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A QUASISTATIC UNILATERAL AND
FRICTIONAL CONTACT PROBLEM WITH

ADHESION FOR ELASTIC MATERIALS

Abstract. We consider a quasistatic contact problem between a linear
elastic body and a foundation. The contact is modelled with the Signorini
condition and the associated non-local Coulomb friction law in which the
adhesion of the contact surfaces is taken into account. The evolution of
the bonding field is described by a first order differential equation. We de-
rive a variational formulation of the mechanical problem and prove exis-
tence of a weak solution if the friction coefficient is sufficiently small. The
proofs employ a time-discretization method, compactness and lower semi-
continuity arguments, differential equations and the Banach fixed point the-
orem.

1. Introduction. Contact problems involving deformable bodies are
quite frequent in industry as well as in daily life and play an important
role in structural and mechanical systems. Because of the importance of
such processes a considerable effort has been put into their modelling and
numerical simulations. A first study of frictional contact problems within
the framework of variational inequalities was made in [8]. The mathematical,
mechanical and numerical state of the art can be found in [15]. In this paper
we study a quasistatic unilateral contact problem with a non-local Coulomb
friction law and adhesion between a linear elastic body and an obstacle,
the so-called foundation. Models for dynamic or quasistatic processes of
frictionless adhesive contact between a deformable body and a foundation
have been studied in [3, 4, 11, 20]. As in [10, 11] we use the bonding field β as
an additional state variable, defined on the contact surface of the boundary.
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The variable is restricted to values 0 ≤ β ≤ 1, when β = 0 all the bonds
are severed and there are no active bonds; when β = 1 all the bonds are
active; when 0 < β < 1 it measures the fraction of active bonds and partial
adhesion takes place. We refer the reader to the extensive bibliography on the
subject in [14–17, 19]. In [2] a model of a contact problem with adhesion and
friction was studied in which β represents a continuous transition between
total adhesive and pure frictional states. As in [5], in this work by applying a
time-discretization method, we prove that the time-discretized problem has
a unique solution if the friction coefficient is sufficiently small. We finally
obtain the existence of a weak solution by passing to the limit with respect
to time.

The paper is structured as follows. In Section 2 we present some notations
and give a variational formulation. In Section 3 we study a time-discretized
problem which admits a unique solution if the friction coefficient is small
enough (Proposition 3.2). In Section 4 we prove our existence theorem.

2. Problem statement and variational formulation. Let Ω ⊂ Rd

(d = 2, 3) be the domain initially occupied by an elastic body. Here Ω
is supposed to be open, bounded, with a sufficiently regular boundary Γ ,
partitioned into three parts, Γ = Γ 1 ∪Γ 2 ∪Γ 3, where Γ1, Γ2, Γ3 are disjoint
open sets and measΓ1 > 0. The body is acted upon by a volume force of
density ϕ1 on Ω and a surface traction of density ϕ2 on Γ2. On Γ3 the body
is in adhesive frictional contact with a foundation.

Thus, the classical formulation of the mechanical problem is as follows.

Problem P1. Find a displacement field u : Ω × [0, T ] → Rd and a
bonding field β : Γ3 × [0, T ]→ [0, 1] such that

div σ + ϕ1 = 0 in Ω × (0, T ),(2.1)

(σij) = (aijklεkl(u)) in Ω × (0, T ),(2.2)

u = 0 on Γ1 × (0, T ),(2.3)

σν = ϕ2 on Γ2 × (0, T ),(2.4)

(2.5)
uν ≤ 0, σν − cνβ2Rν(uν) ≤ 0,

σν − cνβ2Rν(uν)uν = 0 on Γ3 × (0, T ),

(2.6)



|στ + cτβ
2Rτ (uτ )| ≤ µ|R∗(σν(u))| on Γ3 × (0, T ),

|στ + cτβ
2Rτ (uτ )| < µ|R∗(σν(u))| ⇒ u̇τ = 0,

|στ + cτβ
2Rτ (uτ )| = µ|R∗(σν(u))|

⇒ ∃λ ≥ 0 : u̇τ = −λ(στ + cτβ
2Rτ (uτ )),
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(2.7) β̇ = −[β(cν(Rν(uν))2 + cτ (|Rτ (uτ )|)2)− εa]+ on Γ3 × (0, T ),

u(0) = u0 in Ω,(2.8)

β(0) = β0 on Γ3.(2.9)

Equation (2.1) is the equilibrium equation. Equation (2.2) represents the
elastic constitutive law of the material with (σij) denoting the stress tensor
and (εkl(u)) the small strain tensor; (2.3) and (2.4) are the displacement
and traction boundary conditions, respectively, in which ν denotes the unit
outward normal vector on Γ and σν is the Cauchy stress vector. Condi-
tions (2.5) represent the unilateral contact with adhesion. Conditions (2.6)
represent a non-local frictional contact in which the adhesion is taken into
account and u̇τ is the tangential velocity on the boundary. The tangential
shear cannot exceed the maximal frictional resistance µ|R∗(σν(u))|. If the
strict inequality is satisfied, the surface adheres to the foundation and is in
the so-called stick state, and when equality is satisfied there is relative slid-
ing, the so-called slip state. Here R∗ is a compact regularization operator
(see [7]) and the parameters cν , cτ and εa are given adhesion coefficients
which may depend on x ∈ Γ3. As in [18], Rν , Rτ are truncation operators
defined by

Rν(s) =


L if s < −L,

−s if −L ≤ s ≤ 0,

0 if s > 0,

Rτ (v) =
{
v if |v| ≤ L,

Lv/|v| if |v| > L,

where L > 0 is a characteristic length of the bonds. Equation (2.7), where
[s]+ = max(s, 0) for s ∈ R, describes the evolution of the bonding field and
was already used in [18]. Since β̇ ≤ 0 on Γ3× (0, T ), once debonding occurs,
bonding cannot be reestablished. Also we wish to make it clear that from [13]
it follows that the model does not allow for a complete debonding field in
finite time. Finally, (2.8) and (2.9) are the the initial conditions in which
u0 and β0 denote respectively the initial displacement field and the initial
bonding field. In (2.7) the dot above a variable represents its derivative with
respect to time.

We recall that the inner products and the corresponding norms on Rd

and Sd are given by

u.v = uivi, |v| = (v.v)1/2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)1/2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3).
Here and below, the indices i and j run between 1 and d and the summation
convention over repeated indices is adopted.
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Now, to proceed with the variational formulation, we need the following
function spaces:

H = (L2(Ω))d, H1 = (H1(Ω))d,

Q = {τ = (τij) : τij = τji ∈ L2(Ω)}, Q1 = {σ ∈ Q : div σ ∈ H}.
Note that H and Q are real Hilbert spaces endowed with the respective
canonical inner products

〈u, v〉H =
�

Ω

uivi dx, 〈σ, τ〉Q =
�

Ω

σijτij dx.

The small strain tensor is

ε(u) = (εij(u)) = 1
2(ui,j + uj,i), i, j = {1, . . . , d};

div σ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote by
vν and vτ the normal and the tangential components of v on the boundary Γ ,
given by

vν = v.ν, vτ = v − vνν.
Similarly, for a regular tensor field σ ∈ Q1, we define its normal and tan-
gential components by

σν = (σν).ν, στ = σν − σνν,
and we recall that the following Green formula holds:

〈σ, ε(v)〉Q + 〈div σ, v〉H =
�

Γ

σν.v da ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1

defined by
V = {v ∈ H1 : v = 0 on Γ1},

and let K be the set of admissible displacements of V defined by

K = {v ∈ V : vν ≤ 0 a.e. on Γ3}.
Since measΓ1 > 0, the following Korn inequality holds [8]:

(2.10) ‖ε(v)‖Q ≥ cΩ‖v‖H1 ∀v ∈ V,
where the constant cΩ > 0 depends only on Ω and Γ1. We equip V with the
inner product

(u, v)V = 〈ε(u), ε(v)〉Q,
and ‖ · ‖V is the associated norm. It follows from Korn’s inequality (2.10)
that the norms ‖·‖H1 and ‖·‖V are equivalent on V. Then (V, ‖·‖V ) is a real
Hilbert space. Moreover, by Sobolev’s trace theorem, there exists dΩ > 0
which depends only on the domain Ω, Γ1 and Γ3 such that

(2.11) ‖v‖(L2(Γ3))d ≤ dΩ‖v‖V ∀v ∈ V.
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For p ∈ [1,∞], we use the standard norm of Lp(0, T ;V ). We also use the
Sobolev space W 1,∞(0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ).

For every real Banach space (X, ‖ · ‖X) and T > 0 we use the notation
C([0, T ];X) for the space of continuous functions from [0, T ] to X; recall
that C([0, T ];X) is a real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x(t)‖X .

We suppose that the body forces and surface tractions have the regularity

(2.12) ϕ1 ∈W 1,∞(0, T ;H), ϕ2 ∈W 1,∞(0, T ; (L2(Γ2))d)

and we denote by f(t) the element of V defined by

(2.13) (f(t), v)V =
�

Ω

ϕ1(t).v dx+
�

Γ2

ϕ2(t).v da ∀v ∈ V, t ∈ [0, T ].

Using (2.12) and (2.13) yields

f ∈W 1,∞(0, T ;V ).

Let
H1/2(Γ3) = {w|Γ3 : w ∈ H1/2(Γ ), w = 0 on Γ1},

equipped with the norm of H1/2(Γ ). Let 〈·, ·〉Γ3 denote the duality pairing
on H1/2(Γ3)×H−1/2(Γ3).

Before we start with the variational formulation of Problem P1 let us
state in which sense the duality pairing 〈·, ·〉 is taken. For σ ∈ Q1, if σν ∈
(L2(Γ2))d in the sense of distributions, i.e. there exists s ∈ (L2(Γ2))d such
that

〈σν, ϕ〉H−1/2(Γ )×H1/2(Γ ) =
�

Γ2

s.ϕ da ∀ϕ ∈ (C∞0 (Γ2))d,

where H1/2(Γ ) = (H1/2(Γ ))d and H−1/2(Γ ) = (H−1/2(Γ ))d, we define the
normal stress σν on Γ3 as follows:

(2.14)


∀w ∈ H1/2(Γ3) :

〈σν , w〉Γ3 = 〈σ, ε(v)〉Q + 〈div σ, v〉H −
�

Γ2

s.v da

∀v ∈ V with vν = w and vτ = 0 on Γ3.

We assume that R∗ : H−1/2(Γ3) → L2(Γ3) is a compact linear mapping.
Now, in the study of the mechanical problem P1 we suppose that aijkl ∈
L∞(Ω), 1 ≤ i, j, k, l ≤ d, with the usual conditions of symmetry and ellip-
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ticity, that is,

• aijkl = ajikl = aklij , 1 ≤ i, j, k, l ≤ d,
• ∃α > 0 ∀η = (ηij) ∈ Rd×d with ηij = ηji, 1 ≤ i, j, k, l ≤ d,

aijklηijηij ≥ α|η|2.
We define the bilinear form a(·, ·) on V × V by

a(u, v) =
�

Ω

aijklεij(u)εkl(v) dx.

It follows from Korn’s inequality that a(·, ·) is continuous and coercive, that
is,

(2.15)


(a) there exists M > 0 such that

|a(u, v)| ≤M‖u‖V ‖v‖V ∀u, v ∈ V,
(b) there exists m > 0 such that

|a(v, v)| ≥ m‖v‖2V ∀v ∈ V.
Also as in [6] we define the functional j : V × V → R by

j(u, v) =
�

Γ3

µ|R∗(σν(Pu))| |vτ | da ∀u, v ∈ V,

where P is the projection from V onto V0 = {v ∈ V : div σ(v)+ϕ1 = 0 in Ω}.
If u is a solution of Problem P2 stated below then Pu = u.

As in [18], we suppose that the adhesion coefficients cν , cτ and εa satisfy
the conditions

(2.16) cν , cτ ∈ L∞(Γ3), εa ∈ L∞(Γ3), cν , cτ , εa ≥ 0 a.e. on Γ3.

The friction coefficient µ satisfies

(2.17) µ ∈ L∞(Γ3) and µ ≥ 0 a.e. on Γ3.

We need the following set of bonding fields:

B = {β ∈ L∞(0, T ;L2(Γ3)) : 0 ≤ β(t) ≤ 1 ∀t ∈ [0, T ], a.e. on Γ3}.
Also, we define the adhesion functionals rν : L∞(Γ3) × V × V → R and
rτ : L∞(Γ3)× V × V → R by

rν(β, u, v) = −
�

Γ3

cνβ
2Rν(uν)vν da ∀(β, u, v) ∈ L∞(Γ3)× V × V,

rτ (β, u, v) =
�

Γ3

cτβ
2Rτ (uτ ).vτ da ∀(β, u, v) ∈ L∞(Γ3)× V × V.

Finally, we assume that the initial displacement field u0 belongs to K and

(2.18) a(u0, v − u0) + j(u0, v − u0) + r(β0, u0, v − u0)
≥ (f(0), v − u0)V ∀v ∈ K,
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where
r = rν + rτ ,

and the initial bonding field β0 satisfies

(2.19) β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3.

As in [5], using Green’s formula, we obtain the following variational formu-
lation for Problem P1.

Problem P2. Find a displacement field u ∈W 1,∞(0, T ;V ) and a bond-
ing field β ∈W 1,∞(0, T ;L2(Γ3))∩B such that u(0) = u0, β(0) = β0 and for
almost all t ∈ [0, T ], u(t) ∈ K and

(2.20) a(u(t), v − u̇(t)) + j(u(t), v)− j(u(t), u̇(t))

+ rτ (β(t), u(t), v − u̇(t))

≥ (f(t), v − u̇(t))V + 〈σν(u(t)), vν − u̇ν(t)〉Γ3 ∀v ∈ V,

(2.21) 〈σν(u(t)), zν − uν(t)〉Γ3 + rν(β(t), u(t), z− u(t)) ≥ 0 ∀z ∈ K,

(2.22) β̇(t) = −[β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)− εa]+ a.e. on Γ3,

Our main result, which will be established in Section 4, is the following
theorem.

Theorem 2.1. Let T > 0 and assume (2.12) and (2.15)–(2.19). Then
Problem P2 has at least one solution if the friction coefficient is sufficiently
small.

3. A time-discretized formulation. This evolution problem can be
integrated in time by an implicit scheme as in [5]. We need a partition of the
time interval [0, T ], 0 = t0 < t1 < · · · < tn = T , where ti = i∆t, 0 ≤ i ≤ n,
with step size ∆t = T/n. We denote by (ui, βi) the approximation of (u, β)
at time ti and ∆ui = ui+1 − ui, ∆βi = βi+1 − βi. For a continuous function
w(t) we set wi = w(ti). Then we obtain a sequence of incremental problems
P in defined for (u0, β0) = (u0, β0) by:

Problem P in. For (ui, βi) ∈ K×L∞(Γ3), find (ui+1, βi+1) ∈ K×L∞(Γ3)
such that

a(ui+1, w − ui+1) + j(ui+1, w − ui)− j(ui+1, ∆ui)
+ rτ (βi+1, ui+1, w − ui+1)

≥ (f i+1, w − ui+1)V + 〈σν(ui+1), wν − ui+1
ν 〉Γ3 ∀w ∈ V,

rν(βi+1, ui+1, z − ui+1) + 〈σν(ui+1), zν − ui+1
ν 〉Γ3 ≥ 0 ∀z ∈ K,

βi+1 − βi

∆t
= −[βi+1(cν(Rν(ui+1

ν ))2 + cτ (|Rτ (ui+1
τ )|)2)− εa]+ a.e. on Γ3.
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Lemma 3.1. Problem P in is equivalent to the following :

Problem Qin. For (ui, βi) ∈ K × L∞(Γ3), find (ui+1, βi+1) ∈ K ×
L∞(Γ3) such that

(3.1)



a(ui+1, w − ui+1) + j(ui+1, w − ui)− j(ui+1, ∆ui)

+ r(βi+1, ui+1, w − ui+1) ≥ (f i+1, w − ui+1)V ∀w ∈ K,

βi+1 − βi

∆t
= −[βi+1(cν(Rν(ui+1

ν ))2 + cτ (|Rτ (ui+1
τ )|)2)− εa]+

a.e. on Γ3.

Proof. We refer the reader to [5].

Proposition 3.2. There exists µ0 > 0 such that for ‖µ‖L∞(Γ3) < µ0,

Problem Qin has a unique solution.

To show Proposition 3.2 we introduce an intermediate problem. Namely,
we define the closed convex set

C∗+ = {g ∈ L2(Γ3) : g ≥ 0 a.e. on Γ3}
and the mapping ϕg : K → R, g ∈ L2(Γ3), given by

ϕg(w) =
�

Γ3

µg|wτ | ds.

For g ∈ C∗+, we introduce the following problem Qing defined as the contact
problem with given friction on the contact zone.

Problem Qing. For (ui, βi) ∈ K × L∞(Γ3), find (ug, βg) ∈ K × L∞(Γ3)
such that

(3.2)


a(ug, w − ug) + ϕg(w − ui)− ϕg(ug − ui) + r(βg, ug, w − ug)

≥ (f i+1, w − ug)V ∀w ∈ K,
βg−βi

∆t
= −[βg(cν(Rν(ugν))2 + cτ (|Rτ (ugτ )|)2)−εa]+ a.e. on Γ3.

As in [5] we have the following lemma.

Lemma 3.3. For any g ∈C∗+, Problem Qing has a unique solution (ug, βg).

To prove Lemma 3.3 we introduce the following auxiliary problem.

Problem P1β. For ui ∈ K, β ∈ L∞(Γ3), find u(β) ∈ K such that

(3.3) a(u(β), v − u(β)) + ϕg(v − ui)− ϕg(u(β)− ui)

+ r(β, u(β), v − u(β)) ≥ (f i+1, v − u(β))V ∀v ∈ K.

We have the following lemma.

Lemma 3.4. Problem P1β has a unique solution.
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Proof. Let A : V → V be the operator given by

(Au, v)V = a(u, v) + r(β, u, v)

= a(u, v) +
�

Γ3

(−cνβ2Rν(uν)vν + cτβ
2Rτ (uτ ).vτ ) da.

From (2.15)(a), (2.11), (2.16), and the properties of the operators Rν and
Rτ (see [19]):

(3.4)
|Rν(a)−Rν(b)| ≤ |a− b| ∀a, b ∈ R,

|Rτ (a)−Rτ (b)| ≤ |a− b| ∀a, b ∈ Rd,

it follows that

|(Au−Av,w)V |
≤ [M + (‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))d

2
Ω‖β‖L∞(Γ3)

]‖u− v‖V ‖w‖V .

Also, we use (2.15)(b) to see that

(Au−Av, u− v)V ≥ m‖u− v‖2V −
�

Γ3

β2cν(Rν(uν)−Rν(vν))(uν − vν) da

+
�

Γ3

β2cτ (Rτ (uτ )−Rτ (vτ )).(uτ − vτ ) da.

As

(3.5)
(Rν(uν)−Rν(vν))(uν − vν) ≤ 0 a.e. on Γ3,

(Rτ (uτ )−Rτ (vτ )) · (uτ − vτ ) ≥ 0 a.e. on Γ3,

we get
(Au−Av, u− v)V ≥ m‖u− v‖2V ,

which implies that A is strongly monotone. Therefore A is a strongly mono-
tone and Lipschitz continuous operator. On the other hand, ϕg is a convex,
proper and lower semicontinuous functional, so by a classical argument of el-
liptic variational inequalities [1], the problem P1β has a unique solution u(β).

We also consider the following problem.

Problem P2β. For βi ∈ L∞(Γ3) and u ∈ V , find β ∈ L∞(Γ3) such that

β − βi

∆t
= −[β(cν(Rν(uν))2 + cτ (|Rτ (uτ )|)2)− εa]+ a.e. on Γ3.

Remark 3.5. Obviously, Problem P2β has a unique solution given by

β =


βi if cν(Rν(uν))2 + cτ (|Rτ (uτ )|)2)βi − εa < 0,

βi + εa∆t

1 +∆t(cν(Rν(uν))2 + cτ (|Rτ (uτ )|)2)

if (cν(Rν(uν))2 + cτ (|Rτ (uβτ )|)2)βi − εa ≥ 0.
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To complete the proof of Lemma 3.3, let v ∈ V and β(v) the correspond-
ing solution of Problem P2β. Let u(β(v)) be the corresponding solution of
Problem P1β and define the mapping T : K → K as

v 7→ T (v) = u(β(v)).

Take v = ui, i = 1, 2. As in [5, Lemma 2.3], there exists a constant C > 0
such that

‖T (u1)− T (u2)‖V ≤ C∆t‖u1 − u2‖V , ∀u1, u2 ∈ K.
Then we conclude by a contraction argument that for ∆t sufficiently small,
Problem Qiηg has a unique solution (ug, βg).

Next, we establish Proposition 3.2. Let gj ∈ C∗+, j = 1, 2, and ugj the
corresponding solutions. Taking v = ug2 in the inequality of (3.2) with
g = g1, and v = ug1 in the inequality of (3.2) with g = g2, and adding
the two inequalities, we get

a(ug1 − ug2 , ug1 − ug2) ≤ r(βg1 , ug1 , ug2 − ug1) + r(βg2 , ug2 , ug1 − ug2)

+ ϕg1(ug2 − ui)− ϕg1(ug1 − ui) + ϕg2(ug1 − ui)− ϕg2(ug2 − ui).
We have

r(βg1 , ug1 , ug2 − ug1) + r(βg2 , ug2 , ug1 − ug2)

=
�

Γ3

[cτ (βg1 − βg2 )(βg1 + βg2 )R(ug1τ )(ug2τ − ug1τ )] da

−
�

Γ3

[cν(βg1 − βg2 )(βg1 + βg2 )R(ug1ν )(ug1ν − ug2ν )] da

+
�

Γ3

[cνβ2
g2

(R(ug1ν )−R(ug2ν ))(ug1ν − ug2ν )] da

+
�

Γ3

[cτβ2
g2

(R(ug1τ )−R(ug2τ ))(ug2τ − ug1τ )] da.

Using the properties (3.5) we then deduce

a(ug1 − ug2 , ug1 − ug2)

≤
�

Γ3

[cτ (βg1 − βg2 )(βg1 + βg2 )R(ug1τ )(ug2τ − ug1τ )] da

−
�

Γ3

[cν(βg1 − βg2 )(βg1 + βg2 )R(ug1ν )(ug1ν − ug2ν )] da

+ ϕg1(ug2 − ui)− ϕg1(ug1 − ui) + ϕg2(ug1 − ui)− ϕg2(ug2 − ui).
Now, from (2.11), (2.15)(b), |Rν(uν)| ≤ L and |Rτ (uτ )| ≤ L, it follows that
there exists a constant C > 0 such that

‖ug1 − ug2‖V ≤ C(‖βg1 − βg2‖L2(Γ3) + ‖µ‖L∞(Γ3)‖g1 − g2‖L2(Γ3)).
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On the other hand, using (2.11) and the properties (3.4), we deduce from
the equality of (3.2) that there exists a constant C ′ > 0 such that

‖βg1 − βg2‖L2(Γ3) ≤ C ′∆t‖ug1 − ug2‖V .
Then

(1− CC ′∆t)‖ug1 − ug2‖V ≤ C‖µ‖L∞(Γ3)‖g1 − g2‖L2(Γ3).

Therefore if ∆t < 1/CC ′, then there exists a constant C ′1 > 0 such that

‖ug1 − ug2‖V ≤ C ′1‖µ‖L∞(Γ3)‖g1 − g2‖L2(Γ3).

To end the proof, define the mapping Φ as

Φ : C∗+ → C∗+, g 7→ Φ(g) = |R∗(σν(ug))|.
We have the following result.

Lemma 3.6. There exists a constant µ0 > 0 such that if

‖µ‖L∞(Γ3) < µ0,

then the mapping Φ admits a unique fixed point g∗ and (ug∗ , βg∗) is a unique
solution to Problem Qin.

Proof. Let g1, g2 ∈ C∗+. Then

‖Φ(g1)− Φ(g2)‖L2(Γ3) = ‖R∗(σν(ug1))−R∗(σν(ug2))‖L2(Γ3).

Using (2.14), the continuity of R∗ and (2.11), we deduce that there exists a
constant c > 0 such that

‖Φ(g1)− Φ(g2)‖L2(Γ3) ≤ c‖ug1 − ug2‖V .
Then

‖Φ(g1)− Φ(g2)‖L2(Γ3) ≤ cC ′1‖µ‖L∞(Γ3)‖g1 − g2‖L2(Γ3).

If we set µ0 = 1/cC ′1, we conclude that for ‖µ‖L∞(Γ3) < µ0, the mapping Φ
is a contraction and so it admits a unique fixed point g∗ and (ug∗ , βg∗) is a
unique solution to Problem Qin.

Lemma 3.7. There exist constants C1 > 0 and C2 > 0 such that

(3.6) ‖ui+1‖V ≤ C1(‖f i+1‖V + 1), ‖∆ui‖V ≤ C2(‖∆f i‖V +∆t)V .

Proof. By setting v = 0 in the inequality of (3.1) we deduce

a(ui+1, ui+1) ≤ j(ui+1, ui+1) + r(βi+1, ui+1, ui+1) + (f i+1, ui+1)V .

Using the properties of j we have

j(ui+1, ui+1) ≤ ‖µ‖L∞(Γ3)dΩ‖R∗(σν(ui+1))‖L2(Γ3)‖ui+1‖V ,

and by (2.14), there exists a constant C3 > 0 such that

‖R∗(σν(ui+1))‖L2(Γ3) ≤ C3(‖ui+1‖V + ‖f i+1‖V ).
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On the other hand, using |R(uν)| ≤ L, |R(uτ )| ≤ L and (2.11), we have

|r(βi+1, ui+1, ui+1)| ≤ dΩL(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖ui+1‖V .
Using (2.15)(b), we deduce the inequality

m‖ui+1‖2V ≤‖µ‖L∞(Γ3)dΩC3(‖ui+1‖V +‖f i+1‖V )‖ui+1‖V +‖f i+1‖V ‖ui+1‖V
+ dΩL(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖ui+1‖V ,

from which we infer that if

‖µ‖L∞(Γ3) <
m

dΩC3
,

then the first inequality of (3.6) holds for some constant C1 > 0. To show
the second inequality of (3.6) we consider the inequality of (3.1) translated
at time ti, that is,

(3.7) a(ui, w−ui) + j(ui, w−ui−1)− j(ui, ui−ui−1) + r(βi, ui, ui+1−ui)
≥ (f i, w − ui)V ∀w ∈ V.

Taking w = ui in the inequality of (3.1) and w = ui+1 in the inequality (3.7)
and adding the two inequalities, we obtain

− a(∆ui, ∆ui)− j(ui+1, ∆ui) + j(ui, ui+1 − ui−1)− j(ui, ui − ui−1)

+ r(βi+1, ui+1, ui − ui+1) + r(βi, ui, ui+1 − ui) ≥ (−∆f i, ∆ui)V .
Then using the inequality

| |ui+1
τ − ui−1

τ | − |uiτ − ui−1
τ | | ≤ |ui+1

τ − uiτ |,
we have

j(ui, ui+1 − ui−1)− j(ui, ui − ui−1) ≤ j(ui, ∆ui).

Therefore

a(∆ui, ∆ui) ≤ j(ui, ∆ui)− j(ui+1, ∆ui) + r(βi+1, ui+1,−∆ui)(3.8)

+ r(βi, ui, ∆ui) + (∆f i, ∆ui)V .

From (2.11), (2.14) and the continuity of R∗, it follows that exists a constant
c > 0 such that

|−j(ui, ∆ui) + j(ui+1, ∆ui)| ≤ c‖µ‖L∞(Γ3)(‖∆ui‖2V + ‖∆f i‖V ‖∆ui‖V ).

Moreover, using, (2.11), |Rν(uj)| ≤ L, |Rτ (uj)| ≤ L, j = i, i+ 1, and (3.4),
we have

|r(βi+1, ui+1,−∆ui) + r(βi, ui, ∆ui)|
≤ LdΩ(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))‖∆ui‖V ‖∆βi‖L2(Γ3).

As
‖∆βi‖L2(Γ3) ≤ ∆tc1,

where c1 > 0, we combine the previous relations to deduce from inequality
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(3.8) that for
c‖µ‖L∞(Γ3) < m,

there exists a constant C2 > 0 such that the second inequality of (3.6) holds.

4. Existence of a solution. In this section we prove our main result,
Theorem 2.1, which guarantees the existence of a weak solution for Problem
P2 obtained as a limit of discrete solutions. For this, we define the sequence
of functions un : [0, T ]→ V by

un(t) = ui +
t− ti
∆t

∆ui on [ti, ti+1], i = 0, . . . , n− 1,

un(0) = u0.

As in [6] we have the following lemma.

Lemma 4.1. There exists u ∈W 1,∞(0, T ;V ) and a subsequence of (un),
still denoted (un), such that

un → u weak∗ in W 1,∞(0, T ;V ).

Proof. Indeed, from (3.6) it follows that there exist constants C3 > 0
and C ′3 > 0 such that

‖un‖W 1,∞(0,T ;V ) ≤ C3‖f‖W 1,∞(0,T ;V ) + C ′3.

Consequently, the sequence (un) is bounded in W 1,∞(0, T ;V ). Therefore,
there exists a function u ∈ W 1,∞(0, T ;V ) and a subsequence, still denoted
by (un), such that un → u weak∗ in W 1,∞(0, T ;V ) as n→∞.

Remark 4.2. As W 1,∞(0, T ;V ) ↪→ C([0, T ];V ) we have un(t) → u(t)
weakly in V for all t ∈ [0, T ].

Now we introduce the piecewise constant functions ũn : [0, T ] → V and
f̃n : [0, T ]→ V defined as follows:

ũn(t) = ui+1, f̃n(t) = f(ti+1), ∀t ∈ (ti, ti+1], i = 0, . . . , n− 1,

ũn(0) = u0, f̃n(0) = f(0).

As in [5] we have the following result.

Lemma 4.3. Passing to a subsequence again denoted (ũn) we have

(i) ũn → u weak∗ in L∞(0, T ;V ),
(ii) ũn(t)→ u(t) weakly in V for a.e. t ∈ [0, T ],

(iii) u(t) ∈ K for all t ∈ [0, T ].

Problem P3. Find a bonding field β : [0, T ]→ L∞(Γ3) such that

β̇(t) = −[β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)− εa]+ a.e. t ∈ (0, T ),
β(0) = β0 on Γ3,

where u is the weak solution found in Lemma 4.1.
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We have the following result.

Proposition 4.4. There exists a unique solution to Problem P3 and it
satisfies

β ∈W 1,∞(0, T ;L2(Γ3)) ∩B.

Proof. As in [5] let k > 0 and let

X = {β ∈ C([0, T ];L2(Γ3)) : sup
t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)] <∞}.

Then X is a Banach space for the norm

‖β‖X = sup
t∈[0,T ]

[exp(−kt)‖β(t)‖L2(Γ3)].

Consider the mapping Λ : X → X given by

Λβ(t) = β0 −
t�

0

[β(s)(cν(Rν(uν(s)))2 + cτ (|Rτ (uτ (s))|)2)− εa]+ ds.

Then there exists a constant c′1 > 0 such that

|Λβ1(t)− Λβ2(t)|2

≤ c′1
t�

0

(cν(Rν(uν(s)))2 + cτ |Rτ (uτ (s))|2)(β1(t)− β2(t))2 ds.

From |Rν(uν(s))| ≤ L and |Rτ (uτ (s))| ≤ L, we deduce

‖Λβ1(t)− Λβ2(t)‖2L2(Γ3) ≤ c
′
2

t�

0

‖β1(t)− β2(t)‖2L2(Γ3) ds

≤ c′2‖β1 − β2‖2X
exp(2kt)

2k
.

It follows that

‖Λβ1 − Λβ2‖X ≤
√
c′2
2k
‖β1 − β2‖X .

Therefore for k sufficiently large, Λ has a unique fixed point β. To prove
that β ∈ [0, 1] for all t ∈ [0, T ], it suffices to invoke [20, Remark 3.1].

Now we introduce the sequences of functions (βn), (β̃n) defined on [0, T ]
by

βn(t) = βi +
t− ti
∆t

∆βi ∀t ∈ [ti, ti+1],

β̃n(t) = βi+1 ∀t ∈ (ti, ti+1], i = 0, . . . , n− 1,

β̃n(0) = βn(0) = β0.
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We prove the following lemma.

Lemma 4.5. We have the following convergences

(i) βn → β strongly in L∞(0, T ;L2(Γ3)),
(ii) β̃n → β strongly in L∞(0, T ;L2(Γ3)).

Proof. To show (i), since β̇n(t) = ∆βi/∆t, for all t ∈ (ti, ti+1) we have

βn(t) = βi −
t�

ti

[β̃n(t)(cν(Rν(ũnν (s)))2 + cτ (|Rτ (ũnτ (s))|)2)− εa]+ ds,

and also

β(t) = β(ti)−
t�

ti

[β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)− εa]+ ds.

Then

βn(t)− β(t) = βi − β(ti)

−
t�

ti

[β̃n(t)(cν(Rν(ũnν (s)))2 + cτ (|Rτ (ũnτ (s))|)2)− εa]+ ds

+
t�

ti

[β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)− εa]+ ds.

Thus we have

‖βn(t)− β(t)‖L2(Γ3) ≤ ‖βi − β(ti)‖L2(Γ3)

+
t�

0

‖β̃n(t)(cν(Rν(ũnν (s)))2 + cτ (|Rτ (ũnτ (s))|)2)

− β(t)(cν(Rν(uν(t)))2 + cτ (|Rτ (uτ (t))|)2)‖
L2(Γ3)

ds.

Using the fact that |Rl(ul)| ≤ L for l = ν, τ (see [19]) and (3.4) we have

‖cν β̃n(s)(Rν(ũnν (s)))2 − cνβ(t)(Rν(uν(s)))2‖L2(Γ3)

≤ ‖β̃n(s)cν((Rν(ũnν (s)))2 − (Rν(uν(s)))2)

+ (β̃n(s)− βn(s))cν(Rν(uν(s)))2‖L2(Γ3)

+ ‖(βn(s)− β(s))cν(Rν(uν(s)))2‖L2(Γ3)

≤ 2L‖cν‖L∞(Γ3)‖ũnν (s)− uν(s)‖L2(Γ3)

+ L2‖cν‖L∞(Γ3)(‖βn(s)− β(s)‖L2(Γ3) +∆tc′1).
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Also we have

‖β̃n(s)cτ (|Rτ (ũnν (s))|)2 − cτβ(t)(|Rτ (uτ (t))|)2‖L2(Γ3)

≤ ‖β̃n(s)cτ ((|Rτ (ũnτ (s))|)2 − (|Rτ (uτ (s))|)2)

+ (β̃n(s)− βn(s))cτ (|Rτ (uτ (s))|)2‖L2(Γ3)

+ ‖(βn(s)− β(s))cτ (|Rτ (uτ (s))|)2‖L2(Γ3)

≤ 2L‖cτ‖L∞(Γ3)‖ũnτ (s)− uτ (s)‖(L2(Γ3))d

+ L2‖cτ‖L∞(Γ3)(‖βn(s)− β(s)‖L2(Γ3) +∆tc′1).

From the previous inequalities we deduce

‖βn(t)− β(t)‖L2(Γ3) ≤ ‖βi − β(ti)‖L2(Γ3)

+ 2L(‖cν‖L∞(Γ3)

t�

0

‖ũnν (s)− uν(s)‖L2(Γ3) ds

+ ‖cτ‖L∞(Γ3)

t�

0

‖ũnτ (s)− uτ (s)‖(L2(Γ3))d ds)

+ L2(‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))
t�

0

‖βn(s)− β(s)‖L2(Γ3) ds

+ (‖cν‖L∞(Γ3) + ‖cτ‖L∞(Γ3))TL
2∆tc′1.

Now a Gronwall-type argument shows that there exists a constant C4 > 0
such that

‖βn(t)− β(t)‖L2(Γ3) ≤ C4

(
‖βi − β(ti)‖L2(Γ3)

+
t�

0

(‖ũnν (s)− uν(s)‖L2(Γ3) + ‖ũnτ (s)− uτ (s)‖(L2(Γ3))d) ds+∆t
)
.

Hence

max
t∈[0,T ]

‖βn(t)− β(t)‖L2(Γ3) ≤ C4

(
max
i=0,...,n

‖βi − β(ti)‖L2(Γ3)

+
T�

0

(‖ũnν (s)− uν(s)‖L2(Γ3) + ‖ũnτ (s)− uτ (s)‖(L2(Γ3))d) ds+∆t
)
.

As in [5, Lemma 3.5] we also have

lim
n→∞

max
i=0,...,n

‖βi − β(ti)‖L2(Γ3) = 0

and from Lemma 4.3 we have ũnν (s) → uν(s) strongly in L2(Γ3), and
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ũnτ (s)→ uτ (s) strongly in (L2(Γ3))d a.e. s ∈ [0, T ]. Moreover, as

‖ũnν (s)− uν(s)‖L2(Γ3) ≤ dΩ‖ũn(s)− u(s)‖V ≤ C ′(‖f‖W 1,∞(0,T ;V ) + 1),

and

‖ũnτ (s)− uτ (s)‖(L2(Γ3))d ≤ dΩ‖ũn(s)− u(s)‖V ≤ C ′(‖f‖W 1,∞(0,T ;V ) + 1),

where C ′ > 0, it follows by using Lebesgue’s theorem that
T�

0

(‖ũnν (s)− uν(s)‖L2(Γ3) + ‖ũnτ (s)− uτ (s)‖(L2(Γ3))d) ds→ 0 as n→∞.

Hence we deduce

lim
n→∞

max
t∈[0,T ]

‖βn(t)− β(t)‖L2(Γ3) = 0,

and so (i) is proved. To prove (ii) it suffices to remark that there exists a
constant C5 > 0 such that

‖β̃n(t)− β(t)‖L2(Γ3) ≤ ‖β̃n(t)− βn(t)‖L2(Γ3) + ‖βn(t)− β(t)‖L2(Γ3)

≤ C5∆t+ ‖βn(t)− β(t)‖L2(Γ3).

Now we have all the ingredients to prove the following proposition.

Proposition 4.6. (u, β) is a solution to Problem P2.

Proof. In the inequality of Problem P in, for v ∈ V set w = ui + v∆t and
divide by ∆t to obtain

a

(
ui+1, v−∆u

i

∆t

)
+j(ui+1, v)−j

(
ui+1,

∆ui

∆t

)
+rτ

(
βi+1, ui+1, v−∆u

i

∆t

)
≥
(
f i+1, v − ∆ui

∆t

)
V

+
〈
σν(ui+1), vν −

∆uiν
∆t

〉
Γ3

.

As in [5], we have〈
σν(ui+1), vν −

∆uiν
∆t

〉
Γ3

+ rν

(
βi+1, ui+1, v − ∆ui

∆t

)
≥ 〈σν(ui+1), vν〉Γ3 + rν(βi+1, ui+1, v) ∀v ∈ V,

and we deduce

a

(
ui+1, v − ∆ui

∆t

)
+ j(ui+1, v)− j

(
ui+1,

∆ui

∆t

)
+ r

(
βi+1, ui+1, v − ∆ui

∆t

)
≥
(
f i+1, v − ∆ui

∆t

)
V

+ 〈σν(ui+1), vν〉Γ3 + rν(βi+1, ui+1, v) ∀v ∈ V.
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Hence for any v ∈ L2(0, T ;V ), we have

a(ũn(t), v(t)− u̇n(t)) + j(ũn(t), v(t))− j(ũn(t), u̇n(t))

+ r(β̃n(t), ũn(t), v(t)− u̇n(t))

≥ (f̃n(t), v(t)− u̇n(t))V + 〈σν(ũn(t)), vν(t)〉Γ3

+ rν(β̃n(t), ũn(t), v(t)) a.e. t ∈ [0, T ].

Integrating both sides on (0, T ), we obtain

(4.1)
T�

0

a(ũn(t), v(t)− u̇n(t)) dt+
T�

0

j(ũn(t), v(t)) dt−
T�

0

j(ũn(t), u̇n(t)) dt

+
T�

0

r(β̃n(t), ũn(t), v(t)− u̇n(t)) dt

≥
T�

0

(f̃n(t), v(t)− u̇n(t))V dt+
T�

0

〈σν(ũn(t)), vν(t)〉Γ3 dt

+
T�

0

rν(β̃n(t), ũn(t), v(t)) dt.

Lemma 4.7. (i) For any v ∈ L2(0, T ;V ) we have

lim
n→∞

T�

0

a(ũn(t), v(t)) dt =
T�

0

a(u(t), v(t)) dt,(4.2)

lim
n→∞

T�

0

j(ũn(t), v(t)) dt =
T�

0

j(u(t), v(t)) dt,(4.3)

lim
n→∞

T�

0

(f̃n(t), v(t)− u̇n(t))V dt =
T�

0

(f(t), v(t)− u̇(t))V dt,(4.4)

lim
n→∞

T�

0

r(β̃n(t), un(t), v(t)− u̇n(t)) dt =
T�

0

r(β(t), u(t), v(t)− u̇(t)) dt.(4.5)

(ii) We have

lim inf
n→∞

T�

0

a(ũn(t), u̇n(t)) dt ≥
T�

0

a(u(t), u̇(t)) dt,(4.6)

lim inf
n→∞

T�

0

j(ũn(t), u̇n(t)) dt ≥
T�

0

j(u(t),
.
u(t)) dt.(4.7)

Proof. For the proof of (4.2)–(4.4) and (4.6)–(4.7) we refer the reader to
[6, Lemmas 4–6]. To prove (4.5) it suffices to invoke [5, Lemma 3.8] and use
the properties (3.4).
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Now using Lemmas 4.5(ii) and 4.7 we let n→∞ in (4.1) to obtain

(4.8)
T�

0

a(u(t), v(t)− u̇(t)) dt+
T�

0

j(u(t), v(t)) dt−
T�

0

j(u(t), u̇(t)) dt

+
T�

0

r(β(t), u(t), v(t)− u̇(t)) dt

≥
T�

0

(f(t), v(t)− u̇(t))V dt+
T�

0

〈σν(u(t)), vν(t)〉Γ3 dt

+
T�

0

rν(β(t), u(t), v(t)) dt.

On the other hand, from the inequality in (3.1) we deduce

a(ui+1, w − ui+1) + j(ui+1, w − ui+1) + r(βi+1, ui+1, w − ui+1)
≥ (f i+1, w − ui+1)V ∀w ∈ K,

and so for all t ∈ (0, T ],

a(ũn(t), w − ũn(t)) + j(ũn(t), w − ũn(t)) + r(β̃n(t), ũn(t), w − ũn(t))

≥ (f̃n, w − ũn(t))V ∀w ∈ K.
Passing to the limit we obtain, for all t ∈ [0, T ],

a(u(t), w − u(t)) + j(u(t), w − u(t)) + r(β(t), u(t), w − u(t))
≥ (f, w − u(t))V ∀w ∈ K.

This inequality implies, by applying Green’s formula, that for all t ∈ [0, T ],

〈σν(u(t)), vν − uν(t)〉Γ3 + rν(β(t), u(t), v − u(t)) ≥ 0 ∀v ∈ K,
and so we get (2.21), which implies

(4.9) 〈σν(u(t)), u̇ν(t)〉Γ3 + rν(β(t), u(t), u̇(t)) = 0.

Combining (4.8) and (4.9) we obtain

(4.10)
T�

0

a(u(t), v(t)− u̇(t)) dt+
T�

0

j(u(t), v(t)) dt−
T�

0

j(u(t), u̇(t)) dt

+
T�

0

r(β(t), u(t), v(t)− u̇(t)) dt

≥
T�

0

(f(t), v(t)− u̇(t))V dt+
T�

0

〈σν(u(t)), vν(t)− u̇ν(t)〉Γ3 dt

+
T�

0

rν(β(t), u(t), v(t)− u̇(t)) dt.

As in [5] from the inequality (4.10) we deduce (2.20).
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Conclusion. In this paper we have studied a mathematical model which
describes a quasistatic frictional contact problem with adhesion for elastic
materials. The adhesive and frictional contact is modelled with the Signorini
condition and the non-local Coulomb friction law. We have proved existence
of a weak solution under a smallness assumption on the friction coefficient.
The important question of uniqueness still remains open.
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Faculté de Mathématiques, USTHB
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