m
W − 1

) W∑

i=1

f(i)

≤
(
m2 −m W −m

W − 1

)
pTCp+m2βT0 Cβ0 − 2m2βT0 Cp+m

W −m
W − 1

cT p

= R(p,mβ0, f0),

where f0 is the probability function of the distribution concentrated at zero.
Therefore the theorem follows from the same arguments as in the proof of
Theorem 2.

Remark 3. The minimax predictor d0(X) in the case when the sample
size is fixed (Jokiel-Rokita (1998)), given by

(10) d0(X) =




m

[
W + α0

W (n+ α0)
X +

α0(W − n)
W (n+ α0)

β0

]
if n > 0,

mβ0 if n = 0,
where

α0 =
n[m(W − n) +W (W −m)] + (W − n)

√
∆

m(W − n)(W − n− 1)−W (W −m)
,

∆ = m2n(W − n)(W − 1) +mnW (n− 1)(W −m)

and β0 is a solution to equation (5), is not minimax in the case when the
sample size n is a random variable with an unknown distribution.

Remark 4. Just as in Remark 2, the minimax predictor d0(X) based
on a fixed sample size, given by (10), remains admissible in the case when
the distribution of the random sample size N is unknown.

4. Examples. As an application of the results obtained, we consider
the following two examples.

Example 1 (multinomial distribution). Suppose that during a certain
period we observe s independently working devices, and each of them can
undergo failure with an unknown probability θ. Each of the failures can
appear due to one of r possible reasons. Then the observed values Xi, i =
1, . . . , r, represent the number of devices which have been damaged as a
consequence of the ith reason, and N is the number of devices which have
suffered damage. Hence the sample size N is an ancillary statistic which
has the binomial distribution b(s, θ). The purpose is to predict the value
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of Y = (Y1, . . . , Yr)T , where Yi is the unknown number among m devices
which we should expect to be destroyed as a result of the ith reason. Using
Theorem 2, under the loss function given by (2) with C = I, we see that
the minimax predictor of Y is

d∗(X,N) =

{
mβ0 if N = 0,
m

N
X if N > 0,

where β0 = (1/r, . . . , 1/r)T .

Example 2 (multivariate hypergeometric distribution). Suppose that
we randomly choose (without replacement) s elements from a population
which contains a subset of W elements. The values Mi, i = 1, . . . , r, rep-
resenting for example the number of elements of the ith quality category
are assumed to be unknown (

∑r
i=1 Mi = W ). The observed values Xi,

i = 1, . . . , r, represent the number of elements from the subset of W ele-
ments which are from the ith quality category. Hence the sample size N
is an ancillary statistic which has the hypergeometric distribution. We are
interested in predicting the value of Y = (Y1, . . . , Yr)T , where Yi is the un-
known number of elements of the ith category which we should expect to
be in our new sample of size m. One can give an analogous example relating
to a voting model. In these cases we can use Theorem 4.
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