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ON THE NEWTON–KANTOROVICH THEOREM AND
NONLINEAR FINITE ELEMENT METHODS

Abstract. Using a weaker version of the Newton–Kantorovich theorem,
we provide a discretization result to find finite element solutions of elliptic
boundary value problems. Our hypotheses are weaker and under the same
computational cost lead to finer estimates on the distances involved and a
more precise information on the location of the solution than before.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution of the nonlinear equation

(1.1) F (x) = 0,

where F is a Fréchet differentiable operator defined on an open convex subset
D of a Banach space A with values in a Banach space B.

The famous Newton–Kantorovich theorem [4, Th. 6, (1,XVIII)] has been
used to show existence and uniqueness of exact solutions of equation (1.1).
Moreover, a priori and a posteriori estimates can be obtained as a direct
consequence of the Newton–Kantorovich theorem. A survey of such recent
results can be found in [2].

Tsuchiya [6] used that theorem to show existence of finite element so-
lutions of strongly nonlinear elliptic boundary value problems. However, it
can happen that the basic condition in that theorem, the so-called Newton–
Kantorovich hypothesis given in [4], is violated and still Newton’s method
converges [1], [2]. That is why we introduced a weaker hypothesis (see Theo-
rem 2.1 that follows) originated in [1] which can always replace the Newton–
Kantorovich hypothesis used in [4], [6] (see also (3.3)), and under the same
computational cost. This way we can use Newton’s method to solve a wider
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range of problems than before. Moreover, finer estimates on the distances
involved and a more precise information on the location of the solution are
obtained in [1], [2].

Finally, we provide examples of elliptic boundary value problems where
our results apply.

2. Convergence analysis. We state the version of our main result
in [2] needed in this study (see also [1, p. 132, Case 3 for δ = δ0]).

Theorem 2.1. Let F : D ⊆ A→ B be a nonlinear Fréchet differentiable
operator , where D is open, convex , and A, B are Banach spaces. Assume:

• there exists a point x0 ∈ D such that the Fréchet derivative F ′(x0) ∈
L(A,B) is an isomorphism and F (x0) 6= 0;

• there exist positive constants `0 and ` such that the following center
Lipschitz and Lipschitz conditions are satisfied :

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `0‖x− x0‖,(2.1)
‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ `‖x− y‖,(2.2)

for all x, y ∈ D.

Setting
η = ‖F ′(x0)−1F (x0)‖

and
h1 = 1

4(`+ 4`0 +
√
`2 + 8`0`)η,

we further assume

h1 ≤ 1,(2.3)

U(x1, t
∗ − η) = {x ∈ D : ‖x− x1‖ ≤ t∗ − η} ⊆ D,

where x1 = x0 − F ′(x0)−1F (x0) and t∗ ≥ η is the unique least upper bound
of the nondecreasing majorizing sequence {tn} given by

(2.4) t0 = 0, t1 = η, tn+2 = tn+1 +
`1(tn+1 − tn)2

2(1− `0tn+1)
(n ≥ 0),

where

`1 =
{
`0 if n = 0,
` if n > 0.

Then the equation F (x) = 0 has a solution x∗ ∈ U(x1, t
∗ − η) and this

solution is unique in U(x0, t
∗)∩D if `0 = ` and h1 < 1, and in U(x0, t

∗)∩D
if `0 = ` and h1 = 1. If `0 6= ` the solution x∗ is unique in U(x0, R) provided
that 1

2(t∗ +R)`0 ≤ 1 and U(x0, R) ⊆ D.
Moreover , we have the estimate

(2.5) ‖x∗ − x0‖ ≤ t∗.
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We will simply use ‖ · ‖ if the norm involved is understood. Otherwise
we will use ‖ · ‖X for the norm on a particular set X.

We assume the following:

(A1) There exist Banach spaces Z ⊆ X and U ⊆ Y such that the inclu-
sions are continuous, and the restriction of F to Z, denoted again by F, is
a Fréchet differentiable operator from Z to U.

(A2) For any v ∈ Z the derivative F ′(v) ∈ L(Z,U) can be extended to
F ′(v) ∈ L(X,Y ) and it is:

• locally Lipschitz continuous on Z, i.e., for any bounded convex set
T ⊆ Z there exists a positive constant c1 depending on T such that

(2.6) ‖F ′(v)− F ′(w)‖ ≤ c1‖v − w‖ for all v, w ∈ T ;

• center locally Lipschitz continuous at a fixed u0 ∈ Z, i.e., for any
bounded convex set T ⊆ Z with u0 ∈ T there exists a positive constant
c0 depending on u0 and T such that

(2.7) ‖F ′(v)− F ′(u0)‖ ≤ c0‖v − u0‖ for all v ∈ T.

(A3) There are Banach spaces V ⊆ Z and W ⊆ U such that the inclu-
sions are continuous. We suppose that there exists a subset S ⊆ V for which
the following holds: “if F ′(u) ∈ L(V,W ) is an isomorphism between V and
W at u ∈ S, then there exists an extension F ′(u) ∈ L(X,Y ) which is an
isomorphism between X and Y as well”.

To define discretized solutions of F (u) = 0, we introduce the finite-
dimensional subspaces Sd ⊆ Z and Sd ⊆ U parametrized by d, 0 < d < 1,
with the following properties:

(A4) There exists r ≥ 0 and a positive constant c2 independent of d such
that

(2.8) ‖vd‖Z ≤
c2
dr
‖vd‖X for all vd ∈ Sd.

(A5) There exists a projection Πd : X → Sd for each Sd such that, if
u0 ∈ S is a solution of F (u) = 0, then

lim
d→0

d−r‖u0 −Πdu0‖X = 0,(2.9)

lim
d→0

d−r‖u0 −Πdu0‖Z = 0.(2.10)

We show the following result concerning the existence of locally unique
solutions of discretized equations.

Theorem 2.2. Assume that conditions (A1)–(A5) hold. Suppose F ′(u0)
∈ L(V,W ) is an isomorphism, and u0 ∈ S. Moreover , assume F ′(u0) can
be decomposed into F ′(u0) = Q + R, where Q ∈ L(X,Y ) and R ∈ L(X,Y )
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is compact. The discretized nonlinear operator Fd : Z → U is defined by

(2.11) Fd(u) = (I − Pd)Q(u) + PdF (u)

where I is the identity of Y, and Pd : Y → Sd is a projection such that

(2.12) lim
d→0
‖v − Pdv‖Y = 0 for all v ∈ Y

and

(2.13) (I − Pd)Q(vd) = 0 for all vd ∈ Sd.

Then, for sufficiently small d > 0, there exists ud ∈ Sd such that Fd(ud) = 0,
and ud is locally unique.

Moreover , the following estimate holds:

(2.14) ‖ud −Πd(u0)‖ ≤ `1‖u0 −Πd(u0)‖

where `1 is a positive constant independent of d.

Proof. The proof is similar to the corresponding one in [6, Th. 2.1,
p. 126]. However, there are some crucial differences where the weaker (2.7)
is used (needed) instead of the stronger condition (2.6).

Step 1. We claim that there exists a positive constant c3, independent
of d, such that, for sufficiently small h > 0,

(2.15) ‖F ′d(Πd(u0))vd‖Y ≥ c3‖vd‖X for all vd ∈ Sd.

From (A3) and u0 ∈ S, F ′(u0) ∈ L(X,Y ) is an isomorphism. Set B0 =
‖F ′(u0)−1‖.

We have

F ′d(Πd(u0))vd = F ′(u0)vd + Pd(F ′(Πd(u0))− F ′(u0))vd(2.16)
− (I − Pd)(−Q+ F ′(u0))vd.

Since −Q+ F ′(u0) ∈ L(X,Y ) is compact, by (2.12) we get

(2.17) lim
d→0
‖(I − Pd)(−Q+ F ′(u0))‖ = 0.

By (2.12) there exists a positive constant c4 such that

(2.18) sup
d>0
‖Pd‖ ≤ c4.

That is, using (2.7) we get

(2.19) ‖Pd(F ′(Πd(u0))− F ′(u0))‖ ≤ c0c4‖Πd(u0)− u0‖.

Hence, by (2.10) we have

(2.20) ‖F ′d(Πd(u0))vd‖ ≥ (1/B0 − δ(d))‖vd‖,

where limd→0 δ(d) = 0, and so (2.15) holds with c3 = B−1
0 /2.
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Step 2. We shall show

(2.21) lim
d→0

d−r‖F ′d(Πd(u0))−1Fd(Πd(u0))‖ = 0.

Note that

‖Fd(Πd(u0))‖ ≤ c4‖Fd(Πd(u0))− Fd(u0)‖(2.22)

≤ c4
1�

0

‖Gt‖ dt ‖Πd(u0)− u0‖ ≤ c4c5‖Πd(u0)− u0‖,

where

(2.23) Gt = F ′((1− t)u0 + tΠd(u0))

and we used

‖Gt‖ ≤ ‖Gt − F ′(u0)‖+ ‖F ′(u0)‖(2.24)
≤ c0t‖Πd(u0)− u0‖+ ‖F ′(u0)‖ ≤ c5,

where c5 is independent of d.
The claim is proved.

Step 3. We use our modification of the Newton–Kantorovich theorem
with the following choices:

A = Sd ⊆ Z with norm d−r‖wd‖X ,
B = Sd ⊆ U with norm d−r‖wd‖Y ,
x0 = Πd(u0),
F = Fd.

Notice that ‖S‖L(A,B) = ‖S‖L(X,Y ) for any linear operator S ∈ L(Sd, Sd).
By Step 1, F ′d(Πd(u0)) ∈ L(Sd, Sd) is an isomorphism. It follows from

(2.6) and (A4) that for any wd, vd ∈ Sd,

‖F ′d(wd)− F ′d(vd)‖ ≤ c1c4‖wd − vd‖Z ≤ c1c2c4d−r‖wd − vd‖X(2.25)

Similarly, using (2.7) and (A4) we get

‖F ′d(wd)− F ′d(Πd(u0))‖ ≤ c1c2c4d−r‖wd − x0‖X .

Hence the assumptions are satisfied with

(2.26) ` = c1c2c
−1
3 c4 and `0 = c0c2c

−1
3 c4.

From Step 2, we may take sufficiently small d > 0 such that (`0+`)η ≤ 1,
where

η = d−r‖F ′d(Πd(u0))−1Fd(Πd(u0))‖X .

That is, the assumption h1 ≤ 1 is satisfied.
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Hence for sufficiently small d > 0 there exists a locally unique ud ∈ Sd

such that Fd(ud) = 0 and

‖ud −Πd(u0)‖X ≤ 2drη ≤ 2c−1
3 ‖Fd(Πd(u0))‖Y ≤ 2c−1

3 c4c5‖u0 −Πd(u0)‖X .

It follows that (2.14) holds with `1 = 2c−1
3 c4c5.

That completes the proof of the Theorem.

3. Concluding remarks and applications

Remark 3.1. In general

(3.1) c0 ≤ c1 (i.e., `0 ≤ `)
and `/`0 can be arbitrarily large, where ` and `0 are given by (2.26) [1], [2].

If ` = `0 our Theorem 2.2 reduces to Theorem 2.1 in [6, p. 126].
Otherwise our condition h1 ≤ 1 is weaker than the corresponding one in

[6] using the Newton–Kantorovich hypothesis, famous for its simplicity and
clarity:

(3.2) h = 2`η ≤ 1

(see [4], [1]). That is,

(3.3) h ≤ 1 ⇒ h1 ≤ 1

but not necessarily vice versa, unless `0 = `.
As already shown in [2], finer error estimates on the distances ‖ud −

Πd(u0)‖ and a more precise information on the location of the solution are
provided here and under the same computational cost since in practice the
evaluation of c1 requires that of c0.

Note also that our parameter d will be smaller than the corresponding
one in [6], which in turn implies that fewer computations and smaller dimen-
sion subspaces Sd are used to approximate ud. This observation is important
in computational mathematics [1].

The above observations suggest that all results obtained in [6] can be
improved if rewritten with weaker h1 ≤ 1 instead of stronger h ≤ 1.

However, we do not attempt this here (leaving this task to the motivated
reader). Instead we provide examples of nonlinear problems already reported
in [6] where finite element methods apply along the lines of our theorem
above.

Example 3.2 ([6]). Find u ∈ H1
0 (J) and J = (b, c) ⊆ R such that

(3.4) 〈F (u), v〉 =
�

J

[g0(x, u, u′)v′ + g(x, u, u′)v] dx = 0

for all v ∈ H1
0 (J), where g0 and g1 are sufficiently smooth functions from

J × R× R to R.
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Example 3.3 ([6]). For the N -dimensional case (N = 2, 3) let D ⊆ RN

be a bounded domain with a Lipschitz boundary. Then consider the problem:
find u ∈ H1

0 (D) such that

(3.5) 〈F (u), v〉 =
�

D

[q0(x, u,∇u) · ∇v + q(x, u,∇u) · v]dx = 0

for all v ∈ H1
0 (D), where q0, q : D × R × RN → R are sufficiently smooth

functions.

Remark 3.4. Since equations (3.4) and (3.5) are in divergence form,
their finite element solutions are defined in a natural way. Finite element
methods applied to nonlinear elliptic boundary value problems have also
been considered by other authors [3], [5]. Finally, more details on Examples
3.2 and 3.3 can be found in [6].
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