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VARIANCE FUNCTION ESTIMATION VIA
MODEL SELECTION

Abstract. The problem of estimating an unknown variance function in
a random design Gaussian heteroscedastic regression model is considered.
Both the regression function and the logarithm of the variance function are
modelled by piecewise polynomials. A finite collection of such parametric
models based on a family of partitions of support of an explanatory variable
is studied. Penalized model selection criteria as well as post-model-selection
estimates are introduced based on Maximum Likelihood (ML) and Restricted
Maximum Likelihood (REML) methods of estimation of the parameters of
the models. The estimators are defined as ML or REML estimators in the
models with dimensions determined by respective selection rules. Some en-
couraging simulation results are presented and consistency results on the
solution pertaining to ML estimation for this approach are proved.

I. Introduction. Heteroscedastic regression models

(1) Y = m(X) + σ(X)ε,

with m and σ unknown, for which the variance of errors depends on explana-
tory variables, are commonly used in various fields including engineering,
biology and economics. In some instances, estimation of the error variance
function is of independent interest. Often, it is also important to use an es-
timator of variance to evaluate other related quantities, as e.g. in the case
of Value at Risk (VaR) estimation. Moreover, for such models regression
estimation methods account for heteroscedasticity by using some estima-
tor of variance. A typical example is the Weighted Least Squares (WLS)
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method in linear heteroscedastic regression. For a more detailed discussion
of these aspects and some references to the vast literature on estimation for
heteroscedastic models we refer to Fan and Yao (1998) and Ruppert et al.
(2003).

Many developments concentrate mainly on fixed design or conditional
set-up and study both parametric and nonparametric approaches. For a thor-
ough discussion and some new developments for this case see e.g. Davidian
and Carroll (1987), Müller and Stadtmüller (1993), Dette et al. (1998), Yuan
and Wahba (2004) as well as Cai and Wang (2008).

The random design literature is mainly focused on some nonparamet-
ric approaches. The main observation underlying most of these approaches
is that, provided X and ε are independent, the equality E[{Y −m(X)}2 |
X = x] = σ2(x)Eε2 holds. Thus an estimator of σ2 can be constructed by
regressing squared residuals from a preliminary regression fit on explanatory
variables. This is tantamount to a two-step procedure in which the regression
function is estimated in the first step and the variance in the second. For
examples exploiting kernel, local polynomial estimators and localized likeli-
hoods see Carroll (1982), Silverman (1985), Müller and Stadtmüller (1993),
Neumann (1994), Ruppert et al. (1997), Fan and Yao (1998), as well as Yu
and Jones (2004). Some results (cf. Fan and Yao (1998) and Yu and Jones
(2004)) indicate that the asymptotic behaviour of such variance estimators,
at least in pointwise sense, is the same as if the regression function were
known, i.e. as if the estimators were based on (unknown) squared errors.

Another idea is to model the mean and the variance in a flexible way and
to combine modelling with some penalized likelihood approach. This idea,
with penalization related to a degree of roughness ofm and σ, was introduced
and thoroughly discussed in Yau and Kohn (2003). See also Yuan and Wahba
(2004) for related results.

For the random design case, we propose an approach based on model
selection. The main idea is to simultaneously estimate the regression and
the variance functions and to use penalization pertaining to complexity
of the underlying models. To be specific, we concentrate on Gaussian er-
rors and the case where the univariate explanatory variable is assumed
to take values in a fixed finite interval [a, b]. X and ε are independent.
We assume that the set of candidate models is finite and contains a cor-
rect model. The way we model the mean and the variance was inspired
by some ideas developed for heteroscedastic fixed design linear models by
Harvey (1976) and Verbyla (1993) as well as by solutions proposed in den-
sity estimation by Castellan (2003) and Birgé and Rozenholc (2006). Con-
sequently, both the regression function and the logarithm of the variance
function are modelled by piecewise polynomials. We study a finite collec-
tion of such parametric Gaussian models based on a family of partitions of
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the support of the explanatory variable. We consider the Maximum Like-
lihood (ML) and Restricted Maximum Likelihood (REML) methods of es-
timation of the parameters of a given model or its appropriate transfor-
mation and introduce related penalized model selection criteria as well as
post-model-selection estimates. The estimators are defined as ML or REML
estimators in the models with dimensions determined by suitable selection
rules. Motivated by appealing features of the Minimum Description Length
(MDL) approach, we use one of the simplest forms of the two-part MDL
principle which results in a penalty of the form appearing in the Bayes
Information Criterion (BIC) introduced by Schwarz (1978). We shall re-
fer to it as a BIC-type penalty. For the two-part MDL we refer to Lee
(2001). Our theoretical development concentrates on ML estimation and
a related post-model-selection estimator. We prove consistency of the se-
lection rule from which mean square consistency of the proposed variance
estimator follows immediately. We also consider the behaviour of that rule
when the underlying distribution of (X,Y ) is misspecified, i.e. it does not
belong to any model on the list of models. The estimators pertaining to
the REML method are used for comparison purposes in numerical experi-
ments.

Simulation results show that our approach outperforms purely nonpara-
metric approaches of Fan and Yao (1998) as well as of Yu and Jones (2004).
This illustrates and supports some earlier beliefs and findings to the effect
that for small and moderately large sample sizes it is better to use a suitably
chosen parametric model than a nonparametric one. The model selection
criterion that we use indeed implies that fitting parsimonious models is of
primary interest.

Though the results of the present paper focus on Gaussian random re-
gression with a one-dimensional explanatory variable, several extensions are
possible. First, one can allow for errors having an arbitrary fixed density
which satisfies certain smoothness conditions. The case of multivariate com-
pactly supported predictors may be treated similarly with the aid of product
orthonormal systems. Moreover, Borkowski and Mielniczuk (2010) recently
applied this approach to the problem of conditional variance estimation in
the case of a nonlinear autoregressive heteroscedastic process.

The paper is organized as follows. Details on the proposed family of mod-
els are contained in Secs. II.A and II.B. In Sec. II.C penalized likelihoods
are introduced while some of the asymptotic properties are studied and dis-
cussed in Sec. II.D. Sec. II.E briefly discusses our numerical experiments.
The proofs of the main results are given in Sec. III. Appendix I collects
some analytical derivations while Appendix II provides some details on the
numerical experiments.
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II. Statistical framework and results

A. Parametric heteroscedastic regression models Pkl. Assume
that the explanatory random variable X takes values in a fixed interval
[a, b]. Consider the equipartition of [a, b] into k intervals, k ∈ {1, . . . ,K}.
Let Mck denote the cth interval of the partition, c = 1, . . . , k. For fixed k
and s ∈ N, let Φc0(·), . . . , Φc(s−1)(·) denote the Legendre polynomials of order
0, 1, . . . , s− 1, respectively, transformed to the interval Mck. Let

(2) bsk = (β10, β11, . . . , β1(s−1), β20, β21, . . . , β2(s−1), . . . , βk0, βk1, . . . , βk(s−1))
T ∈ Rk·s,

where T stands for transposition. Given s and k, the regression function will
be denoted by msk and parametrized as follows:

(3) msk(x) =
k∑
c=1

s−1∑
j=0

βcjΦcj(x)1Mck
(x), x ∈ [a, b],

where 1A denotes the indicator function of a set A. We shall employ a similar
construction to parametrize the logarithm of the variance function. Namely,
let Srl denote the rth interval in the equipartition of [a, b] into l intervals,
l ∈ {1, . . . , L}. Define, for t ∈ N,

(4) etl = (η10, η11, . . . , η1(t−1), η20, η21, . . . , η2(t−1), . . . , ηl0, ηl1, . . . , ηl(t−1))
T ∈ Rl·t

and let

(5) σ2
tl(x) = exp

{ l∑
r=1

t−1∑
j=0

ηrjΦrj(x)1Srl(x)
}
.

Note that s, t ∈ N are fixed throughout.
We now define a parametric heteroscedastic regression model. For any

B > 0 let

(6) Θkl = ΘBkl = {θ = (θ1, . . . , θs·K+t·L)T : θT = (bTsk, e
T
tl , 0, . . . , 0),

|θi| ≤ B, i = 1, . . . , s ·K + t · L},

where the vector (bTsk, e
T
tl) is appended by s · (K − k) + t · (L − l) zeros.

Observe that the parameter space Θkl is a compact subset of Rs·K+t·L. Let f
stand for the density of X and g denote the density of the standard normal
distribution N(0, 1). Throughout the paper we assume that f is positive on
[a, b]. For a fixed (k, l) we consider a parametric model Pkl of distributions
of (X,Y ) defined as follows:

(7) Pkl = {Pθ : θ ∈ Θkl},
dPθ
dλ

= pθ(x, y),

where

(8) pθ(x, y) =
1

σtl(x)
f(x)g

(
y −msk(x)
σtl(x)

)
,
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while λ is the Lebesgue measure on [a, b] × R, msk(x) is given by (3) and
σtl(x) is given by (5). Putting it differently, for fixed (k, l), we consider (X,Y )
such that

(9) Y = msk(X) + σtl(X)ε,

where X and ε are independent and ε ∼ N(0, 1). The model (9) can be
thought of as an approximation of the nonparametric regression model Y =
m(X) + σ(X)ε, where m and σ are some unknown functions. However, the
approximation effects are not studied analytically in our contribution.

We restrict our attention to the set of parametric models {Pkl} for
1 ≤ k ≤ K and 1 ≤ l ≤ L. Finally, we set Θ =

⋃K
k=1

⋃L
l=1Θkl. The aim of

the model selection and related post-model-selection estimation is to choose,
given the data, a suitable partition and a suitable degree for the polynomial
on each interval of the partition and then to consider likelihood-based esti-
mators in the resulting parametric model. For these purposes some careful
inspection of properties of the introduced family of models is useful.

B. Properties of the family Pkl. (C1)–(C3) below show basic features
of the parametrization.

(C1) Pkl ∩ Pk′l′ 6= ∅ for any (k, l), (k′, l′).

(C1) follows from the observation that e.g. distributions with constant re-
gressions and variances belong to each Pkl. It indicates that by giving a
value of θ ∈ Θ one does not identify the distribution of (X,Y ). In fact,
the lack of identifiability is due to a more profound difficulty pertaining to
the introduced structures. For illustration consider the case K = 2, L = 8,
s = t = 1 and the vector θ = (1, 0, 0, 2, 2, 2, 0, 0, 0, 0). For k = 1 and l = 8
this vector describes (9) with a constant regression function and the variance
defined by e18 = (0, 0, 2, 2, 2, 0, 0, 0). However, when k = 2 and l = 7 this θ
corresponds to (9) with a stepwise regression function, with discontinuity at
(a+b)/2, and the variance defined via the vector e17. So, the transformation
θ 7→ Pθ is meaningless when considered on the whole Θ. However, we have
the following property:

(C2) For fixed (k, l), let Pθ be a distribution pertaining to a density
defined in (8). Then the mapping θ 7→ Pθ is 1-1 on Θkl.

(C2) follows from the observation that both conditional means and variances
are piecewise continuous functions. Therefore given two different parameter
values θ and θ′ belonging to Θkl it is possible to choose a subset on which
Pθ and Pθ′ differ.

Assume now that for certain (k0, l0) and θ0 ∈ Θk0l0 we have (X,Y ) ∼ Pθ0 .
Then we obviously have

(C3) If Pθ0 6∈ Pkl then for any θ ∈ Θkl, Pθ0 6= Pθ.
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The next two properties concern the expected log-likelihoods. They are
immediate consequence of (C2) and basic properties of entropy.

(C4) For θ ∈ Θk0l0 , the transformation θ 7→ −EPθ0 log pθ(X,Y ) attains
its unique minimum on Θk0l0 at θ = θ0.

(C5) If Pθ0 ∈ Pk0l0∩Pkl then the transformation θ 7→ −EPθ0 log pθ(X,Y )
attains its unique minimum on Θkl at a point θ1 such that Pθ1 =Pθ0 .

The following statements describe some regularity properties of Pkl.
(C6) For i, j=1, . . . , s·K+t·L and θ∈Θkl the derivatives (∂/∂θi)pθ(x, y)

and (∂2/∂θi∂θj)pθ(x, y) exist Pθ-a.e. and are bounded by functions
not depending on θ which are integrable with respect to Lebesgue
measure on [a, b]× R.

(C7) For i, j and θ as in (C6) the derivatives (∂/∂θi) log pθ(x, y) and
(∂2/∂θi∂θj) log pθ(x, y) exist Pθ-a.e. and are bounded by functions
not depending on θ which are integrable with respect to Pθ′ for any
θ′ ∈ Θ.

(C8) We have

EPθ

[
∂2

∂θ∂θT
log pθ(X,Y )

]
= −I(θ),

where I(θ) is the information matrix pertaining to the distribu-
tion Pθ. Moreover, for θ0 and θ1 defined in (C4) and (C5), respec-
tively, the matrices I(θ0) and I(θ1) are positive definite.

(C9) Let h ∈ Rs·K+t·L and let ‖·‖ denote the Euclidean norm of a vector
or a matrix. Then

lim
δ→0

EPθ

[
sup
‖h‖≤δ

∥∥∥∥ ∂2

∂θ∂θT
log

pθ+h(X,Y )
pθ(X,Y )

∥∥∥∥] = 0.

The proofs of (C6)–(C9) are deferred to Appendix I.
Assume that (Xi, Yi), i=1, . . . , n, are independent and for certain (k0, l0)

and θ0 ∈ Θk0l0 we have (Xi, Yi) ∼ Pθ0 , i = 1, . . . , n. For given k, l and θ ∈ Θkl
consider

(10) Lkln (θ) = log
n∏
i=1

pθ(Xi, Yi).

The last property concerns, possibly misspecified, maximized log-like-
lihood.

(C10) For any (k, l), the estimator θ̂kl = arg maxθ∈Θkl Lkln (θ) exists and
is measurable (cf. White (1982), pp. 3 and 17).

C. Maximum Likelihood estimators within Pkl and some penal-
ized selection criteria. Our basic solution is based on the standard log-
likelihood function Lkln (θ) as defined in (10). The estimator θ̂kl, introduced
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in (C10), is the Maximum Likelihood (ML) estimator of θ in the model Pkl.
It allows for simultaneous estimation of msk and σ2

tl. As discussed in the in-
troduction, this is in contrast to much more popular two-step procedures for
which the mean function is estimated first and then we estimate the variance
based on suitably defined residuals.

In order to find the best fitted model Pkl from our list of models and
to define related post-model-selection estimators, a two-part MDL criterion
will be employed. The pertaining penalty has the form

(11) penn(bsk, etl) =
1
2

(s · k + t · l) log n.

As in our study the variance function estimation is of primary inter-
est, we also consider an application of the Restricted Maximum Likelihood
(REML) estimators of the parameters etl of the variance σtl(x) in the model
Pkl (cf. (5)–(7)). For a nice introduction to and discussion of the REML
method we refer to Cressie and Lahiri (1993) and Verbyla (1990). Notice
that REML estimators were developed to estimate variances and covariances
in linear models with a given experimental matrix. Therefore, we describe
the method in terms of the conditional distribution of (Y1, . . . , Yn) given
X1 = x1, . . . , Xn = xn. For fixed (k, l), this conditional distribution corre-
sponds to a Gaussian linear model

(12)


Y1

...
Yn

 =


msk(x1)

...
msk(xn)

+ [Σ(etl)]1/2


ε1
...
εn

 ,

where Σ(etl) is the n × n diagonal matrix with σ2
tl(x1), . . . , σ2

tl(xn) on the
diagonal (cf. (9)). Obviously, due to (3), (msk(x1), . . . ,msk(xn))T = X bsk
for a suitable n × sk matrix X and bsk given by (2). Set Y= (Y1, . . . , Yn)T ,
E = (ε1, . . . , εn)T and p = s · k. Then (12) takes the form

(13) Y = X bsk + [Σ(etl)]1/2E .
Our focus is now on estimation of the vector of parameters etl. The idea
behind the REML method is to apply the maximum likelihood principle to
error contrasts rather than to the data themselves. The error contrasts are
linear combinations of components of (Y1, . . . , Yn)T having 0 mean. Due to
this, the influence of the mean vector of the original observations on the
estimation process is reduced. Following Harville (1974), similarly to Cressie
and Lahiri (1993), consider the particular linear transformation given by an
n× (n− p) matrix Γ with n− p linearly independent columns and such that

Γ TX = 0, Γ TΓ = I, ΓΓ T = I −X (X TX )−1X T ,
where I is the (n − p) × (n − p) identity matrix. Set U = Γ TY, u = Γ T y
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where y = (y1, . . . , yn)T . Then the log-likelihood function, based on U , has
the form

LklU (etl) = − n− p
2

log 2π +
1
2

log |X TX| − 1
2

log |X T [Σ(etl)]−1X|

− 1
2

log |Σ(etl)|+
1
2
yTΠ(etl)y,

where |A| stands for the determinant of the matrix A, while

Π(etl) = [Σ(etl)]−1 − [Σ(etl)]−1X (X T [Σ(etl)]−1X )−1X T [Σ(etl)]−1.

The REML estimator ẽtl of etl in Pkl (cf. also (6)) is defined by

ẽtl = arg max(0,...,0,eTtl,0,...,0)∈ΘklL
kl
U (etl).

There is considerable evidence available indicating that in some situa-
tions both finite-sample and asymptotic properties of REML estimators can
be more appealing than those of ML estimators. For a related discussion
we refer to Cressie and Lahiri (1993) and Jiang (1996). In particular, the
distinction between the two classes is noticeable when p is large relative to
n. On the other hand, due to dependence of components of U , introduced
by the transformation Γ , the analysis of REML estimators is much more
complex than the analysis of MLEs. Since our simulation study has not ex-
hibited a significant superiority of REML-based procedures over MLE-based
ones, our theoretical results are restricted to the ML approach.

For further purposes note that for inference based on LklU (etl), a BIC-type
penalty has the form

(14) penn(etl) =
1
2

(t · l) log(n− p), p = s · k.

This follows from the fact that one estimates by the ML method the t · l-
dimensional vector of parameters etl using the (n− p)-dimensional vector u.

D. Main asymptotic results. Our main result concerns the situation
when the true distribution P of (X,Y ) belongs to one (but not necessarily
the only one) of the parametric families of the list, i.e. there exist (k0, l0) and
θ0 ∈ Θk0l0 such that P = Pθ0 . Therefore, consider Pk0l0 and Pkl, (k, l) 6=
(k0, l0), and the corresponding penalized log-likelihood functions (cf. (10)
and (11))

S0 = sup
θ∈Θk0l0

Lk0l0

n (θ)− ω0 log n, S1 = sup
θ∈Θkl

Lkln (θ)− ω1 log n,

where ω0 = 2−1(s · k0 + t · l0) and ω1 = 2−1(s · k + t · l).

Theorem 1. Assume that f(x) > 0 for x ∈ [a, b], and moreover (X,Y )
∼ P = Pθ0 and θ0 ∈ Θk0l0 . If Pθ0 ∈ Pk0l0 ∩Pkl and s · k+ t · l > s · k0 + t · l0,
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or if Pθ0 ∈ Pk0l0 \ Pkl, then
(15) lim

n→∞
P (S0 > S1) = 1.

The proof of Theorem 1 is given in Sec. III.

Remark 1. Theorem 1 states that, when using a penalty of the form
C log n and with n→∞, there is an increasing tendency to select the most
parsimonious model containing the true distribution. A rather obvious obser-
vation, based on the proof, is that the consistency result can be immediately
generalized to other penalties which tend to infinity at a rate o(n).

Consider now the selection procedure described as follows. Let θ̂kl be the
ML estimator for θ ∈ Θkl and define

(k̂, l̂) = arg max
1≤k≤K,1≤l≤L

{
Lkln (θ̂kl)−

1
2

(s · k + t · l) log n
}
.

Moreover, still assuming that P belongs to at least one parametric model
on the list, denote by k� the integer k = 1, . . . ,K pertaining to the short-
est vector bsk in (2) describing the true regression function. Let l� be de-
fined analogously by the shortest description etl of the true variance func-
tion.

Corollary 1. Suppose that the assumptions of Theorem 1 hold. Then

lim
n→∞

P ((k̂, l̂) = (k�, l�)) = 1.

Introduce now the post-model-selection estimator σ̂2 of the true variance
function, related to the selection rule (k̂, l̂) by

(16) σ̂2(x) = σ̂2
tl̂

(x) = exp
{ l∑
r=1

t−1∑
j=0

η̂rjφrj(x)1Srl(x)
}
.

Remark 2. The form of σ̂2(x) shows that the estimator is always posi-
tive and clearly based on the most adequate model on the list.

For (k�, l�) defined above, put σ2
�(x) = σ2

tl�(x). Obviously, σ2
� gives the

most parsimonious description of the true variance function among those
available on our list of models.

Corollary 2. Under the assumptions of Theorem 1,

lim
n→∞

EP { sup
x∈[a,b]

[σ̂2(x)− σ2
�(x)]2} = 0.

A justification of this result is provided in Sec. III.

Remark 3. Corollary 2 states that σ̂2 is consistent in the mean-square
sense. Obviously, Corollary 2 holds with σ2

�(·) replaced by any other valid
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parametrization of the true variance function available on the list. Note that
there is growing evidence showing that consistency of post-model-selection
estimators may lead to superefficiency and therefore should be considered
with caution. For a thorough discussion of this and related problems see
e.g. Leeb and Pötscher (2008). On the other hand, recall that (C1) of Sec.
II.B shows that identifiability of parameters is lost in the overall model
{Pθ : θ ∈ Θ}. In that case the conclusion of Sec. 4 of Pötscher (1991) is
clearly in favour of consistent model selection. Moreover, Dukič and Peña
(2005) indicate that using consistent selection rules in post-model-selection
estimation is a good strategy if the number of competing models is relatively
small and the submodels are essentially distinct.

Remark 4. There are many general results on consistency of selection
rules: see Kohn (1983) and Sin and White (1996), for example. However, the
lack of identifiability of our overall model discussed in connection with (C1)
makes Kohn’s results not immediately applicable to our case. In particular,
an objective function ln to be maximized, considered in his paper, is not
well defined on the whole Θ in our setting. On the other hand, the level of
generality of Sin and White (1996) forces a series of very involved assump-
tions which are clearly unnecessarily demanding for the models considered
here. Therefore, in Sec. III we provide a detailed proof of Theorem 1 for the
parametric list of models under study.

Below, for completeness, we also discuss an interesting generalization of
Theorem 1 to a case where the observations are generated from a model
outside the list under consideration. To state the result we first introduce
the notion of Kullback–Leibler distance and a related concept of pseudo-true
parameter.

For an arbitrary P with a density p(x, y) with respect to the Lebesgue
measure on [a, b] × R consider the Kullback–Leibler distance D(P‖Pθ) be-
tween P and Pθ, where Pθ ∈ Pkl, given by

D(P‖Pθ) =
�
p(x, y) log

(
p(x, y)
pθ(x, y)

)
dx dy

=
�
p(x, y) log p(x, y) dx dy

−
�
p1(x) log f(x) dx−

�
p(x, y) log

1
σtl(x)

g

(
y −msk(x)
σtl(x)

)
dx dy,

where p1(x) =
	
p(x, y) dy. It is easy to see that D(P‖Pθ) is a continuous

function of θ on Θkl. As Θkl is compact, θ∗kl = arg minθ∈ΘklD(P‖Pθ) exists
although it may not be unique. Any θ∗kl satisfying the last equality is called
a pseudo-true parameter value (cf. Sawa (1978), p. 1276). Note that θ∗kl =
arg maxθ∈ΘklEP log pθ(X,Y ).
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Theorem 2. Let (X,Y ) ∼ P , where P is dominated by the Lebesgue
measure on [a, b]×R. Suppose that EPY exists and is finite. Further assume
that X has a density f(x) > 0 for x ∈ [a, b] and P 6∈ Pkl for any (k, l).
Moreover, assume that there exists a unique parametric model Pk∗l∗ closest
to P , so that D(P‖Pθ∗

k∗l∗
) < D(P‖Pθ∗kl) for any (k, l) 6= (k∗, l∗), where θ∗ij,

1 ≤ i ≤ K, 1 ≤ j ≤ L, is the pseudo-true value. Then

lim
n→∞

P ((k̂, l̂) = (k∗, l∗)) = 1.

The proof of Theorem 2 is given in Sec. III. Note that we do not assume
that Pθ∗

k∗l∗
has to be unique.

Remark 5. As mentioned earlier, we do not discuss the asymptotic be-
haviour of σ̂2 in the general case when the observations are generated by
models outside the given list. Though undoubtedly instructive, such results
are highly technical as a rule. Instead, in the next section we present re-
sults of a simulation study which show that the proposed class of estimators
works nicely also in cases when the generating mechanism is not included
in the list of models. Moreover, in the simulations we allow the dimen-
sion of the list of models to grow with n. This aspect was not included
in our theoretical considerations. Our primary goal was to show a new flex-
ible alternative to existing methods of solving this important and not easy
problem. Overcoming technical difficulties was not our primary goal in this
case.

E. Simulation results. Though the literature on variance function es-
timation is vast, comprehensive numerical studies concerning performance
of various methods are sparse. Recently, Yu and Jones (2004) presented a
relatively detailed study. Our experiments include the two regression models
investigated in this paper. Moreover, we have considered the same sample
sizes and we have used the same indices to assess the performance of the
estimators.

More precisely, we considered two sample sizes n = 100 and n = 500
and the corresponding number of partitions k ∈ {2, 3, 4}, l ∈ {2, . . . , 5} if
n = 100 and k ∈ {2, . . . , 10} and l ∈ {2, . . . , 15} if n = 500. We took s = 3
and t = 1 in both cases, i.e., regardless of the sample size, the regression
function was modelled by piecewise second order Legendre polynomials on
succeeding intervals and the logarithm of the variance function by stepwise
functions. Both examples considered in Yu and Jones (2004) fall outside our
class of models. We supplemented them with two further examples with the
same property. In order to obtain a more complete picture we also included
four examples in which at least one modelled function (mean or variance)
belongs to the introduced class. A detailed description of the models con-
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sidered is given in Appendix II. Here, in Figures 1–8, we simply plot the
conditional means as well as standard deviations for each case considered
and label them as rj and sdj , j = 1, . . . , 8, respectively. The distribution of
X is indicated in the captions of Tables 1–8. We use the notation N[t](µ, ϑ2)
for the normal distribution with mean µ and variance ϑ2, truncated to an
appropriate interval [a, b] on which X is supported. By U [a, b] we denote the
uniform distribution on [a, b].

We studied two post-model-selection estimators σ̂2 and σ̃2 related to the
above list of models, MLE and REML principles and the selection rules

(k̂, l̂) = arg max
2≤k≤K,2≤l≤L

{
Lkln (θ̂kl)−

1
2

(s · k + t · l) log n
}
,

l̃ = arg max
2≤k≤K,2≤l≤L

{
LklU (ẽtl)−

1
2

(t · l) log(n− s · k)
}
,

with K(100) = 4, L(100) = 5, and K(500) = 10, L(500) = 15, respec-
tively. The estimators σ̂2 and σ̃2 have the structure given in (16), where
the sum over l starts with l = 2 and respective pairs (l̂, êtl) and (l̃, ẽtl)
are employed. In order to calculate the REML estimators the algorithm
remlscore of Smyth (2002) from his R package statmod was used. We con-
sidered k ≥ 2 and l ≥ 2 for candidate models as remlscore failed to con-
verge considerably more frequently for the simplest models with k = 1 or
l = 1.

For comparison, we include related simulation results for the procedure
introduced by Fan and Yao (1998), which is an application of local linear
regression to the squared residuals, from regression fit, matched with some
automatic bandwidth selection method. The C code of this procedure is
available from the web site for Fan and Yao (2003). The resulting estimator
is denoted by σ̄2.

The performance of any variance estimator in our experiment was eval-
uated using the empirical Integrated Standard Error (ISE). In the case of
estimating σ2 by σ̂2 this quantity equals ISE = n−1

∑n
i=1[σ̂2(Xi)−σ2(Xi)]2,

for other variance estimators considered it is defined analogously. For each
model we also computed the empirical MISE, i.e. the average of ISE over
simulation runs, the Standard Error (SE) of ISE as well as the Mean Inte-
grated Variance (MIV) and the Integrated Squared Bias (ISB). For exact
definitions of the last two quantities see Appendix II. It should be noted
that, in contrast to our study, Yu and Jones (2004) calculated the standard
error of MISE instead of the standard error of ISE. Therefore, in order to
compare their results with ours, the values of SE reported in their Tables
2 and 3 have to be multiplied by c.a. 31.6, i.e. the square root of 1000, the
number of simulation runs considered in their paper. Our results are based
on 2000 samples generated for each parametric model.
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1r1 sd1

Fig. 1. Regression and standard deviation for Example 1

Table 1. Example 1: X ∼ N[t](0, 1)

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 237.1 214.4 153.8 83.8 20.7 13.3 1.2 19.6

σ̃2 45.2 33.2 9.7 36.2 16.4 6.5 5.2 11.3

σ̂2 40.3 23.0 10.0 35.9 17.6 6.5 5.3 11.4

−1 0 1 −1 0 1
0

2.5

0

1r2 sd2

Fig. 2. Regression and standard deviation for Example 2

Table 2. Example 2: N[t](0, [0.5]2)

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 534.0 368.1 44.2 499.0 157.3 100 3.2 154.3

σ̃2 407.1 338.7 74.9 336.4 146.0 60.2 35.9 110.3

σ̂2 400.9 249.5 75.0 336.4 153.3 60.6 36.0 110.3
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Fig. 3. Regression and standard deviation for Example 3

Table 3. Example 3: X ∼ U [−2, 2]

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 32.5 16.7 11.1 23.5 13.1 5.2 5.2 8.1

σ̃2 23.2 11.5 13.4 10.6 15.7 2.1 13.0 2.9

σ̂2 23.2 9.1 13.4 10.6 16.0 2.0 13.0 2.9

−2 0 2 −2 0 2
0

2.5

0

1r4 sd4

Fig. 4. Regression and standard deviation for Example 4

Table 4. Example 4: X ∼ N[t](0, 1)

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 8.8 6.7 2.8 6.9 2.9 2.1 0.3 2.6

σ̃2 8.6 6.7 2.7 6.1 3.6 1.3 1.5 2.1

σ̂2 7.9 3.9 2.8 6.0 3.6 1.2 1.5 2.1
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Fig. 5. Regression and standard deviation for Example 5

Table 5. Example 5: X ∼ N[t](0, 1)

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 145.1 98.1 37.4 116.1 51.2 42.0 3.1 48.4

σ̃2 168.5 136.4 30.5 140.1 58.7 24.6 17.8 40.6

σ̂2 149.4 82.0 30.5 141.4 59.5 20.4 18.3 39.6

−2 0 2 −2 0 2
0

2.5

0

1r6 sd6

Fig. 6. Regression and standard deviation for Example 6

Table 6. Example 6: X ∼ N[t](0, 1)

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 27.6 17.6 4.65 24.2 10.2 6.2 0.48 9.8

σ̃2 14.3 16.7 0.02 14.2 2.4 2.6 0.02 2.4

σ̂2 14.5 13.3 0.03 14.0 3.2 3.0 0.01 2.5
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Fig. 7. Regression and standard deviation for Example 7

Table 7. Example 7: X ∼ U [−2, 2]

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 457.2 372.3 115.5 350.1 151.9 107.0 52.9 100.1

σ̃2 115.9 165.9 4.5 119.7 18.0 25.3 2.0 20.0

σ̂2 120.8 135.9 4.5 119.7 23.5 29.0 2.0 20.0

−1 0 1 −1 0 1
0

2.5

0

1r8 sd8

Fig. 8. Regression and standard deviation for Example 8

Table 8. Example 8: X ∼ U [−1, 1]

n = 100 n = 500

MISE SE ISB MIV MISE SE ISB MIV

σ̄2 277.8 191.5 61.8 227.1 104.2 81.3 31.2 73.9

σ̃2 185.1 176.9 15.1 185.1 28.9 26.2 9.3 36.1

σ̂2 172.0 144.2 15.0 184.7 26.8 26.9 9.3 36.1

Tables 1–8 give MISE and SE of ISE for the estimators in question. For
better readability all actual values in the tables are multiplied, as in Yu and
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Jones (2004), by 104. The tables are accompanied by Figures 1–8, where the
respective regressions and standard deviations are plotted. As mentioned
earlier, the first two cases presented in Tables 1 and 2 were studied in Yu
and Jones (2004). An inspection of their Tables 2 and 3 shows that both
σ̂2 and σ̃2 considerably outperform the seven variance function estimators
considered there. They include, among others, besides the local likelihood
estimator proposed by Yu and Jones, local linear smoothers based on squared
residuals from various regression fits. For example, in the case of the first
model for n = 100 the smallest MISE reported in the paper equals 139
with SE = 76.7 (after the above mentioned renormalization of SE). Also, for
the Yu and Jones (2004) examples, it is seen that the post-model-selection
estimators σ̃2 and σ̂2 nicely compare with the Fan and Yao estimator σ̄2.
For other cases we considered, a comparison of σ̂2 and σ̃2 with σ̄2 is also
encouraging.

The proposed estimators outperform the estimator σ̄2 both in MISE and
SE in the cases when the variance is specified correctly (the last three ex-
amples), even if, as in Example 6, the regression function does not belong to
the models considered. In such cases, when the sample size increases from
n = 100 to n = 500, the decrease of MISE is more substantial for the post-
model-selection estimators than for σ̄2. In Examples 4 and 5 the estimators
σ̂2 and σ̃2 perform on a par with σ̄2 with respect to MISE whereas their SEs
are significantly smaller. Only in Example 3 for n = 500, does σ̄2 noticeably
outperform the proposed estimators in terms of MISE. Note that in Exam-
ple 7, MISE of σ̂2 is more than 3.5 times smaller than that of σ̄2 for n = 100
and more than six times smaller for n = 500. It seems that the Fan and Yao
estimator does not cope well with a situation when both the regression and
the variance function are discontinuous at the same point. In general SEs for
the post-model-selection estimators are smaller than SEs of σ̄2, indicating
that the first two estimators behave more stably. In all examples considered
σ̂2 and σ̃2 behave similarly with slightly smaller SEs for σ̂2 when n = 100.
As a byproduct we obtained related goodness-of-fit measures for estimators
of the regression function. Their examination reveals that with an exception
of Example 7 the method of Fan and Yao (1998) is more precise than the
post-model-selection estimation.

III. Proofs of the main results

A. Proof of Theorem 1. Consider first the case when P = Pθ0 and
Pθ0 ∈ Pkl. Let θ1 ∈ Θkl be the unique point in Θkl such that Pθ0 = Pθ1 and
note that it satisfies (C5). Define the following statistics:

Q0 = sup
θ∈Θk0l0

Lk0l0

n (θ)− Lk0l0

n (θ0), Q1 = sup
θ∈Θkl

Lkln (θ)− Lkln (θ1).
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As Lk0l0
n (θ0) = Lkln (θ1) we have

P (S0 > S1) = P (Q1 −Q0 < (ω1 − ω0) log n).

Properties (C6)–(C9) imply that Pk0l0 and Pkl satisfy the assumptions of
Theorem 5.2.2 in Sen and Singer (1993). Note that although that theo-
rem is stated for univariate random variables its obvious extension holds
for the bivariate case. Thus, this result and (5.6.4) there imply that if
θ̂kl = arg maxθ∈ΘklL

kl
n (θ) then n1/2(θ̂kl − θ1) = OPθ1 (1) and

Q1 = −n(θ̂kl − θ1)T I(θ1)(θ̂kl − θ1) + oPθ1 (1).

Analogous relations hold for Pk0l0 when the data is generated from Pθ0 .
Thus, as Pθ0 = Pθ1 , we get Q1 −Q0 = OPθ0 (1), from which (15) follows in
this case since ω1 > ω0.

Consider now the case when P = Pθ0 6∈ Pkl. For a fixed (u, v) and θ ∈ Θuv
let

Ruvn (θ) = n−1
n∑
i=1

log pθ(Xi, Yi).

Then we have

S0 − S1 = n[ sup
θ∈Θk0l0

Rk0l0

n (θ)− sup
θ∈Θkl

Rkln (θ)]− (ω0 − ω1) log n.

It follows from Theorem 2 in Jennrich (1969) that Pθ0-a.e., as n → ∞,
Rkln (θ)→ EPθ0 log pθ(X,Y ) uniformly in θ ∈ Θkl. For a fixed δ > 0 set

Ai = {ω : ∀n ≥ i, ∀θ ∈ Θkl Rkln (θ) ≤ lim
m→∞

Rklm(θ) + δ}.

By uniform convergence we have Pθ0(
⋃∞
i=1Ai) = 1. Since {Ai} is increasing,

we can choose N1 such that Pθ0(AN1) ≥ 1−δ. Let θ∗kl be a pseudo-true value
of the parameter defined above Theorem 2. For any n ≥ N1 and any θ ∈ Θkl,
due to the definition of θ∗kl, we have on AN1

Rkln (θ) ≤ lim
m→∞

Rklm(θ) + δ = EPθ0 log pθ(X,Y ) + δ(17)

≤ sup
θ∈Θkl

EPθ0 log pθ(X,Y ) + δ

= EPθ0 log pθ∗kl(X,Y ) + δ.

Consider now θ ∈ Θk0l0 . Using again Jennrich’s result we get

Rk0l0

n (θ) ≥ lim
m→∞

Rk0l0

m (θ)− δ = EPθ0 log pθ(X,Y )− δ

for any n ≥ N2 and all θ ∈ Θk0l0 on a set BN2 of Pθ0-probability greater
than 1 − δ. By (C4), taking the supremum on both sides, we have on BN2 ,
and for n ≥ N2,

sup
θ∈Θk0l0

Rk0l0

n (θ) ≥ EPθ0 log pθ0(X,Y )− δ.
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Thus for n ≥ max(N1, N2), on the set AN1 ∩BN2 having Pθ0-probability at
least 1− 2δ,

S0 − S1 ≥ n[D(Pθ0‖Pθ∗kl)− 2δ]− (ω0 − ω1) log n.

Hence for 2δ < D(Pθ0‖Pθ∗kl) we have, for n sufficiently large,

P (S0 > S1) = Pθ0(S0 > S1) ≥ Pθ0(AN1 ∩BN2) ≥ 1− 2δ,

from which the conclusion follows as δ is an arbitrary positive number.

Remark 6. Observe that using again Jennrich’s result on Θkl we obtain

(18) Rkln (θ) ≥ lim
m→∞

Rklm(θ)− δ = EPθ0 log pθ(X,Y )− δ

for any n ≥ N and all θ ∈ Θkl on the set of Pθ0-probability greater than
1 − δ. Taking the supremum on both sides of (18) we have on this set, and
for n ≥ N ,

(19) sup
θ∈Θkl

Rkln (θ) ≥ EPθ0 log pθ∗kl(X,Y )− δ.

B. Proof of Corollary 2. By Corollary 1, it is enough to restrict
attention to the case when P = Pθ0 , θ

0 ∈ Θk�l� . By (C4), Theorem 2.2 of
White (1982) implies that the ML estimator êk�l� of ek�l� is consistent. From
this and the boundedness of Legendre polynomials the conclusion follows.

C. Proof of Theorem 2. The proof is similar to that of Theorem 1.
Observe that the assumption implies that�
p(x, y) log(p(x, y)/pθ∗

k∗l∗
(x, y)) dx dy<

�
p(x, y) log(p(x, y)/pθ∗kl(x, y)) dx dy,

which is equivalent to

(20)
�
p(x, y) log pθ∗

k∗l∗
(x, y) dx dy >

�
p(x, y) log pθ∗kl(x, y) dx dy.

Analogues of inequalities (19) and (17) imply that for any δ > 0 there exists
a set D of P -probability at least 1−δ and N such that for n ≥ N and ω ∈ D,

Rk∗l∗n (θ̂∗) ≥ EP log pθ∗
k∗l∗

(X,Y )− δ
and

Rkln (θ̂) ≤ EP log pθ∗kl(X,Y ) + δ,

where θ̂∗ and θ̂ denote the ML estimators in Θk∗l∗ and Θkl, respectively.
Hence, with k∗, l∗ replacing k0, l0 in S0 and ω0,

S0−S1 ≥ n
[ �
p(x, y) log(pθ∗

k∗l∗
(x, y)/pθ∗kl(x, y)) dx dy−2δ

]
− (ω0−ω1) log n.

In view of (20), for sufficiently small δ,�
p(x, y) log(pθ∗

k∗l∗
(x, y)/pθ∗kl(x, y)) dx dy − 2δ > 0.

Since the closest parametric model is unique, the conclusion follows.
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Appendix I. Verification of analytical properties (C6)–(C9).
Checking (C6) is routine and relies on the observations that a finite fam-
ily of Legendre polynomials is uniformly bounded and it follows from (5)
that for some positive C,

min
l≤L

inf
θ∈Θkl

inf
x∈[a,b]

σ2
tl(x) ≥ C > 0.

For illustration, we check (C7) for the case of the second derivative of
log pθ with respect to ηvj and ηv′j′ . Indeed, it is easy to see that

(21)
∂2 log pθ(x, y)
∂ηrj∂ηr′j′

= −1
2

[Φrj(x)Φr′j′(x)][y −msk(x)]2
1

σ2
tl(x)

,

from which, reasoning as above, (C7) easily follows.
In order to check (C8) first note that, due to (C7), by the standard

argument (cf. e.g. Sen and Singer (1993), p. 206), the formula for I(θ) holds.
Moreover, since the integration and differentiation can be interchanged we
get

− ∂2

∂θ∂θT
{EPθ [log pθ(X,Y )]} = I(θ).

Therefore, if θ0, defined in (C4), is an interior point of Θk0l0 = ΘBk0l0 , then
I(θ0) is positive definite. However, for θ0 /∈ intΘBk0l0 we obviously have θ0 ∈
intΘB

0

k0l0 for some B0 > B. Note also that, irrespective of the value of B,
the properties (C2) and (C4) hold and thus I(θ0) has to be positive definite.
The same argument applies to I(θ1), where θ1 is the point defined in (C5).

Now we verify (C9). To ease notation consider the case k = K and l = L
for which we abbreviate θ to θ = (b, e). Moreover, let θ+h = (b+h1, e+h2)
and let Φ1(·) and Φ2(·) be vectors of Legendre polynomials pertaining to b
and e, respectively. Then in view of (21),

∂2

∂ηrj∂ηr′j′
log

pθ+h
pθ

(X,Y ) =− 1
2

[Φrj(X)Φr′j′(X)][Y − (b+ h1) ◦ Φ1(X)]2

exp{(e+ h2) ◦ Φ2(X)}

+
1
2

[Φrj(X)Φr′j′(X)][Y − b ◦ Φ1(X)]2

exp{e ◦ Φ2(X)}
,

where ◦ stands for the inner product in the relevant spaces. Set

ε = (Y − b ◦ Φ1(X))/exp(e ◦ Φ2(X)/2).

The difference can be written as a sum of three terms

1
2

[Φrj(X)Φr′j′(X)]
{(

ε2 − ε2

exp{h2 ◦ Φ2(X)}

)
− [h1 ◦ Φ1(x)]2

exp{(e+ h2) ◦ Φ2(X)}

+
2εh1 ◦ Φ1(X)

exp{(e/2 + h2) ◦ Φ2(X)}

}
=: J1 + J2 + J3.
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If (X,Y ) ∼ Pθ = P(b,e) then ε ∼ N(0, 1). In order to deal with J1 observe
that for h such that ‖h‖ ≤ δ, with C and C ′ denoting generic constants and
δ sufficiently small,

sup
‖h‖≤δ

|J1| ≤ Cε2 sup
‖h‖≤δ

|1− exp(−h2 ◦ Φ2(X))| ≤ C ′ sup
‖h‖≤δ

ε2
L∑
i=1

|h2i|

≤ C ′ε2L1/2δ1/2,

where h2 = (h21, . . . , h2L)T and the expected value of the above expression
tends to 0 as δ → 0. The terms J2 and J3 and the second order derivatives
with respect to b, as well as b and e, are dealt with similarly.

Appendix II. Some details on the simulation experiment

A. Description of examples. Each example is defined by a triple
(ri, sdi, fi), where ri denotes the regression function, sdi is the standard de-
viation while fi stands for the density of the explanatory variable X. Below,
we give a description of the regression functions r1–r8, the corresponding
standard deviations sd1–sd8 and provide some information on the distribu-
tion of X.

Example 1. r1(x) = x + 2 exp{−16x2}, sd1(x) = (0.5) exp{−x2/8},
x ∈ [−2, 2] while X ∼ N(0, 1), truncated to [−2, 2].

Example 2. r2(x) = 2 cosx + exp{−x2}, sd2(x) = (0.5)[2 + sinx +
cos 2x]1/2, x ∈ [−1, 1] while X ∼ N(0, [0.5]2), truncated to [−1, 1].

In Examples 4–6 we took x ∈ [−2, 2] and X ∼ N(0, 1), truncated to
[−2, 2]. In Examples 3 and 7 we assumed X ∼ U [−2, 2], while in Example 8
we considered X ∼ U [−1, 1], where U [a, b] denotes the uniform distribution
on [a, b].

The functions r3, r4 and r6 are motivated by the list of Marron and Wand
(1992) who considered them in the context of density estimation. They are
expressed below as rescaled normal mixtures.

r3 = 5
{

3
4N(0, 1) + 1

4N
(

3
2 ,
[

1
3

]2)}
,

r4 = 5
{

1
2N
(
−1,

[
2
3

]2)+ 1
2N
(
1,
[

2
3

]2)}
,

r6 = 5
{

1
5N(0, 1) + 1

5N
(

1
2 ,
[

2
3

]2)+ 3
5N
(

13
12 ,
[

5
9

]2)}
.

Moreover,

sd3(x) = 0.35 + (0.15){(0.3) cos[πx] + (0.4) sin[3(x− 0.175)π]},
sd4(x) = 0.2 + (0.05)x2, sd6(x) = (0.4)1[−2,2](x).
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The remaining functions are as follows:

r5 = sd6,

sd5 = 0.4 + (0.5)N(−1.5, [0.5]2) + (0.2)N(1.5, [0.5]2),

r7(x) = (0.5){x21[−2,0)(x) + (2− x)21[0,2](x)},
sd7(x) = (0.4)1[−2,0](x) + (0.8)1(0,2](x),

r8(x) = 2x21[−1,1](x),

sd8(x) = (0.6)1[−1,−1/2](x) + (0.3)1(−1/2,0](x)

+ (0.5)1(0,1/2](x) + (0.8)1(1/2,1](x).

B. Goodness-of-fit measures. As a primary measure of performance
of a variance estimator we considered its (empirical) Integrated Squared
Error (ISE). We shall present this and the following notions for the case
of σ̂2. Measures of goodness-of-fit for σ̃2 and σ̄2 are defined in the same way.
We have

ISE = n−1
n∑
i=1

[σ̂2(Xi)− σ2(Xi)]2.

Let ISEj stand for the ISE of the jth repetition of the experiment, j =
1, . . . ,M. Then MISE and SE are defined as the empirical mean and the
empirical standard deviation of {ISEj}Mj=1. In all experiments we took M =
2000. We also calculated the Mean Integrated Variance (MIV) and Inte-
grated Squared Bias (ISB), which are empirical means (over M runs) of the
quantities

(22) n−1
n∑
i=1

[σ̂2(Xi)− Ẽσ̂2(Xi)]2 and n−1
n∑
i=1

[Ẽσ̂2(Xi)− σ2(Xi)]2,

respectively. In (22), Ẽσ̂2(Xi) denotes the estimator of the expected value
of σ̂2 calculated at Xi, based on allM simulation results. Since the values of
the explanatory variable differ in subsequent samples, the equality MISE =
ISB + MIV holds only approximately.

C. Implementation issues. As discussed previously (cf. (13)), the
model Pkl is the heteroscedastic regression model for which the regression
function has the form X bsk and the logarithm of the variance has the form
Zetl for suitable X and Z of the dimensions n × (s · k) and n × (t · l), re-
spectively. Every column of X contains values of the corresponding Legendre
polynomial supported on a certain partition interval and calculated at sample
points. Thus nonzero values in the column correspond to the sample points
falling into the pertaining interval. In order for the matrix X (resp., Z) to be
of full column rank, at least s points (resp., t) have to fall into each partition
interval. Recall that s = 3 and t = 1 in our experiments.
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Both ML and REML estimators are found iteratively as zeros of the
derivative of either the log-likelihood or restricted log-likelihood function. For
ML estimation the maximal number of iterations (Imax) was set at Imax =
100 with a stop occurring when the absolute difference of the likelihood
in two successive iterations did not exceed 10−6. For REML estimation we
used the analogous stopping criterion based on the restricted log-likelihood
and Imax = 200. For each of the methods, the number of cases for which
convergence failed or either X or Z was not of full column rank was less
than 0.3% for each model considered. The exact form of the score vectors
and information matrices for both methods are given in Verbyla (1993) and
Smyth (2002).
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