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ON THE HALLEY METHOD IN BANACH SPACES

Abstract. We provide a semilocal convergence analysis for Halley’s me-
thod using convex majorants in order to approximate a locally unique solu-
tion of a nonlinear operator equation in a Banach space setting. Our results
reduce and improve earlier ones in special cases.

1. Introduction. In this study, we are concerned with the problem of
approximating a locally unique solution x? of the equation

(1.1) F (x) = 0,

where F is a twice Fréchet-differentiable operator defined on a nonempty
open and convex subset Ω of a Banach space X with values in a Banach
space Y .

A large number of problems in applied mathematics and also in engi-
neering are solved by finding the solutions of certain equations [4, 11–14].
For example, dynamic systems are mathematically modeled by difference or
differential equations and their solutions usually represent the states of the
systems. For the sake of simplicity, assume that a time-invariant system is
driven by the equation ẋ = T (x), for some suitable operator T , where x
is the state. Then the equilibrium states are determined by solving equa-
tion (1.1). Similar equations are used in the case of discrete systems. The
unknowns of engineering equations can be functions (difference, differential
and integral equations), vectors (systems of linear of nonlinear algebraic
equations), or real or complex numbers (single algebraic equations with sin-
gle unknowns). Except in special cases, the most commonly used solution
methods are iterative—when starting from one or several initial approxima-
tions a sequence is constructed that converges to a solution of the equation.
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Iteration methods are also applied for solving optimization problems. In such
cases, the iteration sequences converge to an optimal solution of the problem
at hand. Since all of these methods have the same recursive structure, they
can be introduced and discussed in a general framework.

Newton’s method

(1.2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0, x0 ∈ Ω),

is undoubtedly the most famous quadratically convergent method for ap-
proximating x?. A survey on recent results for Newton-type methods

(1.3) xn+1 = xn −A(xn)−1F (xn) (n ≥ 0, x0 ∈ Ω)

under very general Lipschitz conditions can be found in [4], and in the ref-
erences there (see also [2], [3], [12], [15], [16]). Here, A(x) ∈ L(X,Y ), the
space of bounded linear operators from X into Y . Note that if A(x) = F ′(x)
(x ∈ Ω), then we obtain Newton’s method (1.2). If, A(x) = F ′(x)(I−LF (x))
(x ∈ Ω), where LF (x) = 1

2F
′(x)−1F ′′(x)F ′(x)−1F (x), then we obtain Hal-

ley’s method [1, 4, 6, 10, 12]

(1.4) xn+1 = xn − [I − LF (xn)]−1F ′(xn)−1F (xn) (n ≥ 0, x0 ∈ Ω).

Although sufficient convergence conditions and error estimates on the dis-
tances ‖xn+1−xn‖, ‖xn−x?‖ for Newton’s method or Halley’s method have
been given as special cases of Newton-type methods, a direct approach may
yield a finer error analysis.

Ferreira and Svaiter [8] used the special majorant conditions

(1.5) ‖F ′(x0)−1[F ′(y)− F ′(x)]‖ ≤ f ′(‖y − x‖+ ‖x− x0‖)− f ′(‖x− x0‖)

x, y ∈ U(x0, R) = {x ∈ X | ‖x− x0‖ < R} for R > 0, and

‖y − x‖+ ‖x− x0‖ < R

to provide an elegant Kantorovich-type semilocal convergence analysis for
Newton’s method (1.2). The corresponding local convergence analysis was
given in [7]. The function f : [0, R)→ (−∞,∞) is continuously differentiable
satisfying f(0) > 0, having zeros in (0, R), whereas f ′ is convex, strictly in-
creasing with f ′(0) = −1. The analysis provides a relationship between the
majorizing function f and the nonlinear operator F . Moreover, the assump-
tions for the Q-quadratic convergence are relaxed. However, if we look at
the sufficient convergence conditions in the special case when

(1.6) f(t) =
L

2
t2 − t+ η, L > 0,

where

(1.7) ‖F ′(x0)−1F (x0)‖ ≤ f(0) = η,
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then we get

(1.8) hK = Lη ≤ 1/2.

Condition (1.8) is the Newton–Kantorovich hypothesis for solving nonlinear
equations [4, 12], famous for its simplicity and clarity. The corresponding
majorizing sequence is given by

(1.9) sn+1 = sn +
L(sn − sn−1)2

2(1− Lsn)
, s0 = 0, s1 = η.

That is Ferreira–Svaiter’s approach cannot extend the applicability of New-
ton’s method even in the simplest possible case, where f is given by (1.6).

In our studies [2–5] we have shown that under the same hypotheses and
computational cost, weaker sufficient conditions and tighter error bounds
can be obtained for Newton’s method (1.2). Indeed, in view of (1.5) there
exists a function f0 such that

(1.10) ‖F ′(x0)−1[F ′(y)− F ′(x0)]‖ ≤ f ′0(‖y − x0‖)− f ′0(0)

for all y ∈ U(x0, R), where f0 has the same properties as f but

(1.11) f0(t) ≤ f(t), t ∈ (0, R],

and f(t)/f0(t) can be arbitrarily large [2–5]. Note that if

(1.12) f0(t) = L0t
2 − t+ η, L0 > 0,

then

L0 ≤ L.

The sufficient convergence condition corresponding to (1.8) is given by

(1.13) hA = Lη ≤ 1/2,

where

(1.14) L =
L+ 4L0 +

√
L2 + 8L0L

8
.

We have

(1.15) hK ≤ 1/2 ⇒ hA ≤ 1/2

but not necessarily vice versa unless L0 = L. By dividing (1.13) by (1.8),
we get

(1.16)
hA
hK

=
L+ 4L0 +

√
L2 + 8L0L

8L
→ 1

4
as L0/L→ 0.

Hence, we deduce that our condition (1.13) can always replace the Kan-
torovich condition (1.8) and the applicability of Newton’s method is ex-
panded by at most 4 times. Our majorizing sequence for Newton’s method
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(1.2) is given by

(1.17) tn+1 = tn +
L(tn − tn−1)2

2(1− L0tn)
, t0 = 0, t1 = η.

Under condition (1.8), we have

tn ≤ sn,(1.18)

0 ≤ tn+1 − tn ≤ sn+1 − sn,(1.19)

t? = lim
n→∞

tn ≤ s? = lim
n→∞

sn.(1.20)

Moreover, if L0 < L, then strict inequality holds in (1.18) and (1.19) for
n ≥ 1. That is our upper bounds on the distances ‖xn+1 − xn‖, ‖xn − x?‖
(n ≥ 0) are tighter than the ones in [8], [7], [12], [14–[17]], [19].

Motivated by the above advantages of our technique over earlier ones for
Newton’s method, we extend our approach to Halley’s method (1.4). In a
way analogous to (1.5) and (1.10), we consider the majorant conditions

(1.21) ‖F ′(x0)−1[F ′′(y)−F ′′(x)]‖ ≤ f ′′(‖y−x‖+‖x−x0‖)− f ′′(‖x−x0‖)
for all x, y ∈ U(x0, R), where ‖y − x‖ + ‖x − x0‖ < R and f : [0, R) →
(−∞,∞) is a twice continuously differentiable function.

Here, F ′′(z) denotes a bilinear operator X × X → Y for each fixed
z ∈ X. For simplicity we use F ′′(z)z1z2, F

′′(z)z21 instead of the notations
F ′′(z)(z1, z2), F

′′(z)(z1, z1), respectively for all z1 and z2 ∈ X. Moreover, if
B : X ×X → Y is a bilinear operator and L : X → X is a linear operator,
then for x ∈ X, by BLx2 we mean B(L(x), x) (or BLxx). Furthermore,
LBx2 is used to denote LB(x)(x).

We assume the following conditions hold:

(H1) f(0) > 0, f ′′(0) > 0, f ′(0) = −1,
(H2) f ′′ is convex and strictly increasing in [0, R),
(H2) f has zeros in (0, R). Denote by t? the minimal zero and assume

f ′(t?) < 0.

In view of (1.21) there exists a twice continuously differentiable function f0
satisfying (H1)–(H3) (replacing f by f0 and t? by t?0) with t?0 ≤ t? such that

(1.22) f0(t) ≤ f(t),

(1.23) ‖F ′(x0)−1[F ′′(y)− F ′′(x0)]‖ ≤ f ′′0 (‖y − x0‖)− f ′′0 (0)

for all y ∈ U(x0, R).

We shall also assume:

(H4) −1/f ′0(t) ≤ −1/f ′(t) for t ∈ (0, t?),
(H5) ‖F ′(x0)−1F (x0)‖ ≤ f(0), ‖F ′(x0)−1F ′′(x0)‖ ≤ f ′′(0),
(H6) U(x0, R) ⊆ Ω.
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The paper is organized as follows: Section 2 contains the semilocal conver-
gence analysis of Halley’s method (1.4) under conditions (H1)–(H6). Special
cases and applications are given in Section 3.

2. Semilocal convergence analysis of Halley’s method (1.4). It
is convenient to define

HF (x) = x− (I − LF (x))−1F ′(x)−1F (x), x ∈ Ω,(2.1)

Hf (t) = t− 1

1− Lf (t)

f(t)

f ′(t)
, t ∈ [0, R),(2.2)

Hf0(t) = t− 1

1− Lf0(t)

f(t)

f0
′(t)

, t ∈ [0, R),(2.3)

where

Lf (t) =
f(t)f ′′(t)

2(f ′(t))2
,(2.4)

Lf0(t) =
f(t)f ′′(t)

2(f0
′(t))2

,(2.5)

s0 = 0, sn+1 = Hf (sn) (n ≥ 0),(2.6)

t0 = 0, tn+1 = Hf0(tn) (n ≥ 0).(2.7)

Using (H4), as in (1.18)–(1.20), a simple inductive argument shows

tn ≤ sn,(2.8)

0 ≤ tn+1 − tn ≤ sn+1 − sn,(2.9)

t?0 = lim
n→∞

tn ≤ t? = lim
n→∞

sn.(2.10)

Inequalities (2.8) and (2.9) are strict if −1/f ′0(t) < −1/f ′(t).

Lemma 2.1 ([11]). If p : [0, R)→ (−∞,∞) is continuously differentiable
and convex, then

(1) (1− θ)p′(θt) ≤ p(t)−p(θt)
t ≤ (1− θ)p′(t) for all t ∈ (0, R), θ ∈ [0, 1];

(2) p(x)−p(θx)
x ≤ p(y)−p(θy)

y for all x, y ∈ [0, R), x < y, θ ∈ [0, 1].

Lemma 2.2 ([11]). Let p : I ⊆ (−∞,∞)→ (−∞,∞) be convex. Then

(1) for any z0 ∈ int(I) there exists the left derivative given by

D−p(z0) := lim
z→z−0

p(z0)− p(z)
z0 − z

= sup
z<z0

p(z0)− p(z)
z0 − z

;

(2) if x, y, z ∈ I and x ≤ y ≤ z, then

p(y)− p(x) ≤ [p(z)− p(x)]
y − x
z − x

.
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Using the above standard results from convex analysis [4], [11], Halley’s
method [4] and majorant properties [4], [8], [7] we arrive at the following
results on majorizing sequences for Halley’s method:

Lemma 2.3. Let f0, f : [0, R) → (−∞,∞) be twice continuously differ-
entiable functions satisfying (H1)–(H4). Then the following hold:

1. (a) f ′0, f
′ are strictly convex and strictly increasing on [0, R);

(b) f0, f are strictly convex on [0, R), f0(t) > 0 for t ∈ [0, t?0),
f(t) > 0 for t ∈ (0, t?), f0(t), f(t) have at most one zero on
[t?0, R), [t?, R), respectively;

(c) −1 < f ′0(t) < 0, t ∈ (0, t?0), −1 < f ′(t) < 0, t ∈ (0, t?).
2. 0 ≤ Lf0(t) ≤ 1/4 for all t ∈ [0, t?0], 0 ≤ Lf (t) ≤ 1/4 for all t ∈ [0, t?],
Lf0(t) ≤ Lf (t) for all t ∈ [0, t?0].

3. t < Hf0(t) < t?0 for all t ∈ [0, t?0),
f ′0(t

?
0) < 0⇔ ∃t ∈ (t?0, R) such that f0(t) < 0,

t < Hf (t) < t? for all t ∈ [0, t?),
f ′(t?) < 0⇔ ∃t ∈ (t?, R) such that f(t) < 0.

4. t? −Hf0(t) ≤ g0(t?, t?0)(t? − t)3, t ∈ [0, t?0),
t? −Hf (t) ≤ g(t?, t?)(t? − t)3, t ∈ [0, t?),
g0(t

?, t?0) ≤ g(t?, t?),

where

g0(u, v) =
1

3

f ′′(u)

f ′0(v)2
+

2

9

D−f ′′(u)

−f ′0(v)
, g(u, v) =

1

3

f ′′(u)

f ′(v)2
+

2

9

D−f ′′(u)

−f ′(v)
.

Moreover, the sequences {sn}, {tn} converge to t?, t?0 respectively with
Q-cubic order.

Proof. We show the results for f . The results for f0 follow in the same
way.

1. Item (a) follows from (H2) and f ′′(0) > 0 in (H1). (a) implies that f
is strictly convex. By (H1), (a) and f(t?) = 0, we infer that f(t) = 0 has
at most one zero in (t?, R). In view of f(t?) = 0 and f(0) > 0, we obtain
f(t) > 0 for t ∈ [0, t?). To show (b) we have, by Lemma 2.1,

f ′(t) <
f(t?)− f(t)

t? − t
, t ∈ [0, t?).

Hence, 0 = f(t?) > f(t) + f ′(t)(t? − t). But f(t) > 0 on [0, t?), so f ′(t) < 0.
Moreover, f ′ strictly increasing and f ′(0) = −1 implies f ′(t) > −1 for
t ∈ (0, t?). That completes the proof for (c).

2. Define

q(s) = f(t) + f ′(t)(s− t) + 1
2f
′′(t)(s− t)2, s ∈ [t, t?].
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By 1(b), we get q(t) = f(t) > 0 and

(2.11) q(t?) = f(t) + f ′(t)(t? − t) + 1
2f
′′(t)(t? − t)2.

We also have, by Taylor’s formula,

f(t?) = f(t) + f ′(t)(t? − t) + 1
2f
′′(t)(t? − t)2(2.12)

+

1�

0

(1− θ)[f ′′(t+ θ(t? − t))− f ′′(t)](t? − t)2 dθ.

Since f(t?) = 0 and f ′′ is increasing, by (2.11), (2.12) we have q(t?)≤ 0.
Hence there is a zero of q in [t, t?]. That is, the discriminant of q is nonneg-
ative, so f ′(t)2 − 2f ′′(t)f(t) ≥ 0, and hence 0 ≤ f ′′(t)f(t)/(f ′(t))2 ≤ 1/2.
That completes the proof.

3. For t ∈ [0, t?), by the above we have f(t) > 0, −1 < f ′(t) < 0 and
0 ≤ Lf (t) ≤ 1/4, which imply t < Hf (t). Using Lemma 2.2(1) and (H2) we
have D−f ′′(t) > 0. That is,

D−Hf (t) =
f(t)2[3f ′′(t)2 − 2f ′(t)D−f ′′(t)]

(f(t)f ′′(t)− 2f ′(t))2
> 0, t ∈ (0, t?].

Hence Hf (t) < Hf (t?) = t? for t ∈ [0, t?). Thus, the first part is shown.

For the second part we see that there exists t ∈ (t?, R) such so f(t) < 0.
Conversely, since f(t?) = 0, by Lemma 2.1 we get f(t) > f(t?)+f ′(t?)(t−t?)
for t ∈ [t?, R), so f ′(t?) < 0.

By (H3), f
′(t?) < 0, so f(t??) = 0 for some t?? ∈ (t?, R). Moreover

f(t) < 0 for some t ∈ [t?, R).

A similar result follows for f0. Hence, we have:

f ′0(t
?
0) < 0 ⇒

{
f0(t

??
0 ) = 0, t??0 ∈ (t?0, R),

f0(t) < 0, t ∈ (t??0 , R),

f ′(t?) < 0 ⇒
{
f(t??) = 0, t?? ∈ (t?, R),

f(t) < 0, t ∈ (t??, R).

4. From the definition of Hf we have in turn:

t?−Hf (t) =
1

1− Lf (t)

[
(1− Lf (t))(t? − t) +

f(t)

f ′(t)

]

= − 1

f ′(t)(1−Lf (t))

1�

0

[f ′′(t+ θ(t?− t))−f ′′(t)](t?− t)2(1− t) dθ

+
t? − t

2(1− Lf (t))

f ′′(t)

f ′(t)2

1�

0

f ′′(t+ θ(t? − t))(t? − t)2(1− θ) dθ.
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By the convexity of f ′′ for t < t? and Lemma 2.2(2) we get

f ′′(t+ θ(t? − t))− f ′′(t) ≤ [f ′′(t?)− f ′′(t)]θ(t
? − t)
t? − t

.

In view of the fact that f ′′ is strictly increasing we get

(2.13) t? −Hf (t)

≤ − f ′′(t?)− f ′′(t)
6f ′(t)(1− Lf (t))

(t? − t)2 +
f ′′(t?)f ′′(t)

4(f ′(t))2(1− Lf (t))
(t? − t)3

≤ 2

9

f ′′(t?)− f ′′(t)
−f ′(t)

(t? − t)2 +
1

3

f ′′(t?)2

f ′(t?)2
(t? − t)3.

Since f ′(t) < 0, f ′′(0) > 0, the functions f ′, f ′′ are increasing on [0, t?) and
0 ≤ Lf (t) ≤ 1/4, we also have

f ′′(t?)− f ′′(t)
−f ′(t)

≤ f ′′(t?)− f ′′(t)
−f ′(t?)

(2.14)

=
f ′′(t?)− f ′′(t)
−f ′(t?)(t? − t)

(t? − t)

≤ D−f ′′(t?)

−f ′(t?)
(t? − t)

by Lemma 2.2(1).

The proof is finished by combining (2.13) and (2.14).

We also need some lemmas relating F to f0 and f .

Lemma 2.4. Assume:

• there exists x0 ∈ Ω such that F ′(x0)
−1 ∈ L(Y,X);

• f ′0(0) = −1, −1 < f ′0(t) < 0 for t ∈ (0, t?0);

• ‖x− x0‖ ≤ t < t?0,

where f0 : [0, t?0] → (−∞,∞) is twice continuously differentiable and satis-
fies (1.23). Then F ′(x)−1 ∈ L(Y,X) and

(2.15) ‖F ′(x)−1F ′(x0)‖ ≤ −
1

f ′0(‖x− x0‖)
≤ − 1

f ′0(t)
.

Proof. Let x ∈ U(x0, t). Then we have by Taylor’s formula

F ′(x) = F ′(x0) +

1�

0

[F ′′(x0 + θ(x− x0))− F ′′(x0)](x− x0) dθ(2.16)

+ F ′′(x0)(x− x0),
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so, in view of (1.23) and (2.16), we obtain in turn

(2.17) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖

≤
1�

0

‖F ′(x0)−1[F ′′(x0 + θ(x− x0))− F ′′(x0)]‖ ‖x− x0‖ dθ

+ ‖F ′(x0)−1F ′′(x0)‖ ‖x− x0‖

≤
1�

0

[f ′′0 (θ‖x− x0‖)− f ′′0 (0)]‖x− x0‖ dθ + f ′′0 (0)‖x− x0‖.

But f ′0(0) = −1 and −1 < f ′0(t) < 0 by hypotheses. Hence, (2.17) yields

(2.18) ‖F ′(x0)−1[F ′(x)− F ′(x0)]‖ ≤ f ′0(t)− f ′0(0).

It follows from (2.18) and the Banach lemma on invertible operators [4], [12]
that F ′(x)−1 ∈ L(Y,X) so that (2.15) is satisfied.

That completes the proof of the lemma.

Remark 2.5. Clearly f can replace f0 in Lemma 2.4. However, in view
of (H4), (2.15) is a tighter upper bound for ‖F ′(x)−1F ′(x0)‖ than

(2.19) ‖F ′(x)−1F ′(x0)‖ ≤ −
1

f ′(‖x− x0‖)
≤ − 1

f ′(t)
, t ∈ (0, t?).

This observation leads to a more precise majorizing sequence {tn} (see
(2.7)) than {sn} (see (2.6)) for Halley’s method (1.4). The same observa-
tion leads to the advantages already stated in the introduction for Newton’s
method (1.2).

With the exception of the uniqueness part the following semilocal result
for Halley’s method (1.4) uses the standard proofs for this method [1, 4, 5,
9, 10], Lemmas 2.3, 2.4, and the formulae

(2.20) F (xn+1) =
1

2
F ′′(xn)LF (xn)(xn+1 − xn)2

+

1�

0

[F ′′(xn + θ(xn+1 − xn))− F ′′(xn)](xn+1 − xn)2 dθ,

(2.21) x?−xn+1 = −ΓF (xn)F ′(xn)−1
1�

0

[F ′′(xθn)−F ′′(xn)](x?−xn)2(1−θ) dθ

+
1

2
ΓF (xn)F ′(xn)−1F ′′(xn)F ′(xn)−1

1�

0

F ′′(xθn)(x? − xn)2(1− θ) dθ(x? − xn),

where

ΓF = (I − LF (x))−1,(2.22)

xθn = xn + θ(x? − xn).(2.23)
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Theorem 2.6. Under conditions (H1)–(H6), the sequence {xn} gener-
ated by Halley’s method (1.4) is well defined, remains in U(x0, t

?), and con-

verges to a solution x? ∈ U(x0, t
?) of F (x) = 0. Moreover, the following

estimates hold for all n ≥ 0:

F ′(xn)−1 ∈ L(Y,X),

‖F ′(xn)−1F ′(x0)‖ ≤ −
1

f ′0(‖xn − x0‖)
≤ − 1

f ′0(tn)
≤ − 1

f ′(sn)
,

‖F ′(x0)−1F ′′(xn)‖ ≤ f ′′(sn),

‖F ′(x0)−1F (xn)‖ ≤ f(sn),

(I − LF (xn))−1 ∈ L(Y,X),

‖(I − LF (xn))−1‖ ≤ 1

1− Lf0(tn)
≤ 1

1− Lf (sn)
,

‖xn+1 − xn‖ ≤ tn+1 − tn ≤ sn+1 − sn,
‖xn − x?‖ ≤ t? − sn,

‖xn+1 − x?‖ ≤ (t? − sn+1)

(
‖xn − x?‖
t? − sn

)3

,

‖xn+1 − x?‖ ≤ g0(t?, t?0)‖xn − x?‖3 ≤ g(t?, t?)‖xn − x?‖3.

Furthermore, x? is the unique solution of F (x) = 0 in U(x0, t
?). Finally, x?

is the unique solution of F (x) = 0 in U(x0, α), where

α = sup{t ∈ [t?0, R) : f0(t) ≤ 0},

provided that x? ∈ U(x0, t
?
0), and (H5) holds with f0 replacing f .

Proof. We shall show x? is the unique solution of F (x) = 0 in U(x0, t
?).

Let y? be a solution of F (x) = 0 in U(x0, t
?). A simple induction (since

‖y? − x0‖ ≤ t?) shows

(2.24) ‖y? − xn‖ ≤ t? − sn (n ≥ 0).

Indeed, (2.24) holds for n = 0, since s0 = 0. Assume (2.24) is true for
all n ≤ k. Then, from Lemma 2.3(4), (2.13), (2.15) and (2.21)–(2.23) we
have

(2.25) ‖y? − xn+1‖ ≤ (t? − sn+1)

(
‖y? − xn‖
t? − sn

)3

,

which shows (2.24) for all n ≥ 0. We see by (2.25) that limn→∞ xn = y?

since limn→∞ sn = t?. But limn→∞ xn = x?. Hence, we deduce x? = y?.
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Finally, we must show F has no zeros in U(x0, α)− U(x0, t
?
0). Let z? be

a solution of F (x) = 0 such that t?0 < ‖z? − x0‖ < α. We have the identity

F (z?) = F (x0) + F ′(x0)(z
? − x0) +

1

2
F ′′(x0)(z

? − x0)2

+

1�

0

[F ′′(x0 + θ(z? − x0))− F ′′(x0)](z? − x0)2(1− θ) dθ.

Using (1.23) we obtain the estimates∥∥∥ 1�

0

F ′(x0)
−1[F ′′(x0 + θ(z? − x0))− F ′′(x0)](z? − x0)2(1− θ) dθ

∥∥∥
≤

1�

0

[f ′′0 (θ‖z? − x0‖)− f ′′0 (0)]‖z? − x0‖2(1− θ) dθ

= f0(‖z? − x0‖)− f0(0)− f ′0(0)‖z? − x0‖ − 1
2f
′′
0 (0)‖z? − x0‖2

and

‖F ′(x0)−1[F (x0) + F ′(x0)(z
? − x0) + 1

2F
′′(x0)(z

? − x0)2]‖
≥ ‖z? − x0‖ − ‖F ′(x0)−1F (x0)‖ − 1

2‖F
′(x0)

−1F ′′(x0)‖ ‖z? − x0‖2

≥ ‖z? − x0‖ − f0(0)− 1
2f
′′
0 (0)‖z? − x0‖2.

It then follows from the estimate

f0(‖z? − x0‖)− f0(0) + ‖z? − x0‖ − 1
2f
′′
0 (0)‖z? − x0‖2

≥ ‖z? − x0‖ − f0(0)− 1
2f
′′
0 (0)‖z? − x0‖2,

that f0(‖z? − x0‖) ≥ 0. But f0 is strictly positive on (‖z? − x0‖, R) (since
f0 is strictly convex). So, we have α ≤ ‖z? − x0‖, which is a contradiction.

That completes the proof of the theorem.

3. Special cases and applications

Remark 3.1. Let f0 = f . Moreover, if we assume the Lipschitz condition

‖F ′(x0)−1[F ′′(y)− F ′′(x)]‖ ≤ L‖y − x‖ for all x, y ∈ Ω,
define

f(t) = η − t+
M

2
t2 +

L

6
t3,

where ‖F ′(x0)−1F (x0)‖≤ η= f(0) and ‖F ′(x0)−1F ′′(x)‖≤M = f ′′(0). Then
it follows from Theorem 2.6 that the sufficient convergence condition reduces
to the Kantorovich-type condition for Halley’s method [1, 4, 6, 10, 12]

(3.1) η ≤ η0,
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where

η0 =
2(M + 2

√
M2 + 2L)

3(M +
√
M2 + 2L)2

That is, in this case we do not improve (3.1). However, if f0 < f , then
again under (3.1) we have convergence for Halley’s method but the errors
are tighter, and the information on the location of the solution is at least as
precise.

Note that a direct study of the majorizing iteration {tn} in [4], [5] (see
(2.7)) has led to sufficient convergence conditions which can be weaker than
(3.1).

The results obtained here for special cases of f0 and f can immediately
produce Smale-type [18], [20] and Nemirovskii-type [13] theorems. We leave
the details to the motivated reader.
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