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SEQUENTIAL ESTIMATION OF POWERS OF A SCALE
PARAMETER FROM DELAYED OBSERVATIONS

Abstract. The problem of sequentially estimating powers of a scale pa-
rameter in a scale family and in a location-scale family is considered in
the case when the observations become available at random times. Certain
classes of sequential estimation procedures are derived under a scale invariant
loss function and with the observation cost determined by a convex function
of the stopping time and the number of observations up to that time.

1. Introduction. Estimation with delayed observations was investi-
gated by Starr, Wardrop and Woodroofe (1976), who considered the case
of Bayes estimation of a mean of normally distributed observations with
known variance under a squared error loss and under the assumption that
the observation cost involves only cost per unit time. Some of their results
were generalized by Magiera (1996). He dealt with estimation of the mean
value parameter of the exponential family of distributions under a weighted
squared error loss and with the observation cost determined by a convex
function of the stopping time. Jokiel-Rokita and Stępień (2007) studied the
model with delayed observations for estimating a location parameter under
a location invariant loss function and under the assumption that the obser-
vation cost is determined by a convex function of the stopping time and the
number of observations up to that time.

We consider the following model. Let the sample (X1, . . . , Xn) have a
joint distribution Pσ with a Lebesgue p.d.f.

1
σn

f

(
x1

σ
, . . . ,

xn
σ

)
,(1)

where f is known and σ > 0 is an unknown scale parameter or a joint
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distribution P(µ,σ) with a Lebesgue p.d.f.

1
σn

f

(
x1 − µ
σ

, . . . ,
xn − µ
σ

)
,(2)

where f is known and both parameters, i.e., the location parameter µ∈R and
the scale parameter σ > 0 are unknown. It is assumed that Xi is observed
at time ti, i = 1, . . . , n, where t1, . . . , tn are the values of the order statis-
tics of positive i.i.d. random variables U1, . . . , Un which are independent of
X1, . . . , Xn.

Let

k(t) =
n∑
i=1

1[0,t](Ui)(3)

denote the number of observations which have been made by time t ≥ 0, and
let Ft = σ{k(s), s ≤ t, X1, . . . , Xk(t)} be the information which is available
at time t.

The problem is to estimate the parameter η = σr, r > 0. If observation
is stopped at time t, the loss incurred is defined by

Lt(η, d) := L(η, d) + cAk(t) + c(t),(4)

where L(η, d) denotes the loss associated with estimation when η is the
true value of the parameter and d is the chosen estimate. The function c(t)
represents the cost of observing the process up to time t. It is supposed to
be a differentiable and increasing convex function such that c(0) = 0. The
constant cA ≥ 0 is the cost of taking one observation.

The family {Pσ : σ > 0} with the p.d.f. given by (1) is called a one-
parameter scale family and is invariant under the scale transformations x 7→
sx with s > 0. Consequently, the decision problem is invariant under scale
transformation if and only if L(η, a) = L(srη, sra) for all s > 0, which is
equivalent to

L(η, a) = γ(a/η)(5)

for a Borel function γ(·) on [0,∞). An estimator d of the parameter η = σr

is scale equivariant if and only if

d(sX1, . . . , sXn) = srd(X1, . . . , Xn).

The family {P(µ,σ) : µ ∈ R, σ > 0} with the p.d.f. given by (2) is called
a location-scale family and is invariant under the location-scale transforma-
tions x 7→ sx + c with s > 0 and c ∈ R. The decision problem is invariant
under location-scale transformation provided that a loss function satisfies
condition (5). An estimator d of η = σr is location-scale equivariant if and
only if

d(sX1 + c, . . . , sXn + c) = srd(X1, . . . , Xn).
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Suppose that we agree to take at least one observation. If we observe the
process for t ≥ t1 units of time, then the conditional expected loss, given
k(t), associated with an equivariant estimator d(Xk(t)) based on the random
size sample Xk(t) = (X1, . . . , Xk(t)) is of the form

Rt(η, d(Xk(t))) := Eη[Lt(η, d(Xk(t))) | k(t)] = h(k(t)) + c(t),(6)

where Eη means the expectation with respect to the conditional distribution
given η. The form of the risk function Rt(η, d), given by (6), follows from
the fact that the risk of any equivariant estimator of the parameter η in the
invariant problem of estimation is independent of η (see e.g. Shao (2003),
Theorem 4.7). The function h depends only on the loss function γ.

In Section 2 we present the method of finding a stopping time which min-
imizes the expected risk associated with a minimum risk equivariant (MRE)
estimator of the parameter η = σr over all stopping times. We consider a
situation when the common distribution of the random variables U1, . . . , Un
which can be interpreted as the lifetimes of n objects is known exactly. In
Section 3 we apply the results of Section 2 to estimate powers of a scale
parameter in some subclass of a one-parameter exponential family of distri-
butions, and the normal variance and the scale parameter of a negative ex-
ponential distribution (in the case when the location parameter is unknown).
We consider the following loss functions associated with estimation: a stan-
dardized squared error loss, a standardized LINEX loss function, Stein’s loss
function and a squared log error loss function. We construct optimal sequen-
tial estimation procedures under the aforementioned loss functions in the
model with delayed observations.

2. The optimal stopping time. Suppose that in the estimation prob-
lem of the parameter η = σr with the loss function L(η, d) there exists
an MRE estimator, denoted by d∗. We look for a stopping time τ∗ which
minimizes the expected risk

E[Rτ (η, d∗(Xk(τ)))] = E[h(k(τ)) + c(τ)](7)

over all stopping times τ ≥ t1, τ ∈ T , where T denotes the class of Ft-
measurable functions. Such a stopping time will be called an optimal stopping
time. Then we construct an optimal sequential estimation procedure of the
form (τ∗, d∗(Xk(τ∗))).

Let the random variables U1, . . . , Un be independent and have a common
known distribution function G. Suppose that G(0) = 0, G(t) > 0 for t > 0,
G is absolutely continuous with density g, and g is the right hand derivative
of G on (0,∞). Denote the class of such G by G. Let ζ = sup{t : G(t) < 1},
and let %(t) = g(t)[1−G(t)]−1, 0 ≤ t < ζ, denote the failure rate. Under the
above assumptions the process k(t), given by (3), is a nonstationary Markov
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chain with respect to Ft, 0 ≤ t ≤ ζ (see Starr et al. (1976)). The infinitesimal
operator At of the process k(t) at h̃ is defined by

Ath̃(k) := lim
s→0+

s−1E[h̃(k(t+ s))− h̃(k(t)) | k(t) = k].(8)

The domain DAt of At is the set of all bounded Borel measurable functions h̃
on the set {0, 1, . . . , n} for which the limit in (8) exists boundedly pointwise
for every k ∈ {0, 1, . . . , n}.

To determine an optimal stopping time we use the following lemma which
provides the form of the infinitesimal operator At of the process k(t), given
by (3).

Lemma 1. Let h̃ be a given real-valued function on the set {0, 1, . . . , n}.
The infinitesimal operator At of the process k(t), given by (3), at h̃ is of the
form

Ath̃(k) = (n− k)[h̃(k + 1)− h̃(k)]%(t).

Proof. Fix k ∈ {0, 1, . . . , n}. It is clear that

E[h̃(k(t+ s))− h̃(k(t)) | k(t) = k]

=
n∑

i=k+1

[h̃(i)− h̃(k)]P (k(t+ s) = i | k(t) = k)

= [h̃(k + 1)− h̃(k)]P (k(t+ s) = k + 1 | k(t) = k)

+
n∑

i=k+2

[h̃(i)− h̃(k)]P (k(t+ s) = i | k(t) = k)

= [h̃(k + 1)− h̃(k)](n− k) G(t+ s)−G(t)
1−G(t)

[
1−G(t+ s)

1−G(t)

]n−k−1

+
n∑

i=k+2

[h̃(i)− h̃(k)]P (k(t+ s) = i | k(t) = k)

≤ [h̃(k + 1)− h̃(k)](n− k) G(t+ s)−G(t)
1−G(t)

[
1−G(t+ s)

1−G(t)

]n−k−1

+ 2 sup
i≤n
|h̃(i)|P (k(t+ s) ≥ k + 2 | k(t) = k)

= [h̃(k + 1)− h̃(k)](n− k) G(t+ s)−G(t)
1−G(t)

[
1−G(t+ s)

1−G(t)

]n−k−1

+ 2 sup
i≤n
|h̃(i)|

{
1−

[
1−G(t+ s)

1−G(t)

]n−k[
1− (n− k) G(t+ s)−G(t)

[1−G(t+ s)]

]}
.
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Now it is easy to see that

lim
s→0+

E[h̃(k(t+ s))− h̃(k(t)) | k(t) = k]
s

= (n− k)[h̃(k + 1)− h̃(k)]%(t)

and the lemma is proved.

Let h̃(k) = h(k) for k = 1, . . . , n, and h̃(0) = 0. The following theorem
determines the optimal stopping time τ∗ for a large class of possible h.

Theorem 1. Suppose that G ∈ G has nonincreasing failure rate %, and
the function h(k) in formula (6) is such that h(k)−h(k+1) is nonincreasing
for k ∈ {1, . . . , n− 1}. Then the stopping time

τ∗ = inf{t ≥ t1 : Ath̃(k(t)) + c′(t) ≥ 0}(9)
= inf{t ≥ t1 : (n− k(t))[h(k(t))− h(k(t) + 1)]%(t) ≤ c′(t)}

minimizes the expected risk given by (7) over all stopping times τ ≥ t1,
τ ∈ T .

Proof. See Jokiel-Rokita & Stępień (2007), proof of Theorem 1.

3. Examples. In this section we use the solutions of Section 2 to es-
timate powers of a scale parameter in some subclass of a one-parameter
exponential family of distributions, and the normal variance and the scale
parameter of a negative exponential distribution (in the case when the lo-
cation parameter is unknown), under the following loss functions associated
with estimation: the standardized squared error loss

L(η, d) =
(
d

η
− 1
)2

,(10)

the standardized LINEX loss function

L(η, d) = exp
{
a

(
d

η
− 1
)}
− a
(
d

η
− 1
)
− 1 for a 6= 0,(11)

Stein’s loss function (see James and Stein (1961))

L(η, d) =
d

η
− ln

d

η
− 1,(12)

and the squared log error loss function (see Brown (1968))

L(η, d) = (ln d− ln η)2 =
[
ln
d

η

]2

.(13)

Taking MRE estimators as optimal estimators of powers of a scale parameter,
we construct optimal sequential estimation procedures under the aforemen-
tioned loss functions in the model with observations which are available at
random times.
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3.1. A subclass of a one-parameter exponential family of distributions
with a scale parameter. In many cases the p.d.f. given by (1) can be written
in the following way:

fη(x1, . . . , xn) = w(x1, . . . , xn;n)η−ν exp{−T (x1, . . . , xn)/η},(14)

where w(x1, . . . , xn;n) is a nonnegative function, η = σr for some r > 0,
ν = λn, λ > 0; for a known parameter λ, T (X1, . . . , Xn) is a complete suf-
ficient statistic for η; T ∼ G(ν, η). Examples of such models are: gamma
distribution G(µ, σ) with a known parameter µ and η = σ; Laplace distribu-
tion La(0, σ) with η = σ; normal distribution N (0, σ2) with η = σ2; Maxwell
distributionMa(σ) with η = σ2.

Let T (Xk(t)) be the statistic based on the random size sample Xk(t) =
(X1, . . . , Xk(t)), where k(t), given by (3), denotes the number of observa-
tions made by time t. The following theorem provides the MRE estimators
of the parameter η = σr of distributions belonging to the subclass of a
one-parameter exponential family of distributions defined by (14), and the
corresponding risk functions under the loss functions given by (10), (11),
(12) or (13).

Theorem 2. For any stopping time t,

(a) if the loss function is given by (10), then the MRE estimator of the
parameter η is

d∗S(Xk(t)) =
T (Xk(t))
λk(t) + 1

,

and the risk function of the estimator d∗S has the form

Rt(η, d∗S) =
1

λk(t) + 1
+ cAk(t) + c(t);

(b) if the loss function is given by (11), then the MRE estimator of η is

d∗L(Xk(t)) =
1− exp

{
− a
λk(t)+1

}
a

T (Xk(t)),

and the risk function of d∗L has the form

Rt(η, d∗L) = (λk(t) + 1)
[
exp
{
− a

λk(t) + 1

}
− 1
]

+ a+ cAk(t) + c(t);

(c) if the loss function is given by (12), then the MRE estimator of η is

d∗ST (Xk(t)) =
T (Xk(t))
λk(t)

,

and the risk function of d∗ST has the form

Rt(η, d∗ST ) = lnλk(t)− ψ(λk(t)) + cAk(t) + c(t),

where ψ denotes the digamma function;
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(d) if the loss function is given by (13), then the MRE estimator of η is

d∗SL(Xk(t)) =
T (Xk(t))

exp{ψ(λk(t))}
,

and the risk function of d∗SL has the form

Rt(η, d∗SL) = ψ′(λk(t)) + cAk(t) + c(t),

where ψ′ denotes the derivative of the digamma function.

Proof. In this proof we use solutions for the classical model, i.e., for a
fixed sample size. Let k be the fixed size of the sample Xk = (X1, . . . , Xk).
The maximum likelihood estimator of the parameter η, d0(Xk) = T (Xk)/λk,
is an equivariant estimator of η. The statistic T (Xk) is complete and suf-
ficient for η (see e.g. Shao (2003), Proposition 2.1). The statistic Zk =
(Z1, . . . , Zk), where Zi = Xi/Xk for i = 1, . . . , k − 1 and Zk = Xk/|Xk|,
is ancillary, i.e., its distribution does not depend on η. Hence, by Basu’s the-
orem (see e.g. Shao (2003), Theorem 2.4) the statistics T (Xk) and Zk are
independent. Moreover, we have T ∼ G(λk, η), λ > 0.

According to e.g. Theorem 4.8 of Shao (2003), since T (Xk) and Zk are
independent, an MRE estimator of the parameter η is of the form

d∗(Xk) =
d0(Xk)
w∗

with a constant w∗ which minimizes

E1

{
γ

(
d0(Xk)
w

)}
over w, where the expectation E1 is calculated under the assumption that
η = 1.

In this proof we also use the form of the moment generating function of
a random variable which has gamma distribution with parameters ν, η > 0,
i.e.,M(t) = (1/(1−ηt))ν for t < 1/η, and the following facts. If X ∼ G(ν, η),
then E[lnX] = ψ(ν) + ln η and E[lnX]2 = ψ′(ν) + [ψ(ν) + ln η]2.

In the case (a), i.e., for the standardized squared error loss L(η, d) given
by (10), on the basis of e.g. Corollary 4.1 of Shao (2003) the MRE estimator
of the parameter η has the form

d∗S(Xk) =
d0(Xk)E1[d0(Xk)]

E1[d0(Xk)]2
=
λkd0(Xk)
λk + 1

=
T (Xk)
λk + 1

.

Thus the risk associated with estimation is equal to

R(η, d∗S) = Eη[L(η, d∗S)] =
Eη[T (Xk)]2

(λk + 1)2η2
− 2Eη[T (Xk)]

(λk + 1)η
+ 1 =

1
λk + 1

.
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Hence, we conclude that in this model with delayed observations the risk
associated only with estimation errors reduces to

R(η, d∗S(Xk(t))) := Eη[L(η, d∗S) | k(t)] =
1

λk(t) + 1
.

Therefore the total risk, i.e., the total expected loss which consists of the
risk function of the MRE estimator and the observation cost up to time t is
of the form

Rt(η, d∗S) = Eη[Lt(η, d∗S) | k(t)] =
1

λk(t) + 1
+ cAk(t) + c(t).

In the case (b), i.e., under the standardized LINEX loss function L(η, d)
given by (11), to determine the MRE estimator of η we calculate the number
w∗ minimizing the expression

E1

[
exp
{
a

(
T (Xk)
λkw

− 1
)}
− a
(
T (Xk)
λkw

− 1
)
− 1
]

= exp{−a}Mη=1

(
a

λkw

)
− aE1[T (Xk)]

λkw
+ a− 1

=
exp{−a}(
1− a

λkw

)λk − a

w
+ a− 1.

We obtain

w∗ =
a

λk
[
1− exp

{
− a
λk+1

}] .
Then the MRE estimator of the parameter η has the form

d∗L(Xk) =
d0(Xk)

a
λk[1−exp{− a

λk+1
}]

=
1− exp{− a

λk+1}
a

T (Xk).

Thus the risk associated with estimation is equal to

R(η, d∗L) = Eη[L(η, d∗L)]

= exp{−a}Eη
[
exp
{1− exp

{
− a
λk+1

}
η

T (Xk)
}]

−
1− exp

{
− a
λk+1

}
η

Eη[T (Xk)] + a− 1.

Using the form of the moment generating function of the statistic T (which
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has gamma distribution), we obtain

R(η, d∗L) = exp{−a}M
(1− exp

{
− a
λk+1

}
η

)
− λk

[
1− exp

{
− a

λk + 1

}]
+ a− 1

= (λk + 1)
[
exp
{
− a

λk + 1

}
− 1
]

+ a.

Hence, in this model with delayed observations the risk associated only with
estimation errors reduces to

R(η, d∗L(Xk(t))) := Eη[L(η, d∗L) | k(t)]

= (λk(t) + 1)
[
exp
{
− a

λk(t) + 1

}
− 1
]

+ a.

Therefore the total risk is

Rt(η, d∗L) = Eη[Lt(η, d∗L) | k(t)]

= (λk(t) + 1)
[
exp
{
− a

λk(t) + 1

}
− 1
]

+ a+ cAk(t) + c(t).

In the case (c), i.e., for Stein’s loss function L(η, d) given by (12), to deter-
mine the MRE estimator of η we calculate the number w∗ which minimizes
the expression

E1

[
T (Xk)
λkw

− ln
T (Xk)
λkw

− 1
]

=
E1[T (Xk)]

λkw
+ lnλkw − E1[lnT (Xk)]− 1

=
1
w

+ lnw + lnλk − ψ(λk)− 1.

We obtain w∗ = 1. Then the MRE estimator of the parameter η is d∗ST = d0.
Thus the risk associated with estimation is equal to

R(η, d∗ST ) = Eη[L(η, d∗ST )] =
Eη[T (Xk)]

λkη
− Eη[lnT (Xk)] + lnλkη − 1

= lnλk − ψ(λk).

Hence, in this model with delayed observations the risk associated only with
estimation errors reduces to

R(η, d∗ST (Xk(t))) := Eη[L(η, d∗ST ) | k(t)]
= lnλk(t)− ψ(λk(t)).

Therefore the total risk is

Rt(η, d∗ST ) = Eη[Lt(η, d∗ST ) | k(t)]
= lnλk(t)− ψ(λk(t)) + cAk(t) + c(t).
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In the case (d), i.e., under the squared log error loss function L(η, d) given
by (13), to determine the MRE estimator of η we calculate w∗ minimizing

E1

[
ln2 T (Xk)

λkw

]
= E1[ln2 T (Xk)]− 2(lnλkw)E1[lnT (Xk)] + ln2 λkw

= ψ′(λk) + ψ2(λk)− 2(lnλkw)ψ(λk) + ln2 λkw.

We obtain

w∗ =
exp{ψ(λk)}

λk
.

Then the MRE estimator of η is

d∗SL(Xk) =
d0(Xk)

exp{ψ(λk)}
λk

=
T (Xk)

exp{ψ(λk)}
.

Thus the risk associated with estimation is equal to

R(η, d∗SL) = Eη[L(η, d∗SL)]

= Eη[ln2 T (Xk)]− 2[ψ(λk) + ln η]Eη[lnT (Xk)] + [ψ(λk) + ln η]2

= ψ′(λk).

Hence, in this model with delayed observations the risk associated only with
estimation errors reduces to

R(η, d∗SL(Xk(t))) := Eη[L(η, d∗SL) | k(t)] = ψ′(λk(t)).

Therefore the total risk has the form

Rt(η, d∗SL) = Eη[Lt(η, d∗SL) | k(t)] = ψ′(λk(t)) + cAk(t) + c(t).

On the basis of Theorems 1 and 2 we construct optimal sequential estima-
tion procedures of the form (τ∗, d∗(Xk(τ∗))), where τ∗ is defined by (9), and
d∗ is the corresponding sequential MRE estimator of η = σr based on the
random size sample Xk(τ∗). The function h(k) for the specified loss functions
takes the respective forms

hS(k) =
1

λk + 1
+ cAk,

hL(k) = (λk + 1)
[
exp
{
− a

λk + 1

}
− 1
]

+ a+ cAk,

hST (k) = lnλk − ψ(λk) + cAk,

hSL(k) = ψ′(λk) + cAk.

The following theorem determines the optimal sequential estimation pro-
cedures under the loss function L(η, d) given by (10), (11), (12) or (13).

Theorem 3. Suppose that G ∈ G has nonincreasing failure rate %.

(a) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form
(10), the sequential estimation procedure (τ∗S , d

∗
S(Xk(τ∗S))), where
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τ∗S = inf
{
t ≥ t1 : [n− k(t)]

×
[

λ

(λk(t) + 1)(λk(t) + λ+ 1)
− cA

]
%(t) ≤ c′(t)

}
and

d∗S(Xk(τ∗S)) =
T (Xk(τ∗S))

λk(τ∗S) + 1
,

is optimal.
(b) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form

(11), the sequential estimation procedure (τ∗L, d
∗
L(Xk(τ∗L))), where

τ∗L = inf
{
t ≥ t1 : [n− k(t)]%(t)

[
(λk(t) + 1) exp

{
− a

λk(t) + 1

}
− (λk(t) + λ+ 1) exp

{
− a

λk(t)+λ+1

}
+ λ− cA

]
≤ c′(t)

}
and

d∗L(Xk(τ∗L)) =
1− exp

{
− a
λk(τ∗L)+1

}
a

T (Xk(τ∗L)),

is optimal.
(c) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form

(12), the sequential estimation procedure (τ∗ST , d
∗
ST (Xk(τ∗ST ))), where

τ∗ST = inf
{
t ≥ t1 :

[
ln

k(t)
k(t) + 1

+ ψ(λ(k(t) + 1))− ψ(λk(t))− cA
]

× [n− k(t)]%(t) ≤ c′(t)
}

and

d∗ST (Xk(τ∗ST )) =
T (Xk(τ∗ST ))

λk(τ∗ST )
,

is optimal.
(d) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form

(13), the sequential estimation procedure (τ∗SL, d
∗
SL(Xk(τ∗SL))), where

τ∗SL = inf{t ≥ t1 : [n−k(t)][ψ′(λk(t))−ψ′(λ(k(t)+1))−cA]%(t) ≤ c′(t)}

and

d∗SL(Xk(τ∗SL)) =
T (Xk(τ∗SL))

exp{ψ(λk(τ∗SL))}
,

is optimal.
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Proof. We have to show that the assumption of Theorem 1 is satis-
fied, i.e., the function v(k) := h(k) − h(k + 1) is nonincreasing on the set
{1, . . . , n − 1}. Hence, we need to verify the condition v(k + 1) − v(k) =
2h(k + 1) − h(k) − h(k + 2) ≤ 0, which is equivalent to h(k + 1) ≤
(h(k) +h(k+ 2))/2. This can be reduced to the verification that h is convex
on the interval [1, n− 1].

(a) In the model with the standardized squared error loss we obtain

h′′S(k) =
2λ2

(λk + 1)3
> 0 for k > 0.

Hence, hS is strictly convex on (0,∞).
(b) Under the standardized LINEX loss function, we again have

h′′L(k) = exp
{
− a

λk + 1

}
a2λ2

(λk + 1)3
> 0 for k > 0.

(c) For Stein’s loss function, the function hST can be written as

hST (k) = r(λk) +
1

2λk
+ cAk,

where r(λk) = lnλk − 1
2λk − ψ(λk). Hence

h′′ST (k) = λ2r′′(λk) +
1
λk3

> 0 for k > 0,

because r′′(x) > 0 for any x ∈ (0,∞) by Theorem 1 of Qi et al. (2005).
(d) In the model with the squared log error loss function we have

h′′SL(k) = λ2ψ′′′(λk) > 0 for k > 0,

since

ψm(x) = (−1)m+1m!
∞∑
i=0

1
(x+ i)m+1

for x ∈ R+ and m ∈ N,

and in particular

ψ′′′(λk) = 6
∞∑
i=0

1
(λk + i)4

> 0.

3.2. The normal and the negative exponential distribution case. Con-
sider first the classical model. Let k be the fixed size of the sample Xk =
(X1, . . . , Xk). Examples of location-scale distributions with the p.d.f. given
by (2) are

(a) normal distribution N (µ, σ2); as an equivariant estimator of the pa-
rameter σ2 we take

d0(Xk) =
1
k
V (Xk) with V (Xk) =

k∑
i=1

(Xi −Xk)2, V ∼ G
(
k − 1

2
, 2σ2

)
;
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(b) negative exponential distribution NE(µ, σ); as an equivariant esti-
mator d0(Xk) of the parameter σ we take

d0(Xk) =
1
k
V (Xk) with V (Xk) =

k∑
i=1

(Xi −X1:k), V ∼ G(k − 1, σ).

Notice that for both aforementioned distributions the statistic V has
gamma distribution G(λ(n − 1), rσr), where r = 2 and λ = 1/2 for the
normal case, and λ = r = 1 for the negative exponential case.

Consider next the model with delayed observations. Let V (Xk(t)) be the
statistic based on the random size sample Xk(t) = (X1, . . . , Xk(t)), where
k(t), given by (3), denotes the number of observations which have been
made by time t. The following theorem provides the MRE estimators of
the parameter η = σr for the normal case (r = 2) and for the negative
exponential case (r = 1), and the corresponding risk functions under the
loss functions given by (10), (11), (12) or (13).

Theorem 4. For any stopping time t,

(a) if the loss function is given by (10), then the MRE estimator of the
parameter η is

d∗S(Xk(t)) =
V (Xk(t))

r[λ(k(t)− 1) + 1]
,

and the risk function of the estimator d∗S has the form

Rt(η, d∗S) =
1

λ(k(t)− 1) + 1
+ cAk(t) + c(t);

(b) if the loss function is given by (11), then the MRE estimator of η is

d∗L(Xk(t)) =
1− exp

{
− a
λ(k(t)−1)+1

}
ar

V (Xk(t)),

and the risk function of d∗L has the form

Rt(η, d∗L) = [λ(k(t)− 1) + 1]
[
exp
{
− a

λ(k(t)− 1) + 1

}
− 1
]

+ a+ cAk(t) + c(t);

(c) if the loss function is given by (12), then the MRE estimator of η is

d∗ST (Xk(t)) =
V (Xk(t))

rλ(k(t)− 1)
,

and the risk function of d∗ST has the form

Rt(η, d∗ST ) = lnλ(k(t)− 1)− ψ(λ(k(t)− 1)) + cAk(t) + c(t),

where ψ denotes the digamma function;
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(d) if the loss function is given by (13), then the MRE estimator of η is

d∗SL(Xk(t)) =
V (Xk(t))

r exp{ψ(λ(k(t)− 1))}
,

and the risk function of d∗SL has the form

Rt(η, d∗SL) = ψ′(λ(k(t)− 1)) + cAk(t) + c(t),

where ψ′ denotes the derivative of the digamma function.

Proof. The forms of the MRE estimators d∗S , d
∗
L, d

∗
ST and d∗SL were ob-

tained from the general formula for MRE estimators of powers of a scale
parameter in a location-scale family under loss function (5) (see e.g. Shao
(2003), Section 4.2.3, General location-scale families). The formulas for the
risk functions Rt(η, d∗S), Rt(η, d∗L), Rt(η, d∗ST ) and Rt(η, d∗SL) follow from
calculations which use the same technique as in the proof of Theorem 2,
because the statistic V (just as T ) has gamma distribution.

The next theorem determines the optimal sequential estimation proce-
dures under the loss function L(η, d) given by (10), (11), (12) and (13),
respectively.

Theorem 5. Suppose that G ∈ G has nonincreasing failure rate %.

(a) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form
(10), the sequential estimation procedure (τ∗S , d

∗
S(Xk(τ∗S))), where

τ∗S = inf
{
t ≥ t1 : [n− k(t)]

×
[

λ

(λk(t) + 1− λ)(λk(t) + 1)
− cA

]
%(t) ≤ c′(t)

}
and

d∗S(Xk(τ∗S)) =
V (Xk(τ∗S))

r[λ(k(τ∗S)− 1) + 1]
,

is optimal.
(b) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form

(11), the sequential estimation procedure (τ∗L, d
∗
L(Xk(τ∗L))), where

τ∗L = inf
{
t ≥ t1 : [n−k(t)]%(t)

[
(λk(t)+1−λ) exp

{
− a

λk(t) + 1− λ

}
− (λk(t) + 1) exp

{
− a

λk(t) + 1

}
+ λ− cA

]
≤ c′(t)

}
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and

d∗L(Xk(τ∗L)) =
1− exp

{
− a
λ(k(τ∗L)−1)+1

}
ar

V (Xk(τ∗L)),

is optimal.
(c) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form

(12), the sequential estimation procedure (τ∗ST , d
∗
ST (Xk(τ∗ST ))), where

τ∗ST = inf
{
t ≥ t2 :

[
ln
k(t)− 1
k(t)

+ ψ(λk(t))− ψ(λ(k(t)− 1))− cA
]

× [n− k(t)]%(t) ≤ c′(t)
}

and

d∗ST (Xk(τ∗ST )) =
V (Xk(τ∗ST ))

rλ(k(τ∗ST )− 1)
,

is optimal.
(d) Under the loss function Lt(η, d) given by (4) with L(η, d) of the form

(13), the sequential estimation procedure (τ∗SL, d
∗
SL(Xk(τ∗SL))), where

τ∗SL = inf{t ≥ t1 : [n−k(t)][ψ′(λ(k(t)−1))−ψ′(λk(t))−cA]%(t) ≤ c′(t)}

and

d∗SL(Xk(τ∗SL)) =
V (Xk(τ∗SL))

r exp{ψ(λ(k(τ∗SL)− 1))}
,

is optimal.

Proof. The proof is analogous to the proof of Theorem 3.
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