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GLOBAL EXISTENCE OF SOLUTIONS TO
NAVIER-STOKES EQUATIONS IN
CYLINDRICAL DOMAINS

Abstract. We prove the existence of global and regular solutions to the
Navier—Stokes equations in cylindrical type domains under boundary slip
conditions, where coordinates are chosen so that the x3-axis is parallel to
the axis of the cylinder. Regular solutions have already been obtained on the
interval [0, T'], where T' > 0 is large, on the assumption that the Lo-norms of
the third component of the force field, of derivatives of the force field, and
of the velocity field with respect to the direction of the axis of the cylinder
are small. In this paper we continue the solution to all times.

1. Introduction. We consider the following initial-boundary value prob-
lem:

vit+v-Vo—divT(v,p) =f in 2 x(0,00),
diveo =0 in 2 x (0,00),

(1.1) v-n=0 on S x (0,00),
n-T(v,p) 1o =0, on S x (0,00),
V|t=0 = v(0) in 2.

The domain §2 is an open and bounded subset of R? of cylindrical type,
not axially symmetric but parallel to the x3-axis in the Cartesian coordi-
nate system = = (x1,x2,x3). The velocity field is denoted by v = v(z,t) =
(v1(,t),v2(z,t),v3(x,t)) € R3, the external force field is denoted by f =
f(z,t) = (fi(z, ), fo(x,t), f3(x,t)) € R3, and p = p(z,t) € R! is the pres-
sure. We denote by n the unit outward normal vector and by 7., a = 1,2,
the tangent vectors to the boundary S. Moreover, T(v, p) is the stress tensor,
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which is equal to vD(v) — pl, where D(v) = Vo + (Vo)T is the symmetric
dilatation tensor and v > 0 is the constant viscosity coefficient.

The aim of this paper is to show the global in time existence of regular
solutions to (1.1). We base on [4], where the existence of a regular solution
for large time has been proved by the Leray—Schauder fixed point theorem.
Using the existence of the solution on [0,7] we continue it on Ry by a
recursive procedure employing some cut-off functions. A similar technique
has been used in [2]. The main results of the paper are stated in the following
theorems.

THEOREM 1 (local existence). Let

Ok(T) := |1 f a5 | at2x e, (et 1y1)) F 131 Lo (S0 x (kT (k1)) + 10,25 (KT Ly (52)5
where k € N. Assume that

[ € Loo(KT, (k + 1)T5 Lg5(£2)) N La(82 x (KT, (k + 1)T)),

f3 € La(S2 x (KT, (k+ 1)T)),

(rot f)s € La(KT, (k + 1)1 Lg5(£2)),

fas € Lo(£2 x (KT, (k+1)T)) N Ly (2 x (ET, (k+1)T")),

Vs € Lo(£2 % ((kK—1)T,kT))
and v(kT) € H(£2). Then, if 6x(T) is small enough, then there exists a
solution to (1.1) such that

||U,x3HW[E«l(QX(kT7(k+1)T)) +IVD a5l Lo (oxkr e 1yr) < A

and

‘|UHW22'1(Q><(]€T7([<;+1)T)) + ||VPHL2(Q><(I<:T,(k+1)T) < C(A2 =+ 1)
for any o € (25/8,10/3). The constant A is chosen for a given T and it
satisfies the inequalities

©(BA+ Dy)or(T) + cEr < A, cEj < A,
where @ is some nonlinear, positive and increasing function, the constant c
comes from an imbedding theorem for Sobolev spaces, and the constants Dy,
and Ey, are given by
Dy := || fI| e o, (k1)L y5(2)) F 1S3l Lo (80 x (6T, (k4 1))+ | (2 T (1))
+ 1ot )3l Lok, (k+1)T; L5 (02)) F o5 | Lo 25 e (k1)) + 1 + das

By = || 25l L, (2x (b7, (k+1)T))
where d1 and do come from the energy estimates of weak solutions to the

problem (1.1) (see Lemma 2.2).

THEOREM 2 (global existence). Under the assumptions of Theorem 1 on
external data there exists a global and regular solution to the problem (1.1)
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such that

lv2sllwzr e r ernyry T 1IVPasllLo (2xwr,g+nyry) < A
and
HU||W2271(Q><(]€T,(]€+1)T)) + ||VP||L2(Q><(kT,(k+1)T)) < C(A2 +1),
where o and A are as in Theorem 1 and the constant A does not depend

on k.

THEOREM 3 (uniqueness). Any solution to the problem (1.1) which be-
longs to the space Loo(KT, (k4 1)T; W3 (82)) is unique.

The proof of Theorem 1 in the case kK = 0 is presented in [4]. In this
paper we will show how to obtain the constant A independent of k.

2. Notation and auxiliary results. Let 27 denote 2x (kT (k+1)T).
We introduce the spaces

V() = {u: [ullygn(orry = esssup  [[v]|gm(g)
te(kT,(k+1)T)
(k+1)T .
/2
+(§ IVl dt) < oo},
kT

Wg’l(\QkT) = {u: ||’U”W§,1(QkT)

1/c
= ( \ (Jul” + |Dul” + [ D?u|” + [9yu|”) d dt) < oo}
QKT
and
Wa(2) = {“: [ullfyr o) = Nlull o) + > S|Dl z)|7 dz
0<I'<[l] 2
DY u(@) — D))
|z — z/|3+o =1

1)

20
where k,m € NU {0}, [ is any positive real number and L, is the Lebesgue
space.

Our approach requires the energy estimates of weak solutions to the
problem (1.1). They are obtained by application of the following

dx da’ < oo}7

LEMMA 2.1 (Korn inequality). Assume that v € H'(£2) satisfies
ID(0)[17,(0) < o0,
v-nlg =0,
dive = 0.
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If §2 is not axially symmetric, then there exists a constant c¢1 such that
11310y < allDO)I[7, )

The proof can be found in [6, Sec. 1, Lemma 1.2].
Our considerations involve three global quantities:

a; = Slipr(t)HLf;%(Q)’

C
di = " ai + HU(O)H%Q(Q),

d% = (min(1, I/Q))_IGVIT <C a% + d%) ,
1

which do not depend on k € N and v/¢; = v1 + v2, where ¢; is the constant
from the Korn inequality (Lemma 2.1).

Finally we can present the energy estimates of weak solutions to the
problem (1.1).

LEMMA 2.2. Assume that a1 < 0o, v(0) € La(£2) and T > 0 are given.

Then
o) 1o(0) < di for any t > 0,

HUHVQO(_QX(k‘T,t)) S d2 fOT t e (kT, (k + 1)T), k S N

For convenience of notation we will use the following quantities that have
been introduced in [4]:

h = Vxss 4= Puzs g = f,r:w X = (I“Ot 1})3 = V2,2 — VUl
w=uv3,  F3=(rot[)s.

These functions solve equations and satisfy estimates which we recall in the
following lemmas.

LEMMA 2.3. The pair of functions (h,q) is a solution to the problem
hy—divT(h,q) = —v-Vh—h-Vu+g in 27 =02 x(0,7T),

divh =0 in 027,

(21) h-n=0, n-T(hq) 7a=0, a=1,2onSI =5 x(0,T),
hi=0, i=1,2, h3u =0 on ST =85 x (0,T),
hli=o = h(0) in £2.

LEMMA 2.4. Let v be a weak solution to the problem (1.1). Assume that
h € Loo(0,T; L3(02)), g € La(27), f3 € La(ST) and h(0) € La(£2). Then

11y < B3R, 05z + Bl sp) + 191y + 1RO y)
forallt <T.
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LEMMA 2.5. Let v be a weak solution to the problem (1.1). Assume that
Vv € Ly(0,T; Ls(£2)), h € Loo(0, T3 L3(£2)), g € Lao(27), f3 € La(S]) and
h(0) € La(£2). Then

||h||L2(Qt) < C(||VUHL2(0¢;L3(Q)) eXP(C”VUH%Q(O,t;Lg(Q))) +1)
(13l yes) + N9l Loy + [1R(0)] Ly(2))
forallt <T.

LEMMA 2.6. Let q and f3 be given. Then w is a solution to the problem

wi+v-Vw—vAw=q+ f3 in o7

W, =0 on S{,
w=0 on ST,
wli=o = w(0) in 0.

LEMMA 2.7. Let F3, h and v be given. Then x is a solution to the problem

Xt +v-Vx—hsx+howg —hiwg, —vAx =F;3 in Q7
(2.2) X = 0i(nia; 71 + Thia;y) + 0T (T1200 — Tiiw) = X« 00 5],

Xzg =0 on ST,
Xli=0 = x(0) in £2.

For the detailed proofs of Lemmas 2.3-2.7 we refer the reader to [6].

3. Estimates. In this section we will present the estimates for v and
h in the norms of I/V22 1(24) and W2 (2") respectively (o will be defined
later, see Lemma 3.4) in terms of the initial and the external data and of the
quantity ||h]|L (0,615(22))- These estimates are obtained on any time interval
of the form (kT, (k+1)T ) by application of cut-off functions defined by

C(k")(t) _ { 1 forte ((k—n)T,(k+1)T),

0 fort<(k—n-1T,
where (k) ¢ C5°(0,00) and ¢n) < 1/T. Tt is easy to see that for fixed

k and increasing n we have the inclusions supp (%) ¢ supp k1) ¢ ... c
supp ¢ ().

From now on we will use the notation un) = 4 - Ck", where 0 < t <
(k+1)T.

The first step is to estimate the third component of the vorticity field,
which we denote by . Since we integrate by parts, we expect the boundary
integrals to vanish. Therefore we consider a function y defined as a solution
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to the problem
Xit—vAx =0 in 07T,

X = on ST,
(3.1) X = Xx 1T

X 25 = 0 on Sy,

X‘t:() =0 in 2

and subtract it from the function y,
(3:2) X' =x-X
Then Y’ is a solution to the problem

/

X:t +v- VX = haX + how 5, — hiw 4, — vAY

= F3 —uVx + haY in 27,
(3.3) X =0 on SY,
Xy =0 on ST

X'li=0 = x(0) in £2.

LEMMA 3.1. Let h*n) € Lo (0,t; L3(£2)), v/ € Lo(0,t; HY9(12)),
FS(k") € L2(0,t; Lg5(82)). Then a solution to the problem (2.2) satisfies

kn
(3-4) HX(k")”%/ZO(m) < ed3|P*NF 0 siai) + c|[Fy )||%2(0,t;L6/5(Q))
+ c(d5 + 1)H'Ul(kn)HLOO(O,t;H5/6(_Q)) + cjo’n) HW2111/2(Q1£) + cdi +2(n +2)d5.
Proof. Multiplying (3.3)1 by ¢*»), then by x/(*») and integrating over {2
and using the boundary conditions (3.3)2, (3.3)3 and (1.1)2 yields

1d
5 *HX/(k")H%Q(Q) + VHVX/(k")H%Q(Q) = S hs(x'*))? da

2 dt >
- S(th,x1 - hl'lU,xQ)(kn)X,(kn) dx + S F?Ek")xl(kn) dx
0
_ S(U . vy)(kn)xl(kn) dz + S hgy(k”)x’(k”) d:n—{-é(kn) S X/X/(k") d.
0 0 5

Now we estimate the terms on the right-hand side above. We have
d _
%Hx’(k”) 1,02 + 221X 31
1
< el i g + o 1% 1Z ) IX 17 )

1
+ eallX* 7 ) + 5 112 o) IVwl1F )
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1
1(kn) |2 (kn) (12
+esllX*3 @) + = 15 N2 5 (2)

1 _
+ e VXET ) + o X117, 19117 42

(kn

1 _
+%M%%Qm+ﬂwimh>ﬁm>

+ e6|x/¢ ) !\L29)+ ||X )

where 7 = v/c and ¢ comes from the Poincaré inequality. Now we take
€1,...,&¢ sufficiently small and use equality (3.2) and the Minkowski in-
equality for Hx'C(k”)H%Q(Q) to obtain

CIVEIZ ) + 7 By < el ) Iy + IR )
+ el B*IE o IVl o) + IES1E, )
+ el XED N2 o) 101 gy + llBl () IRE1Z 0
+ e(IXCENR ) + IRCEDNZ, 0)-

Integrating with respect to t € ((k—n—1)T, (k4 1)T) and using inequality
(3.6) yields

t

IO, +7 § INE ) ds < 26d3[REDI2 0 1y
(k—n—1)T

Fon —(kn
+ | P )H%Q(O,t;LG/s(Q)) +2ed3 X7 01502y + 2(n + 2)d53,
because from the definition of x and x’ it follows that

(k+1)T

Voo™ 17, o) + IXE* 117, ) dt < 2(n + 2)d3,
(k—n—1)T

where dy comes from Lemma 2.2. For a solution to (3.1) we have
X" 12 0. 20(2)) < VL 0 sm575 (2
hence

kn
I ® 00y < edB IR0 zaqey + AP ™ otz ()

- ed3[0" NG sy + 2+ 2.
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The trace theorem implies that
—(kn)||2 kn) 12
HX( )”Loo(o,t;Lz(Q)) < CHU/ )HLOO(O,t;Hl/%e(Q)y
—(kn) |2 1(kn) |2
||X ”LQ(O,t;Hl(Q)) S CHU HWQI’l/Q(.Qt)'

Since
[/ )2 < cfjo*))2

2
Lo (0. H/2+5(2)) o (0. 5/6(02)) T €A

the proof is finished. =
We can finally find the estimate for v in the W22’1(Q x (KT, (k+ 1)T))-

norm (see Lemma 3.3). However, first we need an auxiliary inequality for

v' = (v1,v2) in the V3t (£2%)-norm (see Lemma 3.2). Consider the problem

: /

Ul,xg - U2,:C1 =X m Q )

. /

(3.5) Vig +V2g, =—hs in 2]
v =0 on Sy,

where 2/ = 2N {x3 = const € (—a,a)} and S is defined analogously.
LEMMA 3.2. Let h*n) € L(0,t;L3(12)), v'*) ¢ HY2(0,t; Lo (12)),
g¥n) € Lo(02Y), 155 € Lo(SY), F{"™) € La(0,; Lgj5(£2)). Then
Hvl(kn)“%/zl(m) < Cd%Hh(kn)H%OO(O,t;Lg(Q)) + Hvl(kn)”?{1/2((),,:@2(9))
+ C”F?Ekn)H%Q(O,t;LG/5(Q)) +ef| £ 175 s0)
+cllg®[7, ) + edi + (¢ + 3(n +2))d5.

Proof. First we observe that applying the cut-off function ¢*») in the
proof of Lemma 2.4 (see 6, Sec. 4, Lemma 4.2|) gives

kn
(36)  A™ o gry < ed3 IR o oo + el 100
+ cfl gt H%Q(Qt) + (n+2)d3.
For a solution to the problem (3.5) we have the estimate
B Wy gy < el g g + el g
It follows by interpolation that
”v/(kn)||ioo(0,t;H5/6(Q)) < 5Hvl(kn)”%m(0,t;H1(Q)) +c(1/e)d]
and from Lemma 2.2 that
v (kn)H%g 0.6HL(2) S cdy.
( (£2))

Applying Lemma 3.1, the inequalities (3.6) and (3.7) and using the above
interpolation result ends the proof. m
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LEMMA 3.3. Let k € N\ {0,1} be fized and k —n — 1 > 0. Assume that
kn J— k'ﬂ kn
(D&Y = I F" 112 0.0 5000 + 155 1 sty
+ Hg(k”)II%Q(Qt) + Cd% + (C + 3(7‘L + 2))6[% < o0
and |[REn V| L 01 14(02))s Hh(kn+1)||Lw/3(Qt)a || fEn+D)| 1,00y < 00. Then for
any solution to the problem (1.1) we have the estimate
(B8) 0z gy + VD5 sy < eBURS DI oo
RGO g ISR o)
+o(DE)2 g O o).
Proof. Let us consider the problem (1.1) in the form
vftk") — div T(v#n)| plkn))
—o/kn) gy — ) g fn) o CRa)y i Q)

divo*n) =0 in 2,
(3.9)

vn) o =0 on S,

n - T(v(k"),p(k")) “Ta=0, a=1,2, on S,

U(k”)|t=(k—n—1)T =0 in {2,

where v = (v1,v2), V' = (0y,, 0z,). In view of [7, Lemma 3.7] the inequality
”U/”Lm(m) < CHU/HV21(Qz) holds. Hence

||U,(kn) ‘ v/U||L5/3(Qt) < ”v,(kn)HLlo(Qt)”V/UHM(W) < Cd2HU/(kn)HV21(Qt)’
Hwh(kn)HLs/s(Qt) < ||wHL10/3(Qt)Hh(kn)HLw/S(Qt) < CdQHh(kn)HLlom(Qt)‘

In view of Lemma 3.2 we obtain, for any solution to the problem (3.9),

||U(k”)|fw§/’§(m) < eda (0% |z ) + 185 Ly s 020)) + el F 5y 00200
Applying now the interpolation result

[0 a1z 0209 < S0z oy + e(1/2)d2

we get
(310) 0" 21 gy < eda(1A* o)

R gy + D) el 5 1y ),
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Let us now rewrite problem (1.1) in the form

vftk") — div ’]I‘(v(k"),p(k"))
= o' Vo) ) p o k) 4 (Rady i F)

divo®*n) =0 in 2,
(3.11)

vkn) i =0 on St,

n- T(v(k"),P(k”)) “Ta =0, a=1,2, on S,

U(kn)|t:(k—n—1)T =0 in {2.

Then using (3.10) we get

[ - V'o*) | or) < Hvl(k"“)Hv;(m)||U(k")||ws2/é(m)
< ed3(IB* 0T 0 T Hh(k”“)||%w/3(m))

+ C(D(kn+l))2 + C||f(kn)||%5/3(gt)
and

Hw(kn)h”Lz(Qt) < Hw(kn)“wg}é(m)||h(kn+1)HLm/g(m)
< ed5(IW* VN3 o sna) + ||h(k"“)\|%10/3(m))

+ (D)2 4 CHf(k")H%WS(Qt),

which concludes the proof. m

LEMMA 3.4. Let o € (1,10) and assume that the norms ||f(kn+1)HL2(_Qt)

and Hg(kn)HLd(Qt) are finite for any k € N\ {0,1}. Let k —n —1> 0. Then
for any solution to the problem (2.1) we have

kn
(3'12) Hh( )HWg’l(Qt)

k .
< eUIrlwz1 (ox (kn—ayrrr)) T 1t O)ngyl(m) + Do)

+ Hf(k"+l)HL2((zt))5k(T) + CHQ(k")HLJ(Qt)

1
+ 7 Il Lo (@x (k1) (k-m) 7))

where © is some nonlinear, positive and increasing function.



Navier—Stokes equations in cylindrical domains 179

Proof. Let us consider problem (2.1) in the form

R — div T(ht), g%y

= —v - VA — plin) 7y 4 glkn) o (), in 02,

(313 div h*») = 0 in 027,

k) op =0, n-TAE) ¢F)y. 7 =0, a=1,2, on S,

p) =0, =12 A =0 on S,
W) 1yr =0 in 0.

Repeating the proof of [4, Lemma 3.4] we obtain the inequality
B oy + 1705 sy < 0 L )

1
+ellg® L, ) + 7 1Pl o (2 (hn—1)T, (k=) 7).

for any o € (1,10) and ¢ some nonlinear, positive and increasing function.
Next we estimate ||h(k”)||L2(Qt). Therefore we multiply (3.13); by h(n) in-
tegrate by parts over {2 and repeat the proof of Lemma 2.5 (for details, see
[6, Sec. 4, Lemma 4.2|). Finally, we get

10 gty < eVt 2(1V0 52 Ly 0y

exp(el ToE DI 1 ) + DOR(T):
Next we estimate the right-hand side using Lemma 3.3. Observing that

Hh(kn+2)HW31(Qt) < HhHWtf’l(_Qx((k—n—4)T,kT)) + Hh(kO)wal(Qt)

we conclude the proof. m

Proof of Theorem 1. Let Ty = 4T, so k =4 and n = 0 (when n = 0 we
write k instead of kg). In view of [4, Lemma 3.5],

(314)  hlqanrar) < 10Ol 0 < Il gonomy < A
where the constant A is such that
(3.15) (19l 2 01)) + ROy 2-20 ) < A

and the constant ¢ depends on n, p and T' (for details see [4, Lemma 3.5]).
Let us observe that without loss of generality we can assume that

(3.16) cllgllz, ox@r,m+m) < A
for any k € N. Then (3.12) implies that

1A 2 gy < P(A+ 1ROz gy + DO 4 Oy 0))80(T)

1
+ CH9(4)HLg(m) + T 12l 2, (2x @37.47))-
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In view of (3.14) and for d4(T") sufficiently small,
(A4 IADlly21 gy + D 4+ |41 )64 (T)
Felg s, + 5 < A
where
g o) + 1 < A
if only T is large enough. Hence

5SS < A.

Nz
Assume now that for n =0 and 4 <m < s € N we have

(3'17> Hh(m)”wgvl(gt) <A

We will show that

(3'18> Hh(SJrl)Hngl(Qt) <A

From (3.12) it follows that

|’h(8+1)’|ng1(Qt)

< <P(Hh(s_2)HW§v1(Qt) + Hh(s_l)ij’l(m) + Hh(S)HWE’l(m)
+ |’h(s+1)"wf*1(9t) + D 4 Hf(SJrl)l ||L2(Qt))5s+1(T)

s 1
+ gz, (an + 7 Il (@x (s (s+1)7))
< @BA+ P oy + DT || FEFI L 08041 (T)

s 1
+ellg“ Iz, an + 7 Il (x(s1(s41)7) -

If §541(T) is small enough, then using (3.17) to estimate the last term on
the right-hand side we can see that (3.18) holds for T" sufficiently large. The
existence of functions v and h can be proved as in [4, Sec. 4]. This concludes
the proof. m

Proof of Theorem 2. It remains to show that ||h(KT)| 1,(e) is equally
small for any & € N. We first differentiate (1.1) with respect to x3, then
multiply by h, integrate over {2, use the boundary conditions and apply the
Stokes theorem and the Korn, Hélder and Young inequalities. Then we get

d
7 1Rl () + VIIRlE o) < cllbliZ, o) IVOll 2400 + elglT, o) + el fsllT, s
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Using the Gronwall inequality on the time interval (kT (k + 1)T') yields

1h((k +1)T)7,0) < ce PTHIVIL o s ymins )

(IRED)Z 0y + 191 x erernyry) + 13l asax e, e 1yry)-

From Theorem 1 it follows that ||Vv||%2(kT7(k+1)T;L3(m) < c¢(A* 4+ 1). Since
the constant A is chosen in such a way that it satisfies (3.15) and (3.16) we
can take T large enough so that —oT + ¢(A* +1) < 0 and

ce PTHelVOIL, er k1) ming ()

(IRET)Z 2y + 19T coxrrernyry) + 11T (50 x (T (ks 1))
< CefPT+c(A4+1) 2 < ¢
Applying Theorem 1 on any time interval (KT, (k + 1)T") ends the proof. m

Proof of Theorem 3. Let (v;,p;) for i = 1,2 be two solutions to the
problem (1.1). Let V = v; — vy and P = p; — py. Then the pair (V(#n), p(kn))
solves the problem

Vi) — div T(V k) pla)y = _y ) gy — gy VR L 0V i 0,

div v = in 27T,
vk oy — 0 on ST,
n-T(VE) pla)y. =0, a=1,2, on ST,
V)|, 1 =0 in 0.

Multiplying the first equation by V(¥ ») and integrating over {2 gives
d En
%HVU“”)H%Q(Q) +u|VE |3 ) < ¢ Vol +1)||%3(Q)Hv(k")||%2(9)'

Since vgk”“) € Loo((k —n —2)T, (k+1)T; W1(£2)), the Gronwall inequality
implies that ||V(kn)(t)||L2(_Q) = 0. This ends the proof. m
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