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THE BAYES CHOICE OF AN EXPERIMENT IN
ESTIMATING A SUCCESS PROBABILITY

Abstract. A Bayesian method of estimation of a success probability p
is considered in the case when two experiments are available: individual
Bernoulli (p) trials—the p-experiment—or products of r individual Bernoulli
(p) trials—the pr-experiment. This problem has its roots in reliability, where
one can test either single components or a system of r identical components.
One of the problems considered is to find the degree r̃ of the pr̃-experiment
and the size m̃ of the p-experiment such that the Bayes estimator based
on m̃ observations of the p experiment and N − m̃ observations of the
pr̃-experiment minimizes the Bayes risk among all the Bayes estimators
based on m observations of the p-experiment and N − m observations of
the pr-experiment. Another problem is to sequentially select some combi-
nation of these two experiments, i.e., to decide, using the additional in-
formation resulting from the observation at each stage, which experiment
should be carried out at the next stage to achieve a lower posterior expected
loss.

1. Introduction. Consider a sequence of Bernoulli trials with success
probability p. To estimate p, two experiments can be performed: one can
observe either an individual trial outcome (the p-experiment), or the product
of r individual trial outcomes (the pr-experiment), where r is an integer,
r ≥ 2. A total of N experiments (tests) are performed, and the problem is

• to find a pair (r̃, m̃), where r̃ is the size of the alternative to the
p-experiment, and m̃ is the number of p-experiments in a sequence of N
experiments, so that the final Bayes estimator of the parameter p gives the
lowest Bayes risk;
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• to sequentially select some combination of these two experiments so
that at each stage, the information available at that stage can be used to
determine which experiment to carry out at the next stage in order to achieve
a lower posterior expected loss.

The pr-experiment is a slightly disguised version of the well-studied
grouped data experiment with groups of size r. This type of sampling has
been shown to reduce the cost of classifying all the members of a population
according to whether or not they possess a certain trait, when the incidence
rate is fairly low (Dorfman (1943)). It has also been used to estimate the fail-
ure probability, q = 1−p, and using groups of sizes other than one can reduce
the cost of testing (Sobel and Elashoff (1975)), and can lower the variance
of the resulting estimator (Chen and Swallow (1990)). Reliability settings,
in which components can be tested either individually, or as a system of r
identical components in a series, are prime examples of situations in which
group testing can be useful (Easterling and Prairie (1971)). Other group
testing scenarios arise in environmental monitoring, where sample units of
soil or plant matter are combined and tested for toxins. In these settings,
the term “group testing” is often replaced by “composite sampling”. (For
a review of composite sampling methods see Lancaster and Keller-McNulty
(1996).) Gastwirth and Hammick (1989), for example, applied group testing
methods to estimate the prevalence of human immune virus (HIV) antibod-
ies among subpopulations. In screening scenarios of this sort, group testing
is particularly desirable, because it provides donor privacy, an issue of seri-
ous concern among individuals at risk of HIV. The “pooled testing” of Tu,
Litvak, and Pagano (1995) is another example in which group testing is used
to estimate HIV prevalence.

In this paper the problem is placed in a Bayesian framework with squared
error estimation loss. In Section 2, the notation is presented and the problem
is precisely defined. In Section 3, the allocation that minimizes the Bayes
risk is derived, and in Section 4, an ad hoc adaptive sequential procedure
is proposed, and on the basis of computer simulations, it is shown that
this procedure gives a lower Bayesian expected loss on average of the Bayes
terminal estimator.

2. Notation and description of the problem. We set up the prob-
lem in its fully sequential form, although much of the development in the
next sections will not use all of this notation. Let X11,X12, . . . be a sequence
of iid Bernoulli (p) random variables that are independent of Xr1,Xr2, . . .
iid Bernoulli pr random variables. A total of N tests (experiments) will
be done, where at each stage the decision to carry out a p-experiment or
pr-experiment can be made based on past observations. More precisely, an
allocation rule is a sequence a = (a1, . . . , aN ) such that for k = 1, . . . , N, ak
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takes values 0 or 1 and is measurable with respect to {Z1, . . . , Zk−1}, where
Zi = aiX1i + (1− ai)Xri. Thus, ai indicates the population from which the
ith observation or test is sampled, with 1 indicating the p-experiment and
0 indicating the pr-experiment. The terminal estimator must be measurable
{Z1, . . . , ZN}. Finally, let mk =

∑k
i=1 ai be the total number of observations

taken from p-experiments at stage k and nk = k −mk be the total number
of observations taken from pr-experiments at stage k, where k = 1, . . . , N.
In the case k = N, the k subscript will be dropped.

When m observations from p-experiments and n observations from pr-
experiments are taken, then a sufficient statistic for the parameter p is
the vector (X(m)

1 ,X
(n)
r ), where X

(m)
1 denotes the number of successes in

the p-experiments, and X
(n)
r the number of successes in the pr-experi-

ments. The initial goal is to find the Bayes estimator d∗(X(m)
1 ,X

(n)
r ) of

the parameter p, i.e., the estimator for which

R(π, d∗) = inf
d
R(π, d),

where R(π, d) = Eπ[EpL(p, d)] is the Bayes risk of the estimator d with
respect to the prior distribution π of the parameter p ∈ P = (0, 1). The
function L(p, d) denotes the loss function connected with the estimator d,
and it is supposed to be the squared estimation error loss function of the form

L(p, d) = (p− d)2.(1)

The choice of the quadratic loss function is reasonable if we pay attention
to the error in the same degree for all values p, irrespective of whether the
true value p is near to 0 or 1. Otherwise one should consider, for instance,
the weights 1/p, 1/(1− p) or 1/(p(1− p)).

We assume that the prior distribution π is of the form

fr(p;α, β, γ) =
1

Mr(α, β, γ)
pα−1(1− p)β−1(1− pr)γ−1I(0,1)(p),(2)

where α, β, γ ∈ (0,∞), r ∈ N, and

Mr(α, β, γ) =
1�

0

pα−1(1− p)β−1(1− pr)γ−1 dp.(3)

If observations from p- and pr-experiments are taken, then the prior distri-
bution above is a natural conjugate distribution, nd we will denote it by
πr(α, β, γ).

Lemma 1. The Mr(α, β, γ) function has the following properties:

1. Mr(α, β, 1) = B(α, β), where B(α, β) denotes the beta function;

2. Mr(α+ 1, β, 1) = α
α+βMr(α, β, 1);

3. Mr(α, β + 1, γ) = Mr(α, β, γ)−Mr(α+ 1, β, γ);
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4. Mr(α+ 1, β, γ) = Mr(α, β, γ)−Mr(α, β + 1, γ);

5. Mr(α, β, γ + 1) = Mr(α, β, γ)−Mr(α+ r, β, γ);

6. Mr(α, β, γ) =
γ−1∑

i=0

(
γ − 1
i

)
(−1)iMr(α+ ir, β, 1)

=
γ−1∑

i=0

(
γ − 1
i

)
(−1)iB(α+ ir, β);

7. Mr(α+ 1, β, γ) =
γ−1∑

i=0

(
γ − 1
i

)
(−1)iMr(α+ ir, β, 1)

α+ ir

α+ ir + β

=
γ−1∑

i=0

(
γ − 1
i

)
(−1)iB(α+ ir, β)

α+ ir

α+ ir + β
.

3. The minimum Bayes risk allocation. The following lemma gives
the form of the Bayes estimator of the parameter p with respect to the prior
distribution πr(α, β, γ) in the case when m observations from p-experiments
and n observations from pr-experiments (m+ n = N) are taken.

Lemma 2. Under the loss function given by (1), if m observations from
p-experiments and n observations from pr-experiments are taken, then the
estimator

d∗(X(m)
1 ,X(n)

r )

(4) =
Mr(α+X

(m)
1 + rX(n)

r + 1, β +m−X(m)
1 , γ + n−X(n)

r )

Mr(α+X
(m)
1 + rX(n)

r , β +m−X(m)
1 , γ + n−X(n)

r )

(5) =

γ+n−X(n)
r −1∑

i=0

B(α +X
(m)
1 + rX

(n)
r + ir, β +m−X(m)

1 )

(−1)i(γ + n−X(n)
r − 1− i)! i!

α+X
(m)
1 + rX

(n)
r + ir

α+ β + rX
(n)
r + ir +m

γ+n−X(n)
r −1∑

i=0

B(α+X
(m)
1 + rX

(n)
r + ir, β +m−X(m)

1 )

(−1)i(γ + n−X(n)
r − 1− i)! i!

is Bayes with respect to the prior distribution πr(α, β, γ), and its Bayes risk
is

(6) R(πr(α, β, γ), d∗)

=
1

Mr(α, β, γ)

m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)[
Mr(α+ i+ rj + 2, β +m− i, γ + n− j)

− M2
r (α+ i+ rj + 1, β +m− i, γ + n− j)
Mr(α+ i+ rj, β +m− i, γ + n− j)

]
.
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Proof. The probability of observing x1 successes in the sequence of p-
experiments, and xr successes in the sequence of pr-experiments, given p, is
equal to

P (X(m)
1 = x1, X

(n)
r = xr | p) =

(
m

x1

)(
n

xr

)
px1+rxr(1− p)m−x1(1− pr)n−xr ,

where x1 ∈ {0, 1, . . . ,m}, xr ∈ {0, 1, . . . , n}. Hence, the density function
of the posterior distribution of the parameter p is of the form (2) with
α := α + x1 + rxr, β := β + m − x1, γ := γ + n − xr. Under the loss
function given by (1), the Bayes estimator d∗(X(m)

1 ,X
(n)
r ) of p is equal to

the expected value of the posterior distibution, so it is of the form (4), and
by items 6 and 7 of Lemma 1, it is of the form (5).

Denote by π∗ = πr(α + x1 + rxr, β + m − x1, γ + n − xr) the posterior
distribution of p. The Bayesian expected loss is equal to the variance of the
posterior distribution, and is of the form

Eπ
∗
L(p, d∗) =

Mr(α+ x1 + rxr + 2, β +m− x1, γ + n− xr)
Mr(α+ x1 + rxr, β +m− x1, γ + n− xr)

(7)

− M2
r (α+ x1 + rxr + 1, β +m− x1, γ + n− xr)
M2
r (α+ x1 + rxr, β +m− x1, γ + n− xr)

.

The distribution of the statistic (X(m)
1 ,X

(n)
r ) is

P (X(m)
1 = x1, X

(n)
r = xr)

=
1

Mr(α, β, γ)

(
m

x1

)(
n

xr

)

×
1�

0

pα+x1+rxr−1(1− p)β+m−x1−1(1− pr)γ+n−xr−1 dp.

Hence, the Bayes risk R(πr(α, β, γ), d∗) (the expected value of the Bayesian
expected loss) of the Bayes estimator d∗(X(m)

1 ,X
(n)
r ) is given by (6).

If the prior parameters α, β, γ of the distribution πr(α, β, γ) are known,
and the sample size N is fixed, then the Bayes risk of the Bayes estimator
d∗ depends on the number m of p-experiments and on the size r of the
alternative experiment to the p-experiment.

Write Rα,β,γN (r,m) = R(πr(α, β, γ), d∗(X(m)
1 ,X

(N−m)
r )) to emphasize

that we will consider the Bayes risk for d∗ as a function of r and m.

Proposition 1. For given α, β, γ and N, there exists an r0 such that
for all r > r0, R

α,β,γ
N (r,m) is a decreasing function of m.

Set Rα,βN (r,m) = Rα,β,1N (r,m). If γ = 1, i.e., when the prior distribution
is a beta distribution B(α, β), we might be interested in finding a pair (r̃, m̃)
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for which

Rα,βN (r̃, m̃) = inf
(r,m)∈I

Rα,βN (r,m),

where I = N× {0, 1, . . . , N}.
Let us remark that Rα,β,γN (r,N) = Rα,β,γN (2, N) for all r ∈ {2, 3, . . .}.

Hence for m̃ = N we assume that r̃ = 2. Unfortunately, we cannot give an
explicit general formula for such an optimal pair (r̃, m̃). Applying numerical
evaluation leads to the following assertions.

Remarks 1. 1. The optimal pair (r̃, m̃) depends not only on the param-
eters α, β of the prior distributions, but also on the sample size N : (r̃, m̃) =
(r(α, β,N),m(α, β,N)).

2. For β ≥ α, we have r̃ = 2. In this case the value of m̃ depends on α,
β and N.

3. For β > 2α, the optimal m̃ equals N, i.e., we should take observations
only from the p-experiment.

4. For β < α, the optimal m̃ is 0, i.e., we should take observations only
from the pr̃-experiment. In this case the value of r̃ depends on α, β and N.

5. If r̃ > 2, then m̃ = 0.

For some illustration of the remarks above see the figures below.
It follows from the conclusions above that we do not need to search for

an optimal pair (r̃, m̃) in the case β > 2α, because then (r̃, m̃) = (2, N). In
the case when α ≤ β ≤ 2α, we just look for an optimal m̃, since r̃ = 2. For
β < α, we can limit ourselves to finding the optimal r̃, because then m̃ = 0.

Figures: The Bayes risk R as a function of the number of p-experiments for various values
of α, β and r
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In order to emphasize the need of searching for the optimal (r̃, m̃), con-
sider

%(α, β,N) :=
Rα,βN (r̃, m̃)

Rα,βN (2, N)
,

the ratio of the Bayes risk under the optimal approach and the Bayes risk
under the “conservative” approach, i.e., taking only observations from the
p-experiment.

Remarks 2. The function %(α, β,N) has the following properties:

1. If β ≤ 2α, then for fixed α and β, it is a decreasing function of N ; for
fixed α and N, it is an increasing function of β; for fixed β and N, it is a
decreasing function of α.

2. If β > 2α, then %(α, β,N) = 1.

For illustration we give some values of the % function: %(3, 2, 10) = 0.804,
%(3, 1, 10) = 0.681, %(17, 1, 10) = 0.379, %(5, 1, 10) = 0.572, %(5, 1, 20) =
0.531.

4. Sequential allocation minimizing the posterior expected loss.
Applying the optimal allocation procedure described in the previous sec-
tion gives us the possibility of minimizing the mean value of the posterior
expected loss, i.e., the Bayes risk. In this approach we do not use any ad-
ditional information from the observations. In contrast, in the sequential
approach, at each stage, this additional information may be used to decide
which experiment should be carried out at the next stage. Sequential de-
cisions between two experiments for estimating a success probability were
applied by Hardwick, Page and Stout (1998). They have shown, among other
things, that the ar-cut allocation minimizes the asymptotic mean squared
error of the maximum likelihood estimator of the parameter p, and that the
adaptive ar-cut procedure, replacing the MLE with the Bayes estimator,
is asymptotically Bayes. We have applied this adaptive procedure and two
other procedures in computer simulations to check if they give, on average,
a lower posterior expected loss of the final Bayes estimator.

The adaptive ar-cut procedure applied with the Bayes estimator is as
follows: use the Bayes estimator to estimate the parameter p, and if this es-
timator is below (above) the cutpoint ar, then observe an individual (prod-
uct) trial at the next stage. The cutpoint ar is the unique root in (0, 1) of
the equation in p,

pr(1− pr) + r2pr−1 − 1 = 0,

which is obtained by equating to zero the difference between the Fisher
information about p contained in a single observation of the p-experiment
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and in a single observation of the pr-experiment (see Hardwick, Page and
Stout (1998)). Some of the values of ar (first reported by Loyer (1983)) are
as follows: a2 = 0.333, a5 = 0.536, a10 = 0.679, a20 = 0.792, a50 = 0.892,
a100 = 0.937.

Other ways of choosing the experiment at stage k may be based on
the minimization of the Bayes risk of the Bayes estimator with respect to
the posterior distribution of the parameter p after k − 1 observations. Two
procedures can be considered. At stage k, take an observation from the
p-experiment if the Bayes risk of the Bayes estimator after one observation
of this experiment is less than after one observation from the pr-experiment,
i.e., if

M2
r (αk + 1, βk + 1, γk)
Mr(αk, βk + 1, γk)

+
M2
r (αk + 2, βk, γk)

Mr(αk + 1, βk, γk)
− M2

r (αk + 1, βk, γk + 1)
Mr(αk, βk, γk + 1)

− M2
r (αk + r + 1, βk, γk)
Mr(αk + r, βk, γk)

> 0,

where αk, βk and γk are the parameters of the posterior distribution after
k− 1 observations. Otherwise, take an observation from the pr-experiment.
This procedure will be called the one-step procedure. Another one, at stage
k, takes an observation from the p-experiment if the Bayes risk of the Bayes
estimator after N−k observations of this experiment is less than after N−k
observations from the pr-experiment, i.e., if

N−k∑

i=0

(
N − k
i

)[
Mr(αk + ir + 2, βk, γk +N − k − i)

− M2
r (αk + ir + 1, βk, γk +N − k − i)
Mr(αk + ir, βk, γk +N − k − i)

−Mr(αk + i+ 2, βk +N − k − i, γk)

+
M2
r (αk + i+ 1, βk +N − k − i, γk)
Mr(αk + i, βk +N − k − i, γk)

]
> 0,

where αk, βk and γk are the parameters of the posterior distribution after
k− 1 observations. Otherwise, take an observation from the pr-experiment.
This procedure will be called the (N − k)-step procedure. Computer simula-
tions lead to the following conclusions for these three procedures.

• the one-step procedure and the ar-cut procedure give similar gains on
average; on the other hand, the (N−k)-step procedure gives the lowest gain;
• the gain of these procedures depends on the value of the parameters α

and β of the prior distribution and in general it is greater for small values
of α and β;
• the gain is greater for large N.
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