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A CONVERGENCE ANALYSIS OF NEWTON’S METHOD
UNDER THE GAMMA-CONDITION IN BANACH SPACES

Abstract. We provide a local as well as a semilocal convergence analysis
for Newton’s method to approximate a locally unique solution of an equation
in a Banach space setting. Using a combination of center-gamma with a
gamma-condition, we obtain an upper bound on the inverses of the operators
involved which can be more precise than those given in the elegant works by
Smale, Wang, and Zhao and Wang. This observation leads (under the same
or less computational cost) to a convergence analysis with the following
advantages: local case: larger radius of convergence and finer error estimates
on the distances involved; semilocal case: larger domain of convergence, finer
error bounds on the distances involved, and at least as precise information
on the location of the solution.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the equation

(1.1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset D of
a Banach space X with values in a Banach space Y.

A large number of problems in applied mathematics and also in engi-
neering are solved by finding solutions of certain equations. For example,
dynamical systems are mathematically modeled by difference or differential
equations, and their solutions usually represent the states of the systems.
For the sake of simplicity, assume that a time-invariant system is driven by
the equation ẋ = Q(x) for some operator Q, where x is the state. Then
the equilibrium states are determined by solving an equation of type (1.1).
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Similar equations are used in the case of discrete systems. The unknowns of
engineering equations can be functions (difference, differential, and integral
equations), vectors (systems of linear or nonlinear algebraic equations), or
real or complex numbers (single algebraic equations with single unknowns).
Except in special cases, the most commonly used solution methods are it-
erative: starting from one or several initial approximations a sequence is
constructed that converges to a solution of the equation. Iteration methods
are also applied for solving optimization problems. In such cases, the iter-
ation sequences converge to an optimal solution of the problem at hand.
Since all of these methods have the same recursive structure, they can be
introduced and discussed in a general framework.

Newton’s method

(1.2) xn+1 = xn − F ′(xn)−1F (xn) (x0 ∈ D, n ≥ 0)

is undoubtedly the most popular method for generating a sequence {xn}
approximating x∗. Here for x ∈ D, F ′(x) ∈ L(X,Y ) (the space of bounded
linear operators from X into Y ) denotes the Fréchet derivative of the op-
erator F [3], [4]. There is an extensive literature on local as well as semilo-
cal convergence results for Newton’s method (1.2) under various conditions.
A survey of such results can be found in [3].

Below we summarize the most important results:

Semilocal case: Kantorovich [4] using information from the domain D
and the Lipschitz condition

(1.3) ‖F ′(x0)−1[F ′(x)− F ′(y)]‖ ≤ `‖x− y‖ for all x, y ∈ D,
provided the sufficient convergence condition

(1.4) K = `β ≤ 1
2
, ‖F ′(x0)−1F (x0)‖ ≤ β.

Using a combination of (1.3) and the center-Lipschitz condition

(1.5) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ `0‖x− x0‖ for all x ∈ D
we weakened (1.4) by replacing it with

(1.6) A = `β ≤ 1
2
, ` =

1
8

(`+ 4`0 +
√
`2 + 8`0`)

[1, p. 387, Case 3 for δ = δ0], [3].
The estimate

(1.7) `0 ≤ `
holds in general, and `/`0 can be arbitrarily large [1]–[3].

By comparing condition (1.4) with (1.6) we deduce that

(1.8) K ≤ 1/2 ⇒ A ≤ 1/2

but not vice versa, unless `0 = `.
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The above improvements are made, since we use 1
1−`0‖x−x0‖ instead of

1
1−`‖x−x0‖ as an upper bound for ‖F ′(x)−1F ′(x0)‖ in the convergence analysis
of Newton’s method.

Local case: Rheinboldt [5] used the Lipschitz condition

(1.9) ‖F ′(x∗)−1[F ′(x)− F ′(y)]‖ ≤ L‖x− y‖ for all x, y ∈ D
to provide the radius of convergence rR for Newton’s method given by

(1.10) rR =
2

3L
.

Using a combination of (1.9) and the center-Lipschitz condition

(1.11) ‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ ≤ L0‖x− x∗‖ for all x ∈ D
we found [1] that the corresponding radius of convergence is given by

(1.12) rA =
2

2L0 + L
.

Note that again

(1.13) L0 ≤ L.
By comparing (1.10) with (1.12), we see that

(1.14) rR ≤ rA.
Moreover, if L0 < L, then rR < rA.

In turns out that the advantages of this approach persist in the case when
Lipschitz conditions are replaced by gamma-conditions. These observations
together with optimization considerations motivated us to write this paper.

Wang [7] motivated by Smale [6] introduced the gamma-conditions (see
also [2]): in the semilocal case,

(1.15)
‖F ′(x0)−1F ′′(x)‖ ≤ 2γ

(1− γ‖x− x0‖)3
for some γ > 0,

and all x ∈ U(x0, 1/γ) ⊆ D,

(1.16) α = βγ ≤ 3− 2
√

2

to provide a convergence analysis for Newton’s method (1.2).
Moreover Wang [7], Zhao and Wang [8] used the gamma-condition in the

local case,

(1.17) ‖F ′(x∗)−1F ′′(x)‖ ≤ 2γ
(1− γ‖x− x∗‖)3

for all x ∈ U(x∗, s) ⊆ D, for some s, γ > 0, where

(1.18) s1 =
5−
√

13
6γ

≤ s

is the convergence radius of Newton’s method.
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2. Local convergence analysis for Newton’s method. It is con-
venient to introduce a polynomial whose roots play a role in the proof of
Theorem 2.2 below.

Let a ∈ [0, 1] be a given parameter. Set b = 1−a, and define a polynomial
pa by

(2.1) pa(t) = 3a2t3 + a(6b− a)t2 + (3b2 − 2ab− 1)t− b2.

By the definition, we get

(2.2) pa(0) = −b2 ≤ 0, pa(1) = 1.

It then follows by the intermediate value theorem that there exists a root
of pa in [0, 1). Let us denote by ta the minimal number in [0, 1) satisfying
pa(ta) = 0. Let γ > 0. Define

(2.3) sa =
1− ta
γ

.

In particular for a = 1, t1 = (1 +
√

13)/6, and we get (see also (1.18))

s1 =
5−
√

13
6γ

.

It is simple algebra to show that for all a ∈ [0, 1],

(2.4) pa(t1) ≥ 0,

which implies

(2.5) ta ≤ t1,

and

(2.6) s1 ≤ sa for all a ∈ [0, 1].

Note also that strict inequality holds in (2.6) for a 6= 1.
We introduce some conditions which seem to be the minimum-type hy-

potheses needed for the study of the local convergence of Newton’s method
(1.2).

Definition 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable opera-
tor. Assume that there exists x∗ ∈ D such that

F (x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X);

and there exist a ∈ [0, 1] and γ0, γ > 0 with γ0 = aγ such that for all
x ∈ U(x∗, s) = {x ∈ X : ‖x− x∗‖ < s} where

(2.7) s = min
{

1
γ
,

(
1− 1√

2

)
1
γ0

}
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we have

‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ ≤ 1
(1− γ0‖x− x∗‖)2

− 1,(2.8)

‖F (x)− F (x∗)− F ′(x)(x− x∗)‖ ≤ γ‖x− x∗‖2

1− γ‖x− x∗‖
.(2.9)

We can show the following local convergence theorem for Newton’s
method (1.2).

Theorem 2.2. Let F : D ⊆ X → Y be a Fréchet-differentiable operator.
Assume that the conditions of Definition 2.1 hold , and

(2.10) U(x∗, sa) ⊂ U(x∗, s) ⊆ D,

where sa is given by (2.3). Then the sequence {xn} generated by Newton’s
method (1.2) is well defined , remains in U(x∗, sa) for all n ≥ 0, and converges
to x∗ provided that x0 ∈ U(x∗, sa). Moreover , the following error estimates
hold for all n ≥ 0:

(2.11) ‖xn+1 − x∗‖ ≤
γ(1− γ0‖xn − x∗‖)2‖xn − x∗‖2

[2(1− γ0‖xn − x∗‖)2 − 1](1− γ‖xn − x∗‖)
.

Proof. We shall first show that

F ′(x)−1 ∈ L(Y,X) for all x ∈ U(x∗, sa).

Indeed, in view of (2.8) and (2.10) we obtain in turn

‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ ≤ 1
(1− γ0‖x− x∗‖)2

− 1(2.12)

<
1

(1− γ0s)2 − 1
≤ 1.

It follows from (1.12) and the Banach lemma on invertible operators [3], [4]
that F ′(x)−1 ∈ L(Y,X), and

(2.13) ‖F ′(x)−1F ′(x∗)‖ ≤ (1− γ0‖x− x∗‖)2

2(1− γ0‖x− x∗‖)2 − 1
.

By hypothesis x0 ∈ U(x∗, sa). Assume xk ∈ U(x∗, sa), k = 0, 1, . . . , n. We
shall show xk+1 ∈ U(x∗, sa), and estimate (2.11) holds for all n ≥ 0.

Using (2.9) for x = xk, we get

(2.14) ‖F ′(x∗)−1[F (xk)− F (x∗)− F ′(xk)(xk − x∗)]‖ ≤
γ‖xk − x∗‖2

1− γ‖xk − x∗‖
.
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By (1.2), (2.13) (for x = xk), and (2.14) we get in turn

(2.15) ‖xk+1 − x∗‖

≤ ‖F ′(xk)−1F ′(x∗)‖ · ‖F ′(x∗)−1[F (xk)− F (x∗)− F ′(xk)(xk − x∗)]‖

≤ γ(1− γ0‖xk − x∗‖)2‖xk − x∗‖2

[2− (1− γ0‖xk − x∗‖)2 − 1](1− γ‖xk − x∗‖)

≤ γ‖xk − x∗‖(1− aγ‖xk − x∗‖)2‖xk − x∗‖
[2(1− aγ‖xk − x∗‖)2 − 1](1− γ‖xk − x∗‖)

< ‖xk − x∗‖ < sa.

By definition of the polynomial pa, and the choice of sa, which imply xk+1 ∈
U(x∗, sa), estimate (2.11) holds for n = k, and limk→∞ xk = x∗.

That completes the proof of the Theorem.

We show that conditions (2.8) and (2.9) can be realized:

Remark 2.3. (a) Let us assume that the operator F is twice Fréchet-
differentiable, γ0 = γ, and condition (1.17) holds. It then follows that esti-
mates (2.8) and (2.9) hold true. Indeed, we get

(2.16) ‖F ′(x∗)−1[F ′(x)− F ′(x∗)]‖ =
∥∥∥1�

0

F ′′(x∗ + t(x− x∗))(x− x∗) dt
∥∥∥

≤
1�

0

2γ‖x− x∗‖ dt
(1− γt‖x− x∗‖)3

≤ 1
(1− γ‖x− x∗‖)2

− 1,

and

(2.17) ‖F ′(x∗)−1[F (x)− F (x∗)− F ′(x)(x− x∗)]‖

=
∥∥∥F ′(x∗)−1

1�

0

F ′′[x∗ + t(x− x∗)](1− t)(x− x∗)2 dt
∥∥∥

≤
1�

0

2γ(1− t)‖x− x∗‖2dt
(1− γ‖x− x∗‖)3

≤ γ‖x− x∗‖2

1− γ‖x− x∗‖
.

Note in this case the radius of convergence is s1 given by (2.3).
(b) If

(2.18) γ0 < γ,

Theorem 2.2 improves the corresponding theorem by Wang [7], who uses
(1.17) instead of weaker conditions (2.8) and (2.9). Indeed, (2.6) holds and
our estimates on ‖xn−x∗‖ are finer. To avoid repetitions we refer the reader
to the remarks and discussions of the next section for possible choices of γ0

and γ (simply replace x0 by x∗).
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(c) As an example showing that (2.6) can indeed be a strict inequality,
let a = 1/2. Using (2.1) and (2.3), we obtain

t1/2 = .65185 < t1 =
1 +
√

13
6

= .76759,

and
s1 =

.23241
γ

<
.34815
γ

= s1/2.

3. Semilocal convergence analysis of Newton’s method. Let β, γ
> 0. Define a function f on the interval [0, 1/γ) by

(3.1) f(w) = β − w +
γw2

1− γw
.

Wang [7] showed that if condition (1.16) holds, then the function f has two
positive roots w∗, w∗∗ satisfying

(3.2) β ≤ w∗ ≤
(

1 +
1√
2

)
β ≤

(
1− 1√

2

)
1
γ
≤ w∗∗ ≤ 1

2γ
.

Moreover, the scalar sequence {wn} given by

(3.3) w0 = 0, wn+1 = wn −
f(wn)
f ′(wn)

is nondecreasing and converges to w∗. Furthermore, Wang showed the fol-
lowing semilocal convergence result for Newton’s method (1.2):

Theorem 3.1 ([7]). Let F : D ⊆ X → Y be a twice Fréchet-differentiable
operator. Let x0 ∈ D be such that F ′(x0)−1 ∈ L(Y,X). Assume that there
exist β, γ > 0 such that for all x ∈ U(x0, 1/γ) ⊆ D the gamma-conditions
(1.15) and (1.16) hold. Then the sequence {xn} generated by Newton’s method
(1.2) is well defined , remains in U(x0, w

∗) for all n ≥ 0, and converges to
a solution x∗ of the equation F (x) = 0 in U(x0, w

∗), which is unique in
U(x0, w

∗∗). Moreover , the following error estimates hold for all n ≥ 0:

(3.4) ‖xn+1 − xn‖ ≤ wn+1 − wn
and

(3.5) ‖xn − x∗‖ ≤ w∗ − wn,
where the sequence {wn} is given by (3.3) and

(3.6) w∗ = lim
n→∞

wn.

In the rest of the section we show how to improve these results.

Case 1. We use hypothesis (1.16), but instead of (1.15) we use the
weaker conditions (3.10) and (3.11) given in Definition 3.2 below.
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Let γ0 > 0 with

(3.7) γ0 ≤ γ.
Define a function f0 on [0, 1/γ0) by

(3.8) f0(w) = β − w +
γ0w

2

1− γ0w
,

and a scalar sequence {tn} by

(3.9) t0 = 0, tn+1 = tn −
f(tn)
f ′0(tn)

.

We need the definition of certain gamma-type conditions:

Definition 3.2. Let F : D ⊆ X → Y be a Fréchet-differentiable opera-
tor. Let x0 ∈ D be such that F ′(x0)−1 ∈ L(Y,X). Assume that there exist
β, γ0, γ > 0 with γ0 ≤ γ such that for all x, y ∈ U(x0, γ1) ⊆ D,

(3.10) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤
1

(1− γ0‖x− x0‖)2
− 1

and

(3.11) ‖F ′(x0)−1[F (y)− F (x)]− F ′(x)(y − x)‖

≤ γ‖y − x‖2

[1− γ‖x− x0‖]2(1− γ‖y − x0‖)
.

Then we can show the following semilocal convergence theorem for New-
ton’s method (1.2).

Theorem 3.3. Assume the conditions of Definition 3.2 hold , (1.16), and
U(x0, γ1) ⊆ D, where

(3.12) γ1 = min
{

1
γ
,

(
1− 1√

2

)
1
γ0

}
.

Then the sequence {xn} generated by Newton’s method (1.2) is well defined ,
remains in U(x0, t

∗) for all n ≥ 0, and converges to a solution x∗ of the
equation F (x) = 0 in U(x0, t

∗) which is unique in U(x0, w
∗∗) where t∗ =

limn→∞ tn. Moreover , the following error estimates hold for all n ≥ 0:

‖xn+1 − xn‖ ≤ tn+1 − tn ≤ wn+1 − wn,(3.13)
‖xn − x∗‖ ≤ t∗ − tn ≤ w∗ − wn.(3.14)

Proof. We shall first show that

0 ≤ tk ≤ wk,(3.15)
0 ≤ tk+1 − tk ≤ wk+1 − wk,(3.16)
0 ≤ t∗ − tk ≤ w∗ − wk.(3.17)
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If we show that (3.15) and (3.16) hold for all n ≥ 0, then (3.17) follows by
using standard majorization techniques [3], [4]. Estimates (3.15) and (3.16)
hold true for k = 0 by the initial conditions. Assume they hold for all n ≤ k.
The functions f, f0 are nonincreasing, whereas f ′, f ′0 are nondecreasing. It is
therefore simple algebra to show under the induction hypothesis that (3.15)
and (3.16) hold for k replaced by k+1. The sequence {tn} is nondecreasing,
and bounded above by w∗, and as such it converges to a t∗ ∈ [β,w∗].

We shall also show by induction on k ≥ 1 that

(3.18) ‖xk − xk−1‖ ≤ tk − tk−1

and

(3.19) U(xk, t∗ − tk) ⊆ U(xk−1, t
∗ − tk−1).

For every z ∈ U(x1, t
∗ − t1),

‖z − x0‖ ≤ ‖z − x1‖ ‖x1 − x0‖ ≤ t∗ − t1 + t1 = t∗ = t∗ − t0,
so z ∈ U(x0, t

∗ − t0). We also have

‖x1 − x0‖ = ‖F ′(x0)−1F (x0)‖ ≤ β = t1 = t1 − t0.
That is, (3.18) and (3.19) hold for k = 0. Assuming they hold for n =
0, 1, . . . , k, we have

‖xk − x0‖ ≤
k∑
i=1

‖xi − xi−1‖ ≤
k∑
i=1

(ti − ti−1) = tk − t0 = tk ≤ t∗.

It follows from (3.14), and the induction hypotheses that

(3.20) ‖F ′(x0)−1[F ′(xk)− F ′(x0)]‖ ≤
1

(1− γ0‖xk − x0‖)2
− 1

≤ 1
(1− γ0tk)2

− 1 <
1

(1− γ0t∗)2
− 1 ≤ 1,

by the choice of t∗.
In view of (3.20), and the Banach lemma on invertible operators [3], [4]

we see that F ′(xk)−1 exists, and

‖F ′(xk)−1F ′(x0)‖ ≤
1

1−
[

1
(1−γ0‖xk−x0‖)2 − 1

](3.21)

≤ − 1
f ′0(‖xk − x0‖)

≤ (1− γ0tk)2

2(1− γ0tk)2 − 1

= − 1
2f0(tk)

.

Using the approximation

(3.22) F (xk) = F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)
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and (3.11), we get

(3.23) ‖F ′(x0)−1F (xk)‖
= ‖F ′(x0)−1[F (xk)− F (xk−1)− F ′(xk−1)(xk − xk−1)]‖

≤ γ‖xk − xk−1‖2

(1− γ‖xk−1 − x0‖)2(1− γ‖xk − x0‖)

≤ γ(tk − tk−1)2

(1− γtk−1)2(1− γtk)
= f(tk).

Hence, by (1.2), (3.21), and (3.22) we obtain

‖xk+1 − xk‖ = ‖[F ′(xk)−1F ′(x0)][F ′(x0)−1F (xk)]‖(3.24)

≤ ‖F ′(xk)−1F ′(x0)‖ ‖F ′(x0)−1F (xk)‖

≤ − f(tk)
f ′0(tk)

= tk+1 − tk,

which shows (3.18) for all k.
Moreover, for every z ∈ U(xk+1, t

∗ − tk+1), we have

‖z − xk‖ ≤ ‖z − xk+1‖+ ‖xk+1 − xk‖ ≤ t∗ − tk+1 + tk+1 − tk = t∗ − tk,

which implies

(3.25) z ∈ U(xk, t∗ − tk).

The sequence {tn} is Cauchy. It follows from (3.18) and (3.19) that {xn} is a
Cauchy sequence too, and as such it converges to some x∗ ∈ U(x0, t

∗) (since
U(x0, t

∗) is a closed set). By letting k → ∞ in (3.24) we obtain F (x∗) = 0.
Estimate (3.14) follows (3.13) by using standard majorization techniques
[3], [4]. Finally, the uniqueness of solution x∗ in U(x0, w

∗∗) has already been
shown in [7], where Wang showed limn→∞ ‖xn − y∗‖ = 0 for any y∗ with
F (y∗) = 0 and y∗ ∈ U(x0, w

∗∗).
That completes the proof of the theorem.

Remark 3.4. (a) In Theorem 3.3 we assumed that the operator F is
only once differentiable, and conditions (3.10), (3.11) are weaker than (1.15).
Under these conditions we provided finer error estimates on the distances,
and at least as precise information on the location of the solution x∗. Note
also that: if strict inequality holds in (3.7), it also does in (3.15) and (3.16)
(right hand sides only for k > 1). In the special case when F is twice Fréchet-
differentiable, and (1.15) holds, then (3.10), and (3.11) also hold true for
γ0 = γ.
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Indeed, we have

(3.26) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖

=
∥∥∥F ′(x0)−1

1�

0

F ′′(x0 + t(x− x0))(x− x0) dt
∥∥∥

≤
1�

0

2γ‖x− x0‖ dt
[1− γt‖x− x0‖]3

≤ 1
(1− γ‖x− x0‖)2

− 1,

which shows (3.10).
We can also get

(3.27) ‖F ′(x0)−1[F (y)− F (x)− F ′(x)(y − x)]‖

=
∥∥∥F ′(x0)−1

1�

0

F ′′(x+ t(y − x))(1− t) dt (y − x)2
∥∥∥

≤
1�

0

2γ(1− t)‖y − x‖2 dt
[1− γ‖x+ t(y − x)− x0‖]3

≤ γ‖y − x‖2

(1− γ‖x− x0‖)2(1− γ‖y − x0‖)
,

which implies (3.11).
(b) It also follows from the proof of Theorem 3.3 that the scalar sequence

{rn} given by

(3.28)
r0 = 0, r1 = β,

rn+1 = rn −
γ(1− γ0rn)2(rn − rn−1)2

[2(1− γ0rn)2 − 1](1− γrn−1)2(1− γrn)
(n ≥ 1),

is majorizing for {xn}, nondecreasing, and

0 ≤ rn ≤ tn ≤ wn,(3.29)
0 ≤ rn+1 − rn ≤ tn+1 − tn ≤ wn+1 − wn,(3.30)
0 ≤ r∗ − rn ≤ t− tn ≤ w∗ − wn,(3.31)
r∗ = lim

n→∞
rn ≤ t∗ ≤ w∗.(3.32)

Case 2. We drop condition (1.16) in Theorem 3.3 and replace it by
(3.37) given in Lemma 3.6 below.

In view of the advantages given by (3.29)–(3.32), we would like to know
if a direct study of the sequence (3.28) can lead to a sufficient convergence
condition weaker than (1.16), especially in the case when γ0 < γ.

In what follows we show that this can be done.
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As in Section 2, set γ0 = aγ, a ∈ [0, 1]. Let δ ∈ (0, 2), and define a
function ha by

(3.33) ha(s) = 2a2(1 + δ)s3 − 2a(2δ + aδ + 2)s2 + (δ + 2 + 4aδ)s− δ.
We get ha(0) = −δ < 0 and ha(1) = 2(a− 1)2 ≥ 0.

It then follows by the intermediate value theorem that there exists a zero
of ha in (0, 1] for any δ ∈ (0, 2) and any a ∈ [0, 1].

For each fixed δ ∈ (0, 2) and a ∈ [0, 1], denote by α0 the minimal zero of
ha on (0, 1]. Set

(3.34) α∗ = min
{
α0, α1 =

(
1− 1√

2

)
1
2a

(2− δ)
}
> 0.

We need a lemma on majorizing sequences for Newton’s method (1.2).

Lemma 3.5 ([1], [3]). Let β, `, `0 ≥ 0 with `0 ≤ `. Assume that condition
(1.16) holds. Then the scalar sequence

(3.35) z0 = 0, z1 = β, zn+1 = zn +
(zn − zn−1)2

2(1− `0zn)
(n ≥ 1)

is nondecreasing , bounded above by

z∗∗ =
2β

2− β0

and converges to some z∗ ∈ [β, z∗∗], where

(3.36) β =
1
2

(
− `

`0
+

√(
`

`0

)2

+ 8
`

`0

)
, `0 6= 0.

We also need the following variation of Lemma 3.5 on majorizing se-
quences:

Lemma 3.6. Let β, γ0, γ > 0, with γ0 = aγ for some a ∈ [0, 1], and
assume

(3.37)
α = βγ ≤ α∗ if α0 < α1,

α < α1 if α1 ≤ α0.

Then the scalar sequence {rn} given by (3.28) is nondecreasing , bounded
above by

(3.38) r∗∗ =
2β

2− δ
,

and converges to some r∗ ∈ [β, r∗∗]. Moreover , the following error estimates
hold for all n ≥ 1:

(3.39) 0 ≤ rn+1 − rn ≤
δ

2
(rn − rn−1).
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Proof. We show by induction on k that
γ(1− γ0tk)2(tk − tk−1)

[2(1− γ0tk)2 − 1](1− γtk−1)2(1− γtk)
≤ δ

2
,(3.40)

0 ≤ tk − tk−1,(3.41)

tk−1 <
1
γ
,(3.42)

tk <

(
1− 1√

2

)
1
γ0
.(3.43)

It follows from the choices of α0, α1, α
∗, and (3.28) that estimates (3.40)–

(3.43) hold true for k = 1.

Hence, using (3.35) instead condition (1.16) in Theorem 3.3 we arrive at:

Theorem 3.7. Under the hypotheses of Theorem 3.3 with (3.37) replac-
ing condition (1.16), and {rn} replacing {tn}, the sequence {xn} generated by
Newton’s method (1.2) is well defined , remains in U(x0, r

∗), and converges
to a solution x∗ of the equation F (x) = 0, which is unique in U(x0, r

∗∗).
Moreover , the following estimates hold for all n ≥ 0 :

‖xn+1 − xn‖ ≤ rn+1 − rn,(3.44)
‖xn − x∗‖ ≤ r∗ − rn.(3.45)

Remark 3.8. (a) Wang proved in [7] that the γ-condition (1.15) is
weaker than the criterion of point estimate given by Smale [6]:

(3.46) γ(F, x0) = sup
n≥2

∥∥∥∥F ′(x0)−1F
(n)(x0)
n!

∥∥∥∥1/(n−1)

≤ γ,

provided that the operator F is analytic on D. It then follows that we can
choose

(3.47) γ0 = γ(F, x0).

That is, inequality (3.7) can be realized.
(b) As an example, let us set a = 1/2 and δ = .6. Then using conditions

(3.33) and (3.34) we get

α0 = .18955, α1 = .205025,

and

(3.48) x∗ = .18955 > 3− 2
√

2 = .17157.

Hence, we conclude:

(i) If (1.16) is violated but condition (3.37) holds true, then Theorem 3.7
can be used. That is, the applicability of Newton’s method is ex-
tended in this case.
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(ii) If condition (1.16) holds, then our finer Theorem 3.3 (or Theorem 3.7)
can replace Theorem 3.1 given in [7].

Case 3. We use conditions (3.49) and (3.50) instead of (1.15).
If the operator F is thrice Fréchet-differentiable on D, we can introduce

the following conditions:

Definition 3.9. Let F : D ⊆ X → Y be thrice Fréchet-differentiable.
Assume that
(3.49) ‖F ′(x0)−1F ′′(x0)‖ ≤ 2γ0,

and

(3.50) ‖F ′(x0)−1F ′′′(x)‖ ≤ 6γ2

(1− γ0‖x− x0‖)4
= f ′′′(‖x− x0‖)

for all x ∈ D.

Remark 3.10. According to the lemma below conditions (3.49) and
(3.50) can replace (1.15) (for γ0 = γ) in Theorem 3.1, and (3.10) and (3.11)
in Theorems 3.3 and 3.7. In this case inequality (3.7) can also be realized for
γ0 given by (3.47) or not. Finally, note that clearly as in (3.34) there exists
δ ∈ (0, 2) such that

α ≤ 3− 2
√

2 ⇒ α ≤ α∗,
but not necessarily vice versa, unless γ0 = γ.

Lemma 3.11. Assume that the operator F satisfies the conditions of Def-
inition 3.9 on U(x0, γ1) ⊆ D. Then the following estimates hold on U(x0, γ1):

‖F ′(x0)−1F ′′(x)‖ ≤ f ′′(‖x− x0‖) + 2(γ0 − γ),(3.51)
F ′(x) ∈ L(Y,X),(3.52)

and

(3.53) ‖F ′(x)−1F ′(x0)‖ ≤ −
1

f ′(‖x− x0‖)− 2(γ0 − γ)‖x− x0‖
.

Proof. Using (3.49) and (3.50) we get

(3.54) ‖F ′(x0)−1F ′′(x)‖
≤ ‖F ′(x0)−1F ′′(x0)‖+ ‖F ′(x0)−1[F ′′(x)− F ′′(x0)]‖

= ‖F ′(x0)−1F ′′(x0)‖+
∥∥∥1�

0

F ′(x0)−1F ′′′(x0 + t(x− x0))(x− x0) dt
∥∥∥

≤ 2γ0 +
1�

0

f ′′′(t‖x− x0‖)‖x− x0‖ dt

= 2γ0 + f ′′(‖x− x0‖)− f ′′(0) = f ′′(‖x− x0‖) + 2(γ0 − γ),
which shows (3.51).
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Moreover, using (3.49) and (3.51), we obtain

(3.55) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖

=
∥∥∥F ′(x0)−1

1�

0

F ′′(x0 + t(x− x0))(x− x0) dt
∥∥∥

≤
1�

0

[f ′′(t‖x− x0‖) + 2(γ0 − γ)]‖x− x0‖ dt

= f ′(‖x− x0‖)− f ′(0) + 2(γ0 − γ)‖x− x0‖
= f ′(‖x− x0‖) + 1 + 2(γ0 − γ)‖x− x0‖ < 1,

which together with the Banach lemma on invertible operators implies (3.52)
and (3.53).
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