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SOME REMARKS ON THE CONTROL OF FALSE

DISCOVERY RATE UNDER DEPENDENCE

Abstract. We investigate controlling false discovery rate (FDR) under
dependence. Our main result is a generalization of the results obtained by
Genovese and Wasserman (2004) and Farcomeni (2007).

1. Introduction. We consider a multiple testing procedure in which m
tests are being performed simultaneously. Suppose that m0 of the null hy-
potheses are true and m−m0 are false. The false discovery proportion (FDP)
is defined to be the proportion of erroneously rejected null hypotheses:

FDP =

{
V/R if R > 0,

0 if R = 0,

where V is the number of erroneously rejected null hypotheses and R it
the total number of rejected hypotheses in the multiple testing procedure.
Benjamini and Hochberg (1995) defined the False Discovery Rate (FDR) to
be the expectation value of the FDP :

FDR = E(FDP).

Multiple testing procedures which control FDR have good power even when
thousands of hypotheses are tested simultaneously, especially in modern
biology applications. Benjamini and Hochberg (1995) introduced the BH
procedure which guarantees control of FDR for independent test statistics.
Genovese and Wasserman (2004) showed that, asymptotically, the BH pro-
cedure corresponds to a fixed threshold method that rejects all p-values less
than a threshold u∗. Recently there have been many new results extending
the BH procedure to classes of dependent test statistics (see Benjamini and
Yekutieli (2001), Sarkar (2002), Storey (2002), Farcomeni (2007)). Under
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the assumption that the p-values are independent Genovese and Wasserman
(2004) formulated asymptotic results on controlling FDR by using methods
from the theory of stochastic processes. Some progress has been achieved
by Farcomeni (2007) in the case when the p-values satisfy some dependent
models including mixing and associated dependence. Wu (2008) extended
these results when the null hypotheses (Hi) are 0-1 valued stationary pro-
cesses, and, given (Hi), the p-values are independent. In our study the null
hypotheses (Hi) are i.i.d. Bernoulli random variables. Additionally, we as-
sume that the p-values satisfy some weak dependence model (see (4.10))
which is not covered by Farcomeni (2007).

The paper is organized as follows. In Section 2 we present the mixture
model of simultaneous testing of hypotheses. In Section 3 we present an
overview of known asymptotic results on controlling FDR and we give a
generalization of those results in the mixture model. In Section 4 we give a
new dependence model for test statistics (p-values).

2. Model. Suppose that data X come from some probability distribu-
tion P ∈ Ω, where Ω is the set of all available probability distributions. On
the base of X we are testing m hypotheses simultaneously Hi : P ∈ ωi or
H ′i : P /∈ ωi for i = 1, . . . ,m. We assume that we test the hypothesis Hi

versus H ′i based on a statistic Ti. Let (Kα)α be a given family of rejection
sets for Hi such that:

(i) Kα ⊆ Kβ for α ≤ β,
(ii) P(Ti ∈ Kα) = α for all P ∈ ωi, i = 1, . . . ,m.

Then p-value for Hi is defined by

pi(T ) = inf{α : Ti ∈ Kα}.

The multitesting procedure controls FDR at level α if

EP(FDP) ≤ α for all P ∈ Ω.

A most popular framework for FDR is the mixture model (Storey (2002)).

2.1. Mixture model. We assume that the null hypotheses Hi, 1 ≤ i
≤ m, are i.i.d. Bernoulli random variables and

(2.1) P(Hi = 0) = 1− π
for some 0 < π < 1. We write Hi = 0 if the null hypothesis Hi is true and
Hi = 1 if it is false. In particular, we assume that the 2-dimensional random
vectors (pi, Hi) for i = 1, . . . ,m are i.i.d. and such that

P(pi ≤ t |Hi = 0) = t,(2.2)

P(pi ≤ t |Hi = 1) = F (t),(2.3)
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for t ∈ [0, 1], where F is the distribution function of the p-value under the
alternative hypothesis. Then the marginal distribution function of pi has the
form

(2.4) G(t) = πt+ (1− π)F (t) for t ∈ [0, 1].

3. Asymptotic control of FDR. We define the following stochastic
process:

Γm(t) =

∑m
i=1 1{pi ≤ t}(1−Hi)∑m

i=1 1{pi ≤ t}+ 1{p(1) > t}

for t ∈ [0, 1], where p(1) = min{p1, . . . , pm}.
Storey (2002) showed that in the mixture model for any t > 0,

E(FDP) = E(Γm(t)) = Q(t)(1− (1−G(t))m),

where

Q(t) = (1− π)
t

G(t)
.

First, we assume that π is known. Let

TPI = sup{0 ≤ t ≤ 1 : Qm(t) ≤ α},

where

Qm(t) = (1− π)
t

Gm(t)
, Gm(t) =

1

m

m∑
i=1

1{pi ≤ t}.

In the mixture model Genovese and Wasserman (2004) obtained

E(Γm(TPI)) = α+ o(1) as m→∞.

In the case where π is unknown, we use an estimator π̂ and

Q̂m(t) = (1− π̂)
t

Gm(t)
, T̂ = sup{0 ≤ t ≤ 1 : Q̂m(t) ≤ α}.

Genovese and Wasserman (2004) showed that if G is concave and

π̂
P−→ π0 < π,

then

E(Γm(T̂ )) ≤ α+ o(1) as m→∞.

A discussion of identifiability of the parameter π appears in Genovese
and Wasserman (2004). Various methods of estimating π can be found in
Langaas and Lindqvist (2005). We mention the following estimator:

π̂ =

(
Gm(s)− s

1− s

)
+
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for some s ∈ (0, 1), where a+ = max(a, 0). Storey (2002) proved that if
G(s) > s, then

π̂
P−→ G(s)− s

1− s
and

√
m

(
π̂ − G(s)− s

1− s

)
d−→ N

(
0,
G(s)(G(s)− s)

(1− s)2

)
as m→∞ (see also Genovese and Wasserman (2004, Proposition 3.2)).

3.1. Some generalization of the mixture model. We assume that
the (Hi) are i.i.d. Bernoulli random variables satisfying (2.1) and the p-values
(pj) satisfy (2.2)–(2.3), and come from some weak dependence model. Let

Λ0,m(t) =
1

m

m∑
i=1

(1−Hi)1{pi ≤ t},

Λ1,m(t) =
1

m

m∑
i=1

Hi1{pi ≤ t}.

We consider the space L∞([0, 1]) of all uniformly bounded, real functions
z on [0, 1] with uniform norm

‖z‖∞ = sup
t∈[0,1]

|z(t)|.

Our basic assumption is

(D)
√
m(Λ0,m(t)− (1− π)t, Λ1,m(t)− πF (t)) (Z1(t), Z2(t))

in L∞([0, 1])×L∞([0, 1]) as m→∞, where (Z1, Z2) is a mean zero Gaussian
process with bounded covariance kernel

(3.1) Kij(s, t) = Cov(Zi(s), Zj(t)) for i, j = 0, 1.

Lemma 1. Under condition (D), we have

Wm(t) :=
√
m(Γm(t)−Q(t)) Z(t)

as m → ∞ for t ∈ [δ, 1] for some δ > 0, where Z is a mean zero Gaussian
process with covariance kernel

K(s, t) =
π2F (s)F (t)

G2(s)G2(t)
K11(s, t)−

π(1− π)F (t)s

G2(s)G2(t)
K12(s, t)

− π(1− π)F (s)t

G2(s)G2(t)
K21(s, t) +

(1− π)2st

G2(s)G2(t)
K22(s, t),

where Kij are defined by (3.1).

Proof. This follows immediately by a similar reasoning to the one in
Genovese and Wasserman (2004, proof of Theorem 4.2).
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Remark 1. Condition (D) has been obtained by Genovese and Wasser-
man (2004) in the case where the p-values (pi) are independent, and by
Farcomeni (2007) for various dependent models for (pi).

The theorem below can be obtained as in Genovese and Wasserman
(2004, proof of Theorem 5.1).

Theorem 1. In the case where π is known, condition (D) implies

(3.2) E(Γm(TPI)) = α+ o(1) as m→∞.

4. Dependence model of p-values. Let the p-values be of the form

(4.1) pj = G(. . . , ηj−1, ηj , ηj+1, . . .),

where (ηj) are i.i.d. and G : R∞ → [0, 1] is a measurable function. Let
Fi := (. . . , ηi−1,ηi)

Pk(ξs,ti ) := E(ξs,ti | Fk)− E(ξs,ti | Fk−1),

‖P0(ξi)‖ :=
√
E(P0(ξi))2,

where

ξi = ξ0,ti , ξs,ti = 1{s ≤ pi ≤ t},
for s, t ∈ [0, 1]. Now, we give conditions which imply (D).

Lemma 2. If the hypotheses (Hi) are i.i.d. Bernoulli random variables,
the p-values (pi) have the form (4.1), and

(a)
∞∑
i=1

‖P0(ξs,ti )‖ ≤ Cd(s, t)

for all s, t ∈ (δ, 1] for some δ > 0 and some constant C > 0, where d(s, t)
is a pseudo-metric on [0, 1] such that the space ((δ, 1], d) is totally bounded,
then (D) holds.

Proof. Let

Am(t) :=
√
m(Λ0,m(t)− (1− π)t),

Bm(t) :=
√
m(Λ1,m(t)− πF (t)).

By weak convergence theory (see Van der Vaart and Wellner (1996,
p. 42)) it is sufficient to check asymptotic tightness of the processes Am(t)
and Bm(t) and finite-dimensional convergence: for all l ∈ N and all t1, . . . , tl
∈ [0, 1],

(4.2) (Am(t1), Bm(t1), Am(t2), Bm(t2), . . . , Am(tl), Bm(tl))

 (Z1(t1), Z2(t1), Z1(t2), Z2(t2), . . . , Z1(tl), Z2(tl)).
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Since the space ((δ, 1], d) is totally bounded, the processes Am and Bm
are asymptotically tight if Am(t) and Bm(t) are tight in R and the pro-
cesses Am and Bm are asymptotically uniformly d-equicontinuous in proba-
bility (see Van der Vaart and Wellner (1996, Th. 1.5.7, p. 37)). Asymptotic
tightness in R of Am(t) and Bm(t) is trivial from (4.2). Asymptotic uniform
d-equicontinuity in probability of Am and Bm will follow once we prove the
following conditions:

(i) for all m and for all s, t ∈ (δ, 1] for some δ > 0,

‖Am(t)−Am(s)‖ ≤ Cd(s, t)

for some constant C > 0,
(ii) for all m and for all s, t ∈ (δ, 1] for some δ > 0,

‖Bm(t)−Bm(s)‖ ≤ Cd(s, t)

for some constant C > 0

(see Furmańczyk (2008, Lemma 3.1 for Q = 2, p. 135)).
We will deduce those conditions from condition (a). Indeed, we may

assume that s < t. Obviously

Pk
( m∑
i=1

(1−Hi)1{s ≤ pi ≤ t}
)

=
m∑
i=1

Pk((1−Hi)1{s ≤ pi ≤ t}).

From the triangle inequality, we have∥∥∥Pk( m∑
i=1

(1−Hi)1{s ≤ pi ≤ t}
)∥∥∥ ≤ m∑

i=1

‖Pk((1−Hi)1{s ≤ pi ≤ t})‖.

Observe that

E(Pk((1−Hi)1{s ≤ pi ≤ t}))2

= E
(
(Pk((1−Hi)1{s ≤ pi ≤ t}))2

∣∣ Hi = 0
)
P(Hi = 0)

+ E
(
(Pk((1−Hi)1{s ≤ pi ≤ t}))2

∣∣ Hi = 1
)
P(Hi = 1)

= E
(
(Pk(1{s ≤ pi ≤ t}))2

∣∣ Hi = 0
)
P(Hi = 0)

≤ E
(
(Pk(1{s ≤ pi ≤ t}))2

∣∣ Hi = 0
)
P(Hi = 0)

+ E
(
(Pk(1{s ≤ pi ≤ t}))2

∣∣ Hi = 1
)
P(Hi = 1)

= E(Pk(1{s ≤ pi ≤ t}))2.
From stationarity of (pi), we have

‖Pk(ξs,ti )‖ = ‖P0(ξs,ti−k)‖.
Therefore from (a) we get∥∥∥Pk( m∑

i=1

(1−Hi)1{s ≤ pi ≤ t}
)∥∥∥ ≤ m∑

i=1

‖Pk(ξs,ti )‖ =

m∑
i=1

‖P0(ξs,ti−k)‖(4.3)

≤ Cd(s, t)
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for some constant C > 0. Since (Pk) are orthogonal, from (4.3) we have∥∥∥ m∑
i=1

(1−Hi)1{s ≤ pi ≤ t} −m(1− π)(t− s)
∥∥∥2

=
∥∥∥ ∞∑
k=−∞

Pk
( m∑
i=1

(1−Hi)1{s ≤ pi ≤ t} −m(1− π)(t− s)
)∥∥∥2

=

∞∑
k=−∞

∥∥∥Pk( m∑
i=1

(1−Hi)1{s ≤ pi ≤ t}
)∥∥∥2

≤ Cd(s, t)
∞∑

k=−∞

m∑
i=1

‖P0(ξs,ti−k)‖ ≤ C
2md2(s, t).

Hence we have (i). Similarly we obtain (ii).

Now, we show (4.2). By the Cramer–Wald theorem the finite-dimensional
convergence (4.2) holds if for any ai, bi ∈ R and for fixed ti ∈ [0, 1] for
i = 1, . . . , l the random variable

Lm :=
l∑

i=1

(aiAm(ti) + biBm(ti))

is convergent to a normal distribution N(0, σ2), where

σ2 =
l∑

i,j=1

aiajK11(ti,tj) +
l∑

i,j=1

bibjK22(ti,tj)(4.4)

+
l∑

i,j=1

aibjK12(ti, tj) +

l∑
i,j=1

ajbiK21(ti, tj),

and (Kij) are defined in (3.1). Therefore (4.2) holds if

(4.5)
1√
m

m∑
i=1

l∑
j=1

(ξ̃i,j − E(ξ̃i,j))
d−→ N(0, σ2) as m→∞,

where

(4.6) ξ̃i,j := (aj + (bj − aj)Hi)1{pi ≤ tj}.

Let

π̃1,j := E(ξ̃i,j) = (aj + (bj − aj)π)G(t).

Since
∞∑

i=−∞

∥∥∥P0( l∑
j=1

ξ̃i,j

)∥∥∥ ≤ l∑
j=1

∞∑
i=−∞

∥∥∥P0( l∑
j=1

ξ̃i,j

)∥∥∥,
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reasoning as in Lemma 1 (see Wu (2008)) we find that the condition

(4.7)
∞∑

i=−∞
‖P0(ξ̃i,j)‖ <∞

for j = 1, . . . , l implies∥∥∥ m∑
i=1

ξ̃i −mπ̃1 −Mm

∥∥∥2 = o(m)

as m→∞, where ξ̃i =
∑l

j=1 ξ̃i,j , π̃1 =
∑l

j=1 π̃1,j , and Mm =
∑m

k=1Dk is a
martingale with respect to (Fk), because the processes

(4.8) Dk =
∞∑

i=−∞
Pk(ξ̃i)

are martingale differences with respect to (Fk). By the central limit theorem
for martingales we have (4.5) for σ = ‖Dk‖. On the other hand, (4.6)–
(4.8) imply that σ has the form (4.4). Similarly to Wu (2008) we show that

conditions (4.12)–(4.13) imply (4.7). Let ξi := ξ0,ti = 1{pi ≤ t}. Then

E(P0(ξ̃i))2 = E
(
(P0(ξ̃i))2

∣∣ Hi = 0
)
P(Hi = 0)

+ E
(
(P0(ξ̃i))2

∣∣ Hi = 1
)
P(Hi = 1)

= E
(
(a2P0(ξi))2

∣∣ Hi = 0
)
P(Hi = 0)

+ E
(
(b2P0(ξi))2

∣∣ Hi = 1
)
P(Hi = 1)

≤ max(a2, b2)E(P0(ξi))2,
and consequently

(4.9) ‖P0(ξ̃i)‖ ≤ max(|a|, |b|)‖P0(ξi)‖.
From (a) for s = 0 we obtain

∞∑
i=−∞

‖P0(ξi)‖ <∞,

which implies (4.7) and (4.2).

4.1. Linear process. We consider a special model of (4.1), where the
p-value pj is a function of a linear process,

(4.10) pj = g
( ∞∑
r=−∞

arηj−r

)
,

where g : R→ [0, 1] is measurable such that g ∈ C1(R), g′(x) 6= 0 and

(4.11)

t�

s

|(g−1(u))′| du < Cd(s, t) for all s, t ∈ (δ, 1] for some δ > 0,
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and for some constant C > 0, (ηi) are i.i.d. with bounded and Lipschitz
marginal density fη, and

(4.12) E(η1)
2 <∞.

We assume additionally that the sequence of coefficients of the linear process
satisfies

(4.13)
∞∑

r=−∞
|ar| <∞.

Lemma 3. Under the mixture model, if the hypotheses (Hi) are i.i.d.
Bernoulli random variables, and pj is of the form (4.10) satisfying conditions
(4.11)–(4.13), then (4.5) holds.

Proof. From Lemma 2 it is sufficient to show condition (a). We may
assume s < t. Let ψi :=

∑∞
r=−∞ arηi−r − aiη0 and η′0 be an independent

copy of η0. Let p′i := g(ψi + aiη
′
0).

Observe that

(4.14) P0(ξs,ti ) = E
(
1{s ≤ pi ≤ t} − 1{s ≤ p′i ≤ t}

∣∣ F0

)
.

Let Λi :=
∑∞

r=i+1 arηi−r, X :=
∑i−1

r=−∞ arηi−r, Y := aiη
′
0. Then

P0(ξs,ti ) = PX(s ≤ g(X + aiη0 + Λi) ≤ t)− PX+Y (s ≤ g(X + Y + Λi) ≤ t),
where PX denotes the probability measure of the random variable X. Under
the regularity conditions on g, we have

PX(s ≤ g(X + aiη0 + Λi) ≤ t) =

t�

s

fhi(X)(u) du,

where fhi(X) is the density of the random variable hi(X) := g(X+aiη0+Λi)
with respect to PX for given aiη0 + Λi, and

PX+Y (s ≤ g(X + Y + Λi) ≤ t) =

t�

s

fri(X+Y )(u) du,

where fri(X+Y ) is the density of ri(X + Y ) := g(X + Y + Λi) with respect
to PX+Y for given Λi. Moreover

fhi(X)(u) = fX(g−1(u)− aiη0 − Λi)|(g−1(u))′|,
where fX is the density of X, and from the independence of X and Y we
get

fri(X+Y )(u) = fX ∗ fY (g−1(u)− Λi)|(g−1(u))′|,
where ∗ stands for convolution. Therefore

|P0(ξs,ti )| =
∣∣∣ ∞�
−∞

( t�
s

(fX(ui − aiη0)− fX(ui − y))|(g−1(u))′| du
)
fY (y) dy

∣∣∣,
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where ui := g−1(u)− Λi. Since fη is bounded and Lipschitz, so is fX , and

|P0(ξs,ti )| ≤ Cd(s, t)Lip(fX)

∞�

−∞
(|aiη0|+ |y|)fY (y) dy

≤ Cd(s, t)Lip(fX)(|aiη0|+ E|Y |).
Then

‖P0(ξs,ti )‖ ≤ C ′d(s, t)Lip(fX)|ai|
for some constant C ′ > 0. Therefore from (4.13) we obtain (a), which ends
the proof.

Example 1. The condition (4.11) holds for the logistic transformation

g(x) =
exp(x)

1 + exp(x)
.

In this case
t�

s

|(g−1(u))′| du =

t�

s

1

u(1− u)
du = ln(t)− ln(s) + ln(1− t)− ln(1− s)

≤
∣∣ln(t/s)

∣∣
and the metric has the form d(s, t) = |ln(t/s)|.

When π is known, from Theorem 1 and from Lemmas 3 and 4 we obtain

Corollary 1. Under the mixture model, if the hypotheses (Hi) are i.i.d.
Bernoulli random variables, and pj is of the form (4.10) satisfying conditions
(4.11)–(4.13), then (3.2) holds.
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