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A NATURAL CHARACTERIZATION
OF NONLINEAR COST RULES

Abstract. We prove a new characterization of cost rules based on the
relationship between the classes of unambiguous and nonwasteful assets in
incomplete frictionless markets.

1. Introduction. The no-arbitrage principle together with the assump-
tion of complete markets enforce linear cost rules (see e.g. [1]). In incomplete
markets, where not all securities can be replicated by feasible portfolios, it
is possible to stay on the safe side only by superhedging strategies. In this
latter case, one needs a cost function to determine the minimum value neces-
sary for the replication or superreplication of any contingent claim; however,
the standard linear approach fails for any nonattainable claim. Instead, the
following nonlinear set-up is commonly employed (cf. [9], [4], [7], [10]). The
space of financial positions is a vector space E with vector ordering ≥; be-
sides the origin 0 ∈ E, we distinguish a reference cash stream 1 > 0 (by
definition, x > 0 means x ≥ 0 and x 6= 0). A real-valued cost function C is
defined on E through the following properties (cf. [4]):

• Subadditivity: C(x+ y) ≤ C(x) + C(y) for any x, y ∈ E;
• Positive homogeneity: C(tx) = tC(x) for any nonnegative real t and
x ∈ E;

• Monotonicity: C(x) ≤ C(y) if x ≤ y in E;
• Translation invariance: C(x+ t1) = C(x) + t for any real t and x ∈ E.

In the space of linear price systems E′, the algebraic dual of E, we fix a total
subspace E× (i.e., if g(x) = 0 for all g ∈ E×, then x = 0), and consider
the weak∗-topology on E× associated to the dual pair (E,E×). We say that
g ∈ E× is positive (resp. normalized) if g(x) ≥ 0 for x ≥ 0 in E (resp.
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g(1) = 1). In this general set-up, we have the following structure result (cf.
[9], [4], [7], [10]): any cost function C on E is of the form

(1) C(x) = sup
g∈A

g(x)

for some weak∗-closed convex set A ⊆ E× in which all g ∈ A are positive and
normalized. The proof relies on the fact that A consists of all positive and
normalized elements of the polar set of {x ∈ E; C(−x) ≤ 0} with respect
to the dual pair (E,E×), i.e.,

(2) A = {g ∈ E×; g is normalized and
g(x) ≥ 0 for any x satisfying C(−x) ≤ 0}.

In this paper we study the possibility of replacing the set A by a less
abstract one; this will be accomplished when the set of nonambiguous as-
sets coincides with the set of nonwasteful assets in incomplete frictionless
markets, and under minimal regularity requirements on the cost function
(i.e., relevance and continuity). As such, the sup in formula (1) can be taken
upon the set of functionals that agree on all nonambiguous assets; this is very
natural, as the space of unambiguous assets equals the space of attainable
claims, in finite dimensions, but also in special cases of infinite-dimensional
markets (cf. [1]).

2. Main result and examples

Definitions (cf. [10], [4], [2], [11]). Let f0 ∈ E′. We say that the cost
function C is f0-relevant if

(3) x ≥ 0 and f0(x) > 0 imply C(x) > 0.

To a cost function C, we associate the set of unambiguous assets UAC by

(4) UAC = {x ∈ E; C(x) + C(−x) = 0}.
If, in addition, C is f0-relevant, we introduce the set of nonwasteful assets
NWC by:

(5) NWC = {x ∈ E; C(y) > C(x) provided y ≥ x and f0(y) > f0(x)}.
We say that the sequence (xn)n≥1 in a vector space with vector ordering E is
order convergent, or (o)-convergent, and write x = (o)-limxn, if there exist
two sequences an increasing to 0 and bn decreasing to 0 in E such that an ≤
xn − x ≤ bn for all n. We say that the cost function C is order continuous,
for short (o)-continuous, if C(xn)→ C(x) provided x = (o)-limxn.

Interpretation. The relevance property ensures that the cost function
identifies positions with strictly positive cost: each position with x ≥ 0
satisfies f0(x) ≥ 0, but only those satisfying f0(x) > 0 have strictly positive
cost. Note that the definitions for relevance introduced in [9] and [3] are
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particular cases of (3). The set UAC describes the assets for which there is
no pricing distinction between a selling position and a buying position. The
set NWC describes the claims with the following property: if some payoff
assigned by the claim is replaced by a better payoff, i.e., f0(x) > f0(y),
then the resulting contingent claim C(y) is strictly more expensive than the
original one C(x).

Our main result below concerns the possibility of replacing the set A in
formula (1) by the set B defined as follows:

(6) B = {g ∈ E× : g is positive, normalized and
g(x) = C(x) for any x ∈ UAC}.

Our result reads as follows (note that it extends the—simpler—finite dimen-
sion version of the main result in [2]):

Theorem. Let C be an f0-relevant (o)-continuous cost function and E×

a Banach subspace of E′. Then B = A if and only if NWC = UAC .

Example 1 (concerning the general setup). Consider a probability space
(Ω,F , P ), and define 1(ω) = 1 a.e. One can take:

• E = RΩ, the space of real-valued functions on a finite set Ω, with
the pointwise ordering, and where E× is the space of all probability
measures on Ω (see [3], [5]);

• E = Lp(Ω,F , P ), 1 ≤ p ≤ ∞, with the pointwise P -a.e. ordering, and
where E× is the norm topological dual of E (see [4], [6]); if p = ∞,
recall that E× = ba(Ω,F , P ), the Banach space of bounded finitely
additive measures on F , absolutely continuous with respect to P .

Alternatively, E can be the space of p-summable sequences lp (1 ≤ p ≤ ∞),
the space of continuous functions C(Ω) on a compact Hausdorff space Ω, a
standard Lebesgue or Orlicz function space (see [4]), a space of test func-
tions (e.g., C∞ with polynomial growth at infinity), etc. with their natural
orderings and topologies.

Example 2 (concerning f0-relevance). Each nonnegative position x ∈
E = L∞(Ω,F , P ) satisfying P [x > 0] > 0 has strictly positive cost (see [4],
[10]). Also note that stricly positive cost functions are relevant with respect
to any strictly positive linear functionals (such as strictly positive proba-
bilities, e.g., atomless, or even probabilities that do not charge the states
of the market). The following quantitative method shows how “relevant” a
cost rule is. Consider the space of a.e. finite measurable functions x with
respect to the Lebesgue measure λ on (0,∞) satisfying

λ(t > 0; |x(t)| > c)→ 0 when c→∞.
Endowed with convergence in measure and pointwise λ-a.e. ordering, this
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space becomes a nonseparable complete metric vector lattice, and any ele-
ment f0 of its topological dual can be written as follows:

f0(x) = lim
c→∞

�
inf{x, c} dmf

for some finitely additive signed measure mf on the Lebesgue σ-field of
(0,∞) satisfying mf (A) = 0 for any A ⊂ (0,∞) with λ(A) < ∞. Given
some threshold t0 > 0, the inequality f0(x) ≤ t0 quantifies how relevant a
cost, larger than c, is.

Example 3 (concerning (o)-convergence and (o)-continuity). In the
space L1(Ω,F , P ), order convergence is equivalent to: xn → x a.e. and
|xn| ≤ c a.e. for some constant c > 0; in Lp(Ω,F , P ), 1 ≤ p < ∞, it is
equivalent to: xn → x a.e. and |xn| ≤ y a.e. for some y ∈ Lp; in L∞(Ω,F , P )
it coincides with a.e. convergence. Continuity from below or lower semicon-
tinuity on bounded ordered vector spaces implies (o)-continuity (see [10,
p. 798]). If E = L∞(Ω,F , P ) and E× = ba(Ω,F , P ), then any f ∈ E×

continuous from below is (o)-continuous, i.e., σ-additive.

Example 4 (a cost function for which NWC = UAC). Consider E =
L∞(Ω,F , P ), and define

C(x) = ess supx.

In this case E× = A = L1(Ω,F , P ), the cost C is (o)-continuous and rel-
evant with respect to P , and both NWC and UAC are equal to the set of
constant functions P -a.e. on Ω.

Example 5 (another cost function for which NWC = UAC). On [0, 1]
endowed with the Borel σ-algebra F , we define

C(x) = min{m : {x(·) > m} is of first category}.

In this case A is a convex set of purely finitely additive probabilities on
F , the cost C is (o)-continuous and relevant with respect to the Lebesgue
measure on [0, 1], and both NWC and UAC are equal to the set of functions
Lebesgue-a.e. constant on sets of first category in [0, 1].

Example 6 (a cost function for which NWC 6= UAC). Consider an
atomless probability space (Ω,F , P ), fix 0 < α < 1, and define

C(x) = sup
P (A)>α

�

A

x dP.

In this case A = {x ≥ 0; ‖x‖∞ ≤ 1/α,
	
x dP = 1}, the cost C is (o)-

continuous and relevant with respect to P , and UAC = L1(Ω,F , P ). How-
ever, the sum of an L1(Ω,F , P )-function and the indicator of any P -negli-
gible subset of Ω does not belong to NWC .
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3. Proof of the main result. We collect the easy statements in the
following lemma, and present the essential arguments of the proof in two
propositions.

Lemma 1. Let C be a cost function; then A ⊆ B. If, in addition, C is
f0-relevant, then UAC ⊆ NWC .

Proof. For the first part, let x ∈ E be such that C(x) +C(−x) = 0. We
then have

sup
g∈A

g(x) = − sup
g∈A

g(−x) = inf
g∈A

g(x),

therefore g(x) = C(x) for all g ∈ A.
For the second part, let x0 ∈ UAC . According to (4), (3) and using

subadditivity, for y ≥ x0 satisfying f0(y) > f0(x0), we have

C(y)− C(x0) = C(y) + C(−x0) ≥ C(y − x0) > 0,

so, by (5), we conclude that x0 ∈ NWC .

Proposition 2. Let C be an f0-relevant cost function. Then NWC ⊆
UAC implies B ⊆ A.

Proof. Let f ∈ B; if f /∈ A, according to (2) there exists x0 with
C(−x0) ≤ 0 and f(x0) < 0. According to (1), we deduce that g(x0) ≥ 0 for
all g ∈ A, so

(7) f(x0) < 0 ≤ g(x0) for all g ∈ A.

Assume that for any y ≥ x0 with f0(y) > f0(x0) we have C(y) > C(x0).
As NWC ⊆ UAC , using (4)–(5) we have C(x0) + C(−x0) = 0, so, as in the
proof of Lemma 1 (first part), we obtain g(x0) = C(x0) for all g ∈ A. As
f ∈ B, by (6) we obtain f(x0) = C(x0) and this contradicts (7). Therefore

(8) for all y ≥ x0 with f0(y) > f0(x0) we have C(y) = C(x0).

Choose y ≥ 0 satisfying (8); as ny ≥ y ≥ x0 and f0(ny) = nf0(y) ≥ f0(y) >
f0(x0) for all natural n ≥ 1, condition (8) gives nC(y) = C(x0) for all n ≥ 1.
We obtain C(y) = (n+ 1)C(y)−nC(y) = C(x0)−C(x0) = 0, and therefore
C(x0) = C(y) = 0. As f ∈ B, from (6) we deduce that f(x0) = 0, contrary
to (7).

Remark. The f0-relevance was essential in proving formula (8). The
finite-dimensional examples in [2] show that this condition cannot be re-
moved.

Proposition 3. Let C be an f0-relevant (o)-continuous cost function
and E× a Banach subspace of E′. Then B ⊆ A implies NWC ⊆ UAC .
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Proof. According to Lemma 1 and our hypothesis we have A = B. In
addition,

C(x) = inf{C(y); y ≥ x and C(y) + C(−y) = 0}(9)
= min{C(y), y ≥ x and C(y) + C(−y) = 0}.

Indeed, as in Lemma 1, we obtain C(y) = g(y) for all g ∈ A = B provided
C(y) + C(−y) = 0 and, using that E× is Banach, by the Krein–Šmulian
theorem (see [8]) and the fact that C(·) is (o)-continuous, we find that A is
weak∗-compact and the inf in the first line of formula (9) is attained so that
we are allowed to write “min”.

Now let x0 ∈ NWC ; by (5) we consider y ≥ x0 with f0(y) > f0(x0) and
such that C(y) > C(x0). If C(x0) + C(−x0) 6= 0, by (9) we obtain

C(x0) = min{C(y); y > x0 and C(y) + C(−y) = 0},

so there exists z > x0 with C(z) +C(−z) = 0 and C(x0) = C(z). Therefore
we should have f0(z) = f0(x0), which contradicts the assumption at the
begining of the paragraph, so C(x0)+C(−x0) = 0, and by (4), x0 ∈ UAC .

Remark. Both the (o)-continuity of the cost function and the technical
restriction “E× ⊂ E′ is a Banach subspace” were essential in proving for-
mula (9). Examples 3.7 and 3.10 in [4] show that neither condition can be
removed.

Proof of the Theorem. Apply Lemma 1 and Propositions 2–3.
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