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ARBITRAGE FOR SIMPLE STRATEGIES

Abstract. Various aspects of arbitrage on finite horizon continuous time
markets using simple strategies consisting of a finite number of transactions
are studied. Special attention is devoted to transactions without shortselling,
in which we are not allowed to borrow assets. The markets without or with
proportional transaction costs are considered. Necessary and sufficient con-
ditions for absence of arbitrage are shown.

1. Introduction. Consider a market consisting of d risky assets with the
prices given by an Rd-valued adapted process X = (Xt)t∈[0,T ] with strictly
positive components, and of a bank account. We will assume for simplic-
ity that the bank interest rate is equal to zero and we shall use the nota-
tion X̄t = (1, Xt) ∈ Rd+1 for t ∈ [0, T ], where 1 stands for a unit amount
in a bank account. Let (Ω,F , P,F = (Ft)t∈[0,T ]) be a filtered probability
space satisfying the usual conditions, i.e. the filtration (Ft)t∈[0,T ] is right
continuous, and F0 contains all the P -null sets of F . Assume that the set
of trading dates is a set of F-stopping times {τi : i = 1, . . . , n} such that
0 ≤ τ1 ≤ · · · ≤ τn ≡ T and n ≥ 2. We admit only a finite number of trans-
actions over a finite time horizon T , which is bounded by a deterministic
number n ≥ 2. In other words every admissible strategy should consist of a
finite number of transactions, and for every strategy there is a determinis-
tic integer n ≥ 2 which bounds the number of transactions. Let the vector
θi = (xi, yi) := (xi, y

1
i , . . . , y

d
i ) ∈ Rd+1 be the position of the investor after

transactions at time τi, where xi is the position in a bank account and yji
is the number of jth risky assets held in the portfolio. We allow yji to have
an arbitrary sign (a negative quantity means shortselling), and assume it is
Fτi-measurable, i.e. determined using information available at time τi. The
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value of the portfolio at time t is modeled by the process
n−1∑
i=1

d∑
j=0

θji X̄
j
t χ(τi,τi+1](t) =

n−1∑
i=1

xiχ(τi,τi+1](t) +
n−1∑
i=1

d∑
j=1

yjiX
j
t χ(τi,τi+1](t),

where for τi = τi+1 the interval (τi, τi+1] is understood to consist of the point
τi = τi+1 only. Then the random variable

n−1∑
i=1

d∑
j=0

θji (X̄
j
τi+1∧t − X̄

j
τi∧t) =

n−1∑
i=1

d∑
j=1

yji (X
j
τi+1∧t −X

j
τi∧t)

models the gain or loss of our portfolio at time t. Consequently, the gain (or
loss) (Y ·X)T over the whole time period [0, T ] is equal to

(1.1) (Y ·X)T :=

n−1∑
i=1

d∑
j=1

yji (X
j
τi+1
−Xj

τi).

We start with the following definition:

Definition 1.1. We call an Rd-valued process Y = (Yt)t∈[0,T ] a simple
investment strategy if there exists a positive integer n ≥ 2 and a sequence of
F-stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T such that

(1.2) Yt =

n−1∑
i=1

yiχ(τi,τi+1](t),

where yi ∈ Rd are Fτi-measurable random vectors.

The class of such strategies will be denoted by ST . Note that a simple
strategy may consist of a random number of transactions over the time hori-
zon T , but this number should be bounded by a deterministic constant. In
this case we are allowed to have multiple transactions at time T and conse-
quently we may restrict ourselves to a deterministic number of transactions.

We now restrict our investment strategies to the following class of simple
strategies over time horizon T without shortselling:

Definition 1.2. We call an Rd-valued process Y = (Yt)t∈[0,T ] a simple
investment strategy without shortselling if Y ∈ ST and yi ∈ Rd are nonneg-
ative Fτi-measurable random vectors.

The set of simple investment strategies without shortselling is denoted
by S+

T .

Definition 1.3. We say that X admits a simple arbitrage strategy if
there exists Y ∈ ST with the properties

(1.3) (Y ·X)T ≥ 0 P -a.e. and P{(Y ·X)T > 0} > 0.
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Otherwise we say for brevity that X satisfies condition (AA) (absence of
arbitrage over simple strategies).

Definition 1.4. We say that X admits a simple arbitrage strategy with-
out shortselling if there exists Y ∈ S+

T such that (1.3) holds. Otherwise
we say that X satisfies condition (AA+) (absence of arbitrage over simple
strategies without shortselling).

In what follows we shall consider conditions (AA) or (AA+) for simple
strategies only. Furthermore everywhere in the paper the terminal time T is
assumed to be fixed.

Part of the paper is devoted to a finite horizon continuous time financial
market with proportional transaction costs. Assume that investing in the jth
assets an amount lj we have to pay a portion of λj (λj ∈ (0, 1)) as transaction
costs so that in fact we have to spend (1 + λj)lj . Similarly, selling the jth
assets for an amount mj we only obtain (1−µj)mj with µj ∈ (0, 1). Assume
that the set of trading dates is a set of stopping times {τi : i = 1, . . . , n}
such that 0 ≤ τ1 ≤ · · · ≤ τn ≡ T and n ≥ 2. Consequently, each trading
strategy consists of transactions whose number is bounded by a deterministic
constant n (which may depend on the strategy). We assume furthermore that
at terminal time T we may have multiple transactions so that practically
we shall study investments with a deterministic number of transactions. In
our approach the investor positions are measured in “physical” units. Let
(xi, y

1
i , . . . , y

d
i ) ∈ Rd+1 be the position of the investor after transactions at

time τi, which consists of xi, the amount in the bank account, and “physical”
quantities yji in the jth risky assets for j = 1, . . . , d respectively. Denoting
by (∆yji )

+, (∆yji )
− the number of assets with which we increase or decrease

the jth assets position at time τi (given by (∆yji )
+ = (yji − yji−1)+ and

(∆yji )
− = (yji − y

j
i−1)−) we obtain the following formula for the investment

position (xi, y
1
i , . . . , y

d
i ) at time τi (after transactions):

(1.4)



xi = x0 +

d∑
j=1

[
(1− µj)

i∑
k=1

(∆yjk)
−Xj

τk
− (1 + λj)

i∑
k=1

(∆yjk)
+Xj

τk

]
,

y1
i = y1

0 +

i∑
k=1

∆y1
k,

...

ydi = yd0 +
i∑

k=1

∆ydk,

with the initial position (x0, y
1
0, . . . , y

d
0).
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Definition 1.5. We call an Rd-valued process Y = (Yt)t∈[0,T ] a simple
investment strategy with transaction costs if there exists a positive integer
n ≥ 2 and a sequence of F-stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T such that

Yt =
n−2∑
i=1

yiχ(τi,τi+1](t) + yn−1χ(τn−1,τn)(t) + ynχ{T}(t),

where yi ∈ Rd are Fτi-measurable random vectors.

The class of such simple strategies will be denoted by BT . As above,
(τk, τk+1] = {τk+1} for τk = τk+1, and additionally (τk, τk+1) = {τk+1}
whenever τk = τk+1 = T .

Definition 1.6. We call an Rd-valued process Y = (Yt)t∈[0,T ] a simple
investment strategy without shortselling if Y ∈ BT and yji ≥ 0 for any
i = 1, . . . , n, j = 1, . . . , d. The set of simple investment strategies without
shortselling is denoted by B+

T .

Define the evaluation function

(1.5) Rt(x, y
1, . . . , yd) := x+

d∑
j=1

[(1− µj)(yj)+Xj
t − (1 + λj)(yj)−Xj

t ]

and set

(1.6) Gt := {(x, y1, . . . , yd) ∈ Rd+1 : Rt(x, y
1, . . . , yd) ≥ 0}.

Note that if (x, y1, . . . , yd) ∈ Gt we are able to repay possible debts in the
bank account or risky asset accounts. In other words Gt is the set of all
nonnegative positions. The set −Gt is of the form

−Gt := {(x, y1, . . . , yd) ∈ Rd+1 : Rt(−x,−y1, . . . ,−yd) ≥ 0}

=
{
x+

d∑
j=1

[(1 + λj)(yj)+Xj
t − (1− µj)(yj)−Xj

t ] ≤ 0
}

and is the set of all positions which can be achieved starting from zero.
In the case of models with transaction costs the concept of arbitrage

admits various natural generalizations. We say that we have a weak arbi-
trage at time T if starting from the position (0, . . . , 0) at time 0 we enter
at time T the set of nonnegative positions a.s. and with positive probability
the position (xn, y

1
n, . . . , y

d
n) 6= (0, . . . , 0). Denote by AT (τ1, . . . , τn) the set

of all positions which can be achieved at time T starting at time 0 from
the position (0, . . . , 0) with the use of simple strategies with transaction
times 0 ≤ τ1 ≤ · · · ≤ τn = T . Clearly AT (τ1, . . . , τn) =

∑n
i=1 L

0(−Gτi ,Fτi),
where the sum stands for the algebraic sum and L0(−Gτi ,Fτi) is the class
of Fτi-measurable random variables taking values in −Gτi (in the case with-
out shortselling an analog of this equality does not hold). Moreover, AT =
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n∈N

⋃
0≤τ1≤···≤τn≡T A

T (τ1, . . . , τn) is the class of all positions which can be
achieved at time T starting from (0, . . . , 0) and using simple strategies.

Definition 1.7. We say that there is a weak arbitrage opportunity if

(WA) AT ∩ L0(GT ,FT ) 6= {0}.

If there is no weak arbitrage we have strict absence of arbitrage:

Definition 1.8. We say that there is strict absence of arbitrage if

(AAs) AT ∩ L0(GT ,FT ) = {0}.

In the case of a model without transaction costs this definition coincides
with the classical one. If starting from the position (0, . . . , 0) we get at time
T the position (xn, y

1
n, . . . , y

d
n) such that

RT (xn, y
1
n, . . . , y

d
n) ≥ 0 P -a.e., P{RT (xn, y

1
n, . . . , y

d
n) > 0} > 0,

we say that we have a strict arbitrage opportunity. Using the definition of
the set GT we can say that we enter the set GT a.s. and intGT with positive
probability. If there is no strict arbitrage we have weak absence of arbitrage:

Definition 1.9. We say that there is weak absence of arbitrage if

(AAw) AT ∩ L0(GT ,FT ) ⊂ L0(∂GT ,FT ).

Lemma 1.10. The following conditions are equivalent:

(i) AT ∩ L0(GT ,FT ) ⊂ L0(∂GT ,FT ), i.e. (AAw) holds.
(ii) AT ∩ L0(Rd+1

+ ,FT ) = {0}.

Proof. Since Rd+1
+ ∩∂GT = {0} the implication (i)⇒(ii) holds true. Sup-

pose now that (i) does not hold. Then there exists Y ∈ BT , e.g. there exists
n ≥ 2, a sequence of F-stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T and sequences
of Rd-valued random vectors y1, . . . , yn such that

(xn, y
1
n, . . . , y

d
n) ∈ L0(GT ,FT ) P -a.e., P{(xn, y1

n, . . . , y
d
n) ∈ intGT } > 0.

Then we can construct the following simple strategy Ỹ ∈ BT :
(∆ỹji )

− = (∆yji )
− and (∆ỹji )

+ = (∆yji )
+ for i = 1, . . . , n− 1; j = 1, . . . , d;

(∆ỹjn)− = (∆yjn)− + (yjn)+χ{yjn>0} for j = 1, . . . , d;

(∆ỹjn)+ = (∆yjn)+ + (yjn)−χ{yjn<0} for j = 1, . . . , d,

which means that at time T we liquidate the asset account. Clearly

(x̃n, ỹ
1
n, . . . , ỹ

d
n) ∈ L0(Rd+1

+ ,FT )

and
{(xn, y1

n, . . . , y
d
n) ∈ intGT } ⊂ {(x̃n, ỹ1

n, . . . , ỹ
d
n) 6= 0},

so (ii) does not hold.
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Consequently we have

Corollary 1.11. There is a strict arbitrage opportunity if

(SA) AT ∩ L0(Rd+1
+ ,FT ) 6= {0}.

We can also characterize weak and strict absence of arbitrage using strate-
gies without shortselling. Let AT+ be the set of all positions which can be
achieved at time T starting at time 0 from the position (0, . . . , 0) using
simple strategies without shortselling. Denote

(1.7) G̃t := {(x, y1, . . . , yd) ∈ R× Rd+ : Rt(x, y
1, . . . , yd) ≥ 0}.

Definition 1.12. We say that there is a weak arbitrage opportunity with-
out shortselling if

(WA+) AT+ ∩ L0(G̃T ,FT ) 6= {0}.
Definition 1.13. We say that there is a strict arbitrage opportunity

without shortselling if

(SA+) AT+ ∩ L0(Rd+1
+ ,FT ) 6= {0}.

Definition 1.14. We say that there is strict absence of arbitrage without
shortselling if

(AA+
s ) AT+ ∩ L0(G̃T ,FT ) = {0}.
Definition 1.15. We say that there is weak absence of arbitrage without

shortselling if

(AA+
w) AT+ ∩ L0(Rd+1

+ ,FT ) = {0}.

Clearly G̃T = {(x, y1, . . . , yd) ∈ R× Rd+ : x +
∑d

j=1(1 − µj)yjXj
T ≥ 0}.

In other words, X admits a weak arbitrage opportunity with respect to the
class of simple strategies without shortselling if there exists Y ∈ B+

T such
that (xn, y

1
n, . . . , y

d
n) satisfies

xn +
d∑
j=1

(1− µj)yjnX
j
T ≥ 0 P -a.e., P{(xn, y1

n, . . . , y
d
n) 6= 0} > 0.

Analogously, a simple investment strategy Y ∈ B+
T with the final position

(xn, y
1
n, . . . , y

d
n) such that

xn +

d∑
j=1

(1− µj)yjnX
j
T ≥ 0 P -a.e., P

{
xn +

d∑
j=1

(1− µj)yjnX
j
T > 0

}
> 0

is a strict arbitrage opportunity with respect to the class of simple strategies
without shortselling.

In this paper we formulate a series of necessary and sufficient conditions
for absence of arbitrage in markets without or with proportional transaction
costs using simple strategies with or without shortselling. There are two
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reasons for the interest in transactions using simple strategies. First of all,
this is the only feasible class of investment strategies. Secondly, this class
allows us to get rid of the restrictive assumption that the asset price process
is a semimartingale (for more details see [7]). In this paper we are mainly
interested in strategies without shortselling, since in many financial markets
shortselling is restricted or even forbidden.

The paper consists of two sections devoted to markets without or with
transaction costs respectively. In Section 2 we extend and modify results of
[2], [7] and [1]. In particular, we introduce certain conditions (a) and (b) and
their various equivalent forms, which are satisfied in the case of absence of
arbitrage (AA) and absence of arbitrage without shortselling (AA+) for one-
dimensional markets (with only one risky asset). We also give two conditions
(c) and (d) which characterize (AA) and (AA+) in the multidimensional case
(with d > 1 risky assets). We complete Section 2 with a modification of Ka-
banov and Stricker’s result from [9], which allows a general supermartingale
characterization of (AA+).

Markets with proportional transaction costs (studied in Section 3) are
more difficult. We cannot restrict ourselves to two transaction dates as in the
case without transactions costs, which is shown by two illustrative examples.
Following [13] we introduce condition (S) under which we show (AAw) for
d = 1 and extend this to the multidimensional case. The main contribu-
tions in that section are theorems in which we introduce conditions (D) and
(Dd) which guarantee (AA+

w) for one and multidimensional cases. We com-
plete Section 3 by recalling some results of Kabanov, Rasonyi, Stricker and
Grigoriev and formulating them in the embedded discrete time market ap-
proach. We also point out that similar characterizations for markets without
shortselling are not available.

2. Markets without transaction costs

2.1. Preliminary results. The following lemma shows that there is
no difference between an arbitrage opportunity with respect to the class of
simple investment strategies and arbitrage opportunities for strategies with
two transaction times only. Therefore absence of arbitrage can be reduced
to the two transactions problem (see also Lemma 1 in [7]).

Lemma 2.1. The process X admits a simple arbitrage strategy if and only
if there exists an investment strategy G ∈ ST of the form G = gχ(σ1,σ2] such
that g(Xσ2 −Xσ1) ≥ 0 P -a.e. and P{g(Xσ2 −Xσ1) > 0} > 0.

Proof. Sufficiency: It is clear that an investment strategy G ∈ ST of the
form above satisfies P{(G ·X)T ≥ 0} = 1 and P{(G ·X)T > 0} > 0, so X
admits a simple arbitrage strategy.
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Necessity: Assume that there exists a simple strategy Y =
∑n−1

i=1 yiχ(τi,τi+1]

such that (Y ·X)T ≥ 0 P -a.e. and P{(Y ·X)T > 0} > 0. Define

k = min
{
l ∈ {1, . . . , n− 1} : P

{ l∑
i=1

yi(Xτi+1 −Xτi) ≥ 0
}

= 1

and P
{ l∑
i=1

yi · (Xτi+1 −Xτi) > 0
}
> 0
}
.

Note that k is well-defined because we assume that the arbitrage strategy is
given by Y . If k = 1 then y1(Xτ2 −Xτ1) ≥ 0 P -a.e. and y1(Xτ2 −Xτ1) > 0
with positive probability. Take σi = τi for i = 1, 2 and g = y1; then the
condition holds true. So we assume k > 1. From the definition of k we have
either

k−1∑
i=1

yi(Xτi+1 −Xτi) ≤ 0 P -a.e., or P
{ k−1∑
i=1

yi(Xτi+1 −Xτi) < 0
}
> 0.

We first consider the case P{
∑k−1

i=1 yi(Xτi+1 −Xτi) < 0} > 0. Let

A =
{ k−1∑
i=1

yi(Xτi+1 −Xτi) < 0
}
.

Note that A ∈ Fτk and on the set A we have

0 ≤
k∑
i=1

yi(Xτi+1 −Xτi) =

k−1∑
i=1

yi(Xτi+1 −Xτi) + yk(Xτk+1
−Xτk)

< yk(Xτk+1
−Xτk).

This means that P{yk(Xτk+1
− Xτk) > 0} ≥ P (A) > 0. Taking g = ykχA

and stopping times σ1 = τk, σ2 = τk+1 we get the given condition. Assume
next that

∑k−1
i=1 yi(Xτi+1 − Xτi) ≤ 0 P -a.e.; then

∑k
i=1 yi(Xτi+1 − Xτi) ≤

yk(Xτk+1
−Xτk) P -a.e. By the definition of k,

P{yk(Xτk+1
−Xτk) ≥ 0} = 1 and P{yk(Xτk+1

−Xτk) > 0} > 0.

We now take g = yk, σ1 = τk, σ2 = τk+1.

Lemma 2.2. The process X admits a simple arbitrage strategy without
shortselling if and only if there exists G ∈ S+

T of the form G = gχ(σ1,σ2] such
that g(Xσ2 −Xσ1) ≥ 0 P -a.e. and P{g(Xσ2 −Xσ1) > 0} > 0.

Proof. The proof is analogous to that of Lemma 2.1.

We list without proofs two simple lemmas and a corollary which will be
used later.
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Lemma 2.3. If X ≥ 0 almost surely and P (C) > 0 for C = {X > 0},
then E(X | F) > 0 on C \N , where N is some null set.

Lemma 2.4. The following conditions are equivalent:

(i) P (B | F) > 0 P -a.e.;
(ii) P (A ∩B) > 0 for any A ∈ F with P (A) > 0.

Corollary 2.5. Let B, C, D be any events. Suppose that either
P (B | F) > 0 P -a.e. and P (C | F) > 0 P -a.e., or P (D | F) = 1 P -a.e.
Then for any A ∈ F with P (A) > 0, either P (A∩B) > 0 and P (A∩C) > 0,
or P (A ∩D) = P (A).

2.2. One-dimensional characterizations. In this section we consider
a market with one risky asset with price process {Xt}t∈[0,T ] and a bank
account with X0

t = 1 for t ∈ [0, T ]. We provide conditions for absence of
arbitrage over simple strategies with or without shortselling.

We begin with a lemma, which gives a necessary and sufficient condition
for absence of arbitrage over the class ST . This is a slightly modified version
of Lemma 1 from [7].

Lemma 2.6. The process X satisfies condition (AA) (over simple strate-
gies) if and only if for any two stopping times τ1 < τ2 ≤ T and for any
A ∈ Fτ1 with P (A) > 0 we have either

P (A ∩ {Xτ2 −Xτ1 > 0}) > 0 and P (A ∩ {Xτ2 −Xτ1 < 0}) > 0,

or Xτ2 = Xτ1 a.s. on A.

Proof. Necessity: Assume X does not admit an arbitrage opportunity
with respect to the class ST . Let τ1 < τ2 ≤ T be two stopping times and
A ∈ Fτ1 with P (A) > 0. Suppose to the contrary that either

P (A ∩ {Xτ2 −Xτ1 > 0}) = 0 and P (A ∩ {Xτ2 6= Xτ1}) > 0,

or

P (A ∩ {Xτ2 −Xτ1 < 0}) = 0 and P (A ∩ {Xτ2 6= Xτ1}) > 0.

Without loss of generality we can assume that the first case holds. It follows
that Xτ2 ≤ Xτ1 on A and P (A ∩ {Xτ2 6= Xτ1}) > 0. Then −χAχ(τ1,τ2] ∈ ST
is an arbitrage strategy for X, a contradiction to absence of arbitrage.

Sufficiency: Assume the second equivalent condition in Lemma 2.6 is
satisfied, but X does admit a simple arbitrage strategy. By Lemma 2.1 there
is G ∈ ST of the form G = gχ(σ1,σ2] such that g(Xσ2 −Xσ1) ≥ 0 P -a.e. and
P (g(Xσ2 −Xσ1) > 0) > 0. Let B = {g(Xσ2 −Xσ1) > 0} and A1 = {g > 0}
∈ Fτ1 , A2 = {g < 0} ∈ Fτ1 . Note that P (g 6= 0) > 0, since otherwise
g(Xσ2 − Xσ1) = 0 P -a.e., contrary to P (g(Xσ2 − Xσ1) > 0) > 0. Since
P (B) > 0 we have either P (B ∩ A1) > 0 or P (B ∩ A2) > 0. We need to
reach a contradiction in both cases.
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If P (B ∩ A1) > 0 then clearly P (A1) > 0 and by our assumption either
P (A1 ∩ {Xσ2 − Xσ1 > 0}) > 0 and P (A1 ∩ {Xσ2 − Xσ1 < 0}) > 0, or
Xσ2 = Xσ1 on A1. On the other hand, since P (B ∩ A1) > 0 then P (A1 ∩
{Xσ2 6= Xσ1}) > 0 and therefore we have P (A1 ∩ {Xσ2 − Xσ1 > 0}) > 0
and P (A1 ∩ {Xσ2 −Xσ1 < 0}) > 0. But then g(Xσ2 −Xσ1) < 0 on A1 with
positive probability, which contradicts P (g(Xσ2 −Xσ1) ≥ 0) = 1.

If P (B ∩A2) > 0 we come to a contradiction analogously.

Using Corollary 2.5 we show the following implication:

Corollary 2.7. Suppose that for any two stopping times τ1 < τ2 ≤ T
either

P (Xτ2−Xτ1 > 0 | Fτ1) > 0 P -a.e. and P (Xτ2−Xτ1 < 0 | Fτ1) > 0 P -a.e.,

or
P (Xτ2 = Xτ1 | Fτ1) = 1 P -a.e.

Then X satisfies condition (AA).

Proof. From Corollary 2.5 we know that for any A ∈ F with P (A) > 0
either P (A ∩ {Xτ2 − Xτ1 > 0}) > 0 and P (A ∩ {Xτ2 − Xτ1 < 0}) > 0, or
P (A ∩ {Xτ2 = Xτ1}) = P (A), which in view of Lemma 2.6 implies (AA).

The next lemma provides an absence of arbitrage characterization in the
case of shortsale restrictions (compare with Proposition 3 in [2]).

Lemma 2.8. The process X satisfies condition (AA+) (over simple stra-
tegies without shortselling) if and only if for any two stopping times τ1 < τ2

≤ T and for any A ∈ Fτ1 with P (A) > 0 we have either P (A ∩ {Xτ2 −Xτ1

< 0}) > 0, or Xτ2 = Xτ1 a.s. on A.

Proof. Necessity: Assume X satisfies (AA+). Let τ1 < τ2 ≤ T be stop-
ping times and A ∈ Fτ1 with P (A) > 0 such that P (A ∩ {Xτ2 − Xτ1

< 0}) = 0 and P (A ∩ {Xτ2 6= Xτ1}) > 0. Then Xτ2 ≥ Xτ1 on A and
P (A ∩ {Xτ2 > Xτ1}) > 0. This means that χAχ(τ1,τ2] ∈ S+

T is an arbitrage
strategy for X, a contradiction.

Sufficiency: Assume that for any two stopping times τ1 < τ2 ≤ T and for
any A ∈ Fτ1 with P (A) > 0 we have either P (A ∩ {Xτ2 −Xτ1 < 0}) > 0 or
Xτ2 = Xτ1 a.s. on A, but X admits an arbitrage opportunity with respect to
the class S+

T . By Lemma 2.2, there exists G ∈ S+
T of the form G = gχ(σ1,σ2]

such that g(Xσ2−Xσ1) ≥ 0 P -a.e. and P (g(Xσ2−Xσ1) > 0) > 0. Clearly the
set B = {g > 0} has positive probability and B ∈ Fσ1 . Since g(Xσ2 −Xσ1)
≥ 0 P -a.e. we have Xσ2 −Xσ1 ≥ 0 a.s. on B. Observe that Xσ2 −Xσ1 > 0
with positive probability on B, since otherwise g(Xσ2 −Xσ1) ≤ 0 a.s. on B.
Since g(Xσ2 − Xσ1) ≥ 0 P -a.e., we see that g(Xσ2 − Xσ1) = 0 a.s. on B
and by the definition of B, g(Xσ2 − Xσ1) = 0 a.s. on Bc. This contradicts
P (g(Xσ2 −Xσ1) > 0) > 0. Hence, we have shown that Xσ2 −Xσ1 ≥ 0 a.s.
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on B and Xσ2 − Xσ1 > 0 with positive probability on B. In other words,
P (B∩{Xσ2−Xσ1 < 0}) = 0 and P (B∩{Xσ2 6= Xσ1}) > 0, which contradicts
our assumption.

Corollary 2.9. If for any two stopping times τ1 < τ2 ≤ T either
P (Xτ2 − Xτ1 < 0 | Fτ1) > 0 or P (Xτ2 = Xτ1 | Fτ1) = 1 P -a.e., then
X satisfies condition (AA+).

Proof. We use the same arguments as in the proof of Corollary 2.7.

Lemma 2.10. If for any stopping time τ ≤ T either P (∀t∈(τ,T ] : Xτ >
Xt | Fτ ) > 0 or P (∀t∈[τ,T ] : Xτ = Xt | Fτ ) = 1 P -a.e., then X satisfies
condition (AA+).

Proof. Let σ, τ be stopping times such that σ < τ ≤ T . By the assump-
tion we have either P (∀t∈(σ,T ] : Xσ > Xt | Fσ) > 0 or P (∀t∈[σ,T ] : Xσ = Xt |
Fσ) = 1 P -a.e. Observe that {∀t∈(σ,T ] : Xσ > Xt} ⊂ {Xσ > Xτ} and hence
P (Xσ − Xτ > 0 | Fσ) > 0 or P (Xσ = Xτ | Fσ) = 1 P -a.e. Consequently,
Corollary 2.9 gives absence of arbitrage over simple strategies without short-
selling.

2.3. Sticky type conditions. Let us recall the definition of stickiness
from [6] and the definition of condition (?) from [2] for a given finite horizon
T > 0.

Definition 2.11. We say that a progressively measurable process X is
sticky with respect to the filtration F and the probability measure P if for
all ε > 0 and all stopping times τ such that P (τ < T ) > 0 we have

P
(

sup
t∈[τ,T ]

|Xτ −Xt| < ε, τ < T
)
> 0.

Definition 2.12. We say that an adapted càdlàg process X satisfies
condition (?) with respect to the filtration F if for any stopping time τ such
that τ ≤ T a.s. and any A ∈ Fτ with P (A) > 0 we have

P
(
A ∩

{
inf

t∈[τ,T ]
(Xt −Xτ ) > −ε

})
> 0

for any ε > 0.

Remark 2.13. It is worth pointing out that by Lemma 2.4 condition
(?) is equivalent to a condition (a) defined below. We say that an adapted
càdlàg process X satisfies condition (a) with respect to the filtration F if for
any stopping time τ with τ ≤ T a.s. and any ε > 0 we have

P
(

inf
t∈[τ,T ]

(Xt −Xτ ) > −ε
∣∣∣ Fτ) > 0 P -a.e.
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Lemma 2.14. Assume X is an adapted càdlàg process. If X is sticky with
respect to the filtration F and the probability measure P , then X satisfies
condition (?).

Proof. Let τ be any stopping time with τ ≤ T a.s. and A be any set from
Fτ with P (A) > 0. Define

τA(ω) =

{
τ(ω) for ω ∈ A,
T for ω /∈ A.

Note that τA is a stopping time with respect to the filtration F and if τA(ω)
< T , then ω ∈ A, so we have{

sup
t∈[τ,T ]

|Xτ −Xt| < ε, τA < T
}
⊂ A ∩

{
sup
t∈[τ,T ]

|Xτ −Xt| < ε
}

for any ε > 0. We have to show that P (A ∩ {supt∈[τ,T ] |Xτ −Xt| < ε}) > 0.
Consider two cases: P (τA < T ) > 0 and P (τA < T ) = 0. If P (τA < T ) > 0,
then since X is sticky we have P ({supt∈[τ,T ] |Xτ −Xt| < ε, τA < T}) > 0,
which implies that P (A∩{supt∈[τ,T ] |Xτ −Xt| < ε}) > 0. Now if P (τA < T )

= 0, then τA = T a.s. and τ = T a.s., so P (A∩{supt∈[τ,T ] |Xτ −Xt| < ε}) =
P (A) > 0. Note that

A ∩
{

sup
t∈[τ,T ]

|Xτ −Xt| < ε
}
⊂ A ∩

{
inf

t∈[τ,T ]
(Xt −Xτ ) > −ε

}
,

so P (A ∩ {inft∈[τ,T ](Xt −Xτ ) > −ε}) > 0.

Lemma 2.15. All martingales satisfy condition (?).

Proof. Assume X is a martingale and X does not satisfy condition (?).
Then there is a stopping time τ ≤ T a.s. and A ∈ Fτ with P (A) > 0 such
that P (A ∩ {inft∈[τ,T ](Xt − Xτ ) > −ε}) = 0 for some ε > 0. Therefore
inft∈[τ,T ](Xt −Xτ ) ≤ −ε a.s. on A. Let σ = inf{t > τ : Xt ≤ Xτ − ε} on A
and σ = τ on the complement of A. Observe that σ is a stopping time and
σ ≤ T a.s. Since X is a martingale we have E(Xσ | Fτ ) = Xτ and

E(Xσ | Fτ ) ≤ χAE(Xτ − ε | Fτ ) + χAcE(Xτ | Fτ ) = χA(Xτ − ε) + χAcXτ .

This implies that Xτ ≤ Xτ − ε on A, the required contradiction.

2.4. Absence of arbitrage over simple strategies. The following
lemma shows that property (a) (defined in Remark 2.13) is a necessary con-
dition for absence of arbitrage over simple strategies.

Lemma 2.16. Let X be an adapted càdlàg process. If X satisfies condition
(AA), then it satisfies condition (a).

Proof (see proof in [2]). Assume X does not admit a simple arbitrage
strategy and X does not satisfy (a). Then there is a stopping time τ with
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τ ≤ T a.s. and ε > 0 such that P (inft∈[τ,T ](Xt −Xτ ) > −ε | Fτ ) = 0 with
positive probability. Let

A =
{
P
(

inf
t∈[τ,T ]

(Xt −Xτ ) > −ε
∣∣∣ Fτ) = 0

}
.

Then clearly A ∈ Fτ and P (A) > 0. So P (A∩{inft∈[τ,T ](Xt−Xτ ) > −ε}) = 0
and

(2.1) inf
t∈[τ,T ]

(Xt −Xτ ) ≤ −ε on A with probability one.

Define
τ̃ =

{
τ on A,
T on Ac.

Since A ∈ Fτ , τ̃ is a stopping time. If we define σ = inf{t ≥ τ̃ : Xt − Xτ̃

< −ε/2} then since X has right continuous paths, Xσ − Xτ̃ ≤ −ε/2 on
A with probability one. Moreover σ ≤ T almost surely on A: otherwise
Xt −Xτ̃ ≥ −ε/2 on A with positive probability for any t ∈ [τ̃ , T ], contrary
to (2.1). This means that Xσ̃ −Xτ̃ < 0 on A, so χA(Xσ̃ −Xτ̃ ) ≤ 0 almost
surely and P (χA(Xσ̃ −Xτ̃ ) < 0) > 0 for

σ̃ =

{
σ on A,
T on Ac.

In other words, the investment strategy −χAχ(τ̃ ,σ̃] is an arbitrage strategy
in ST , which contradicts our assumption (note that τ̃ = τ on A).

Lemma 2.17. Let X be an adapted càdlàg positive process. Then the fol-
lowing statements are equivalent:

(i) For any stopping time τ with τ ≤ T a.s. and for any ε > 0 we have

P
(

inf
t∈[τ,T ]

(Xt −Xτ ) > −ε
∣∣∣ Fτ) > 0 P -a.e.

(ii) For any ε > 0 and for any two stopping times τ1 ≤ τ2 ≤ T we have

P
(
Xτ2 −Xτ1 > −ε | Fτ1

)
> 0 P -a.e.

(iii) For any δ > 0 and for any two stopping times τ1 ≤ τ2 ≤ T we have

P (Xτ2/Xτ1 > 1− δ | Fτ1) > 0 P -a.e.

Proof. (i)⇒(ii). Assume X satisfies (i). Let τ1, τ2 be two stopping times
with τ1 ≤ τ2 ≤ T a.s. Note that{

inf
t∈[τ1,T ]

(Xt −Xτ1) > −ε
}
⊂ {Xτ2 −Xτ1 > −ε}

for any given ε > 0. Hence 0 < P (inft∈[τ1,T ](Xt − Xτ1) > −ε | Fτ1) ≤
P (Xτ2 −Xτ1 > −ε | Fτ1) and X satisfies (ii).

(ii)⇒(i). Assume X satisfies (ii) but not (i). Then by Lemma 2.4 there
is a stopping time τ1 with τ1 ≤ T a.s. and A ∈ Fτ1 with P (A) > 0 such
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that P (A ∩ {inft∈[τ1,T ](Xt −Xτ1) > −ε}) = 0 for some ε > 0. Consequently,
inft∈[τ1,T ](Xt − Xτ1) ≤ −ε on A with probability one. If we define τ2 =
inf{s > τ1 : Xs ≤ Xτ1 − ε} ∧ T then since X has right continuous paths,
Xτ2−Xτ1 ≤ −ε on A. Thus P (A∩{Xτ2−Xτ1 > −ε}) = 0, contradicting (ii).

(ii)⇒(iii). Let τ1 ≤ τ2 a.s. be two stopping times with τ2 ≤ T , A ∈ Fτ1
with P (A) > 0, and δ > 0. Since Xτ1 takes values in (0,∞) and P (A) > 0,
for sufficiently large M ∈ N the event B = A ∩ {1/M ≤ Xτ1 ≤ M} ∈ Fτ1
has positive probability. As the function f(x) = lnx is nondecreasing and
uniformly continuous on [1/M,M ], for any given γ > 0 there exists ε > 0
such that whenever x− y > −ε and x, y ∈ [1/M,M ] then lnx− ln y > −γ.
Hence for any given γ > 0 there exists ε > 0 such that

B ∩ {Xτ2 −Xτ1 > −ε} ⊂ B ∩ {lnXτ2 − lnXτ1 > −γ}.

Since the function g(x) = exp(x)−1 is continuous and nondecreasing, for any
given δ > 0 there exists γ > 0 such that for x > −γ we have exp(x)−1 > −δ.
Note that g(lnXτ2 − lnXτ1) = Xτ2/Xτ1 − 1, so for a given δ > 0 there exists
γ > 0 such that

B ∩ {lnXτ2 − lnXτ1 > −γ} ⊂ B ∩ {Xτ2/Xτ1 > 1− δ}.

Consequently, for any given δ > 0 there exists ε > 0 such that

(2.2) B ∩ {Xτ2 −Xτ1 > −ε} ⊂ B ∩ {Xτ2/Xτ1 > 1− δ}.

Since X satisfies (ii) and B ∈ Fτ1 has positive probability, we have

P (B ∩ {Xτ2 −Xτ1 > −ε}) > 0.

The inclusion (2.2) implies that also P (B ∩ {Xτ2/Xτ1 > 1 − δ}) > 0 and
since B ⊂ A we get P (A ∩ {Xτ2/Xτ1 > 1 − δ}) > 0. Thus we have shown
that for any two stopping times τ1 ≤ τ2 ≤ T and for any A ∈ Fτ1 such that
P (A) > 0 we have

P (A ∩ {Xτ2/Xτ1 > 1− δ}) > 0

for any δ > 0. We can now conclude from Lemma 2.4 that

P (Xτ2/Xτ1 > 1− δ | Fτ1) > 0 P -a.e.

(iii)⇒(ii). In view of Lemma 2.4 we need to show that for any stopping
times τ1 ≤ τ2 ≤ T and for any A ∈ Fτ1 with P (A) > 0, we have P (A ∩
{Xτ2 − Xτ1 > −ε}) > 0 for any ε > 0. Let Ba = {Xτ1 < a}. Then clearly
Ba ∈ Fτ1 and P (Ba) ↗ 1 as a → ∞. This implies that, for sufficiently
large a ∈ R+, the event A ∩ Ba ∈ Fτ1 has positive probability. Since X
satisfies (iii), Lemma 2.4 again yields

P (A ∩Ba ∩ {Xτ2/Xτ1 > 1− δ}) > 0

for any δ > 0. Since A∩Ba ∩ {Xτ2/Xτ1 > 1− δ} ⊂ A∩ {Xτ2 −Xτ1 > −δa},
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we have
P (A ∩ {Xτ2 −Xτ1 > −δa}) > 0,

and it is sufficient to take δ = ε/a.

Summing up, we have three conditions which are necessary for the ab-
sence of arbitrage over simple strategies. The following lemma shows that
condition (a) (and any of the previous conditions) is necessary and suffi-
cient for the absence of arbitrage over simple strategies for nonnegative local
martingales.

Theorem 2.18. Assume X is a nonnegative càdlàg process that admits
an equivalent local martingale measure Q. Then X satisfies condition (AA)
if and only if X satisfies condition (a).

This result is borrowed from Proposition 1 in [2]. We use the same tech-
nique with some simplifications.

Proof. Sufficiency: Assume X satisfies (a) and admits a simple arbitrage
strategy. We may apply Corollary 2.7 to find two stopping times τ1 < τ2 ≤ T
such that either

P (Xτ2 −Xτ1 ≥ 0 | Fτ1) = 1 and P (Xτ2 −Xτ1 > 0 | Fτ1) > 0, P -a.e.,

or

P (Xτ2 −Xτ1 ≤ 0 | Fτ1) = 1 and P (Xτ2 −Xτ1 < 0 | Fτ1) > 0, P -a.e.

Without loss of generality we can assume that the second case holds. It
follows that Xτ2 ≤ Xτ1 almost surely and P (Xτ2 −Xτ1 < 0) > 0. Since X
is a càdlàg process, it follows that inft∈[0,T ]Xt is almost surely finite and
P (inft∈[τ1,T ](Xt −Xτ1) > −η)↗ 1 as η →∞. Then

lim
η→∞

χ{inft∈[τ1,T ](Xt−Xτ1 )>−η} = 1

and by the dominated convergence theorem for conditional expectation we
obtain

lim
η→∞

E(χ{inft∈[τ1,T ](Xt−Xτ1 )>−η} | Fτ1) = 1.

Clearly P (Xτ1 < M)↗ 1 as M →∞. So letting

AM,η =
{
P
(

inf
t∈[τ1,T ]

(Xt −Xτ1) > −η
∣∣∣ Fτ1) > 0

}
∩ {Xτ1 < M}

we have

(2.3) P (AM,η ∩ {Xτ2 −Xτ1 < 0}) > 0

for M,η sufficiently large. Define the following two stopping times:

τ̃1 =

{
τ1 if ω ∈ AM,η,
T if ω /∈ AM,η,

τ̃2 =

{
τ2 if ω ∈ AM,η,
T if ω /∈ AM,η.
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Let τ = inf{t ≥ τ̃1 : Xt > M + η + 1} ∧ τ̃2. We claim that if τ = τ̃2

almost surely on AM,η then χAM,η(Xt −Xτ1) is bounded in [τ1, τ2]. Indeed,
if τ = τ̃2, then Xt ≤ M + η + 1 for t ∈ [τ1, τ2). Moreover, Xτ1 < M and
also Xτ2 < M a.s. on AM,η and X is a nonnegative process, hence −M ≤
χAM,η(Xt −Xτ1) ≤M + η + 1 for t ∈ [τ1, τ2]. The boundedness implies that
the local martingale χAM,η(Xt − Xτ1) is a martingale and EQ(χAM,η(Xt −
Xτ1) | Fτ1) = 0. This means that Q(AM,η ∩ {Xτ2 − Xτ1 < 0}) = 0 and
clearly P (AM,η ∩ {Xτ2 −Xτ1 < 0}) = 0, which contradicts (2.3). So we may
assume that the event AM,η ∩ {τ < τ̃2} has positive probability. Note that
AM,η ∩{τ < τ̃2} ∈ Fτ , because AM,η ∈ Fτ1 ⊂ Fτ and clearly {τ < τ̃2} ∈ Fτ .
Since X is càdlàg, Xτ ≥M + η + 1 on AM,η ∩ {τ < τ̃2} and since Xτ2 ≤M
on AM,η we have

AM,η ∩ {τ < τ̃2} ∩ {Xτ2 −Xτ > −η}
⊂ AM,η ∩ {τ < τ̃2} ∩ {M − (M + η + 1) > −η}.

Hence P (AM,η ∩ {τ < τ̃2} ∩ {Xτ2 −Xτ > −η}) = 0, from which in view of
the inclusion {

inf
t∈[τ,T ]

Xt −Xτ > −η
}
⊂ {Xτ2 −Xτ > −η},

it follows that
P
(
AM,η ∩ {τ < τ̃2} ∩

{
inf

t∈[τ,T ]
Xt −Xτ > −η

})
= 0.

We now show that
P
(

inf
t∈[τ,T ]

Xt −Xτ > −η
∣∣∣ Fτ) = 0 on AM,η ∩ {τ < τ̃2},

which contradicts condition (a). Indeed, otherwise E(χ{inft∈[τ,T ]Xt−Xτ>−η} |
Fτ ) > 0 on AM,η ∩ {τ < τ̃2} with positive probability and clearly

χAM,η∩{τ<τ̃2}E(χ{inft∈[τ,T ]Xt−Xτ>−η} | Fτ ) > 0

with positive probability. Then, since the event AM,η ∩ {τ < τ̃2} belongs
to Fτ , we have

P
(
AM,η ∩ {τ < τ̃2} ∩

{
inf

t∈[τ,T ]
Xt −Xτ > −η

})
> 0,

a contradiction.
Necessity: Apply Lemma 2.16.

Note that the existence of an equivalent local martingale measure is not
equivalent to absence of arbitrage over simple strategies. The following ex-
ample, given in [3], exhibits a nonnegative local martingale that admits an
arbitrage opportunity in ST .

Example 2.19. Let (Bt)t≥0 be a Brownian motion with B0 = 1 and
let τ = inf{t > 0 : Bt = 0}. Define Xt = Btan(tπ/2)∧τ for t < 1 and
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X1 = Bτ = 0. Then X is a nonnegative local martingale. The strategy H
of the form H = −1χ(0,1] yields an arbitrage opportunity: (H · X)1 = 1
a.s. and (H · X)0 = 0 a.s. Clearly Xt does not satisfy (a) since for τ = 0
and T = 1, inft∈[0,1](Xt −X0) = −1. Notice that the simple strategy is not
a tame strategy (since Xt can take arbitrarily large values before reaching
zero), so that we are not able to use the general arbitrage theory developed
by F. Delbaen and W. Schachermayer (see [4]).

Below we give another example of a nonnegative process that admits an
equivalent local martingale measure, but has a simple arbitrage strategy.

Example 2.20. Let y(0) = 1 and P{y(n) = 2n−1} = P{y(n) = −2n−1}
= 1/2 for n = 1, 2, . . . . Let z(t) =

∑k
i=0 y(i) for k ≤ t < k + 1. Define

Xt = z(tan(tπ/2)∧τ) for t < 1 andX1 = z(τ) with τ = inf{t > 0 : z(t) = 0}.
The arbitrage strategy is given by H = −1χ(0,1]. Clearly (H ·X)1 = 1 a.s.
and (H ·X)0 = 0 a.s.

Remark 2.21. The examples above show that without (a), absence of
arbitrage may not hold. It would be interesting to find a condition weaker
than (a) which together with the existence of an equivalent local martingale
measure implies (AA).

2.5. Absence of arbitrage over simple strategies without short-
selling. We now give necessary conditions for the absence of arbitrage over
simple strategies with shortsale restrictions.

Definition 2.22. We say that an adapted càdlàg process X satisfies
condition (b) with respect to the filtration F if for any ε > 0 and any stopping
time τ such that τ ≤ T a.s. we have

P
(

sup
t∈[τ,T ]

(Xt −Xτ ) < ε
∣∣∣ Fτ) > 0 P -a.e.

Remark 2.23. Condition (b) is weaker than stickiness. The proof is the
same as that of Lemma 2.14 with an obvious modification: it suffices to
change the last display of the proof to

A ∩
{

sup
t∈[τ,T ]

|Xτ −Xt| < ε
}
⊂ A ∩

{
sup
t∈[τ,T ]

(Xt −Xτ ) < ε
}

and apply Lemma 2.4.

Lemma 2.24. Let X be an adapted càdlàg positive process. Then the fol-
lowing statements are equivalent:

(i) For any stopping time τ with τ ≤ T a.s. and for any ε > 0 we have

P
(

sup
t∈[τ,T ]

(Xt −Xτ ) < ε
∣∣∣ Fτ) > 0 P -a.e.
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(ii) For any ε > 0 and for any two stopping times τ1 ≤ τ2 ≤ T we have

P
(
Xτ2 −Xτ1 < ε | Fτ1

)
> 0 P -a.e.

(iii) For any δ > 0 and for any two stopping times τ1 ≤ τ2 ≤ T we have

P (Xτ2/Xτ1 < 1 + δ | Fτ1) > 0 P -a.e.

Proof. One can use similar arguments to those in the proof of Lemma
2.17.

Lemma 2.25. Let X be an adapted càdlàg process. If X satisfies condition
(AA+), then it satisfies condition (b).

Proof. Assume X satisfies (AA+) but not (b). Then there is a stopping
time τ with τ ≤ T a.s. and ε > 0 such that P (supt∈[τ,T ](Xt −Xτ ) < ε | Fτ )
= 0 with positive probability. Define

A =
{
P
(

sup
t∈[τ,T ]

(Xt −Xτ ) < ε
∣∣∣ Fτ) = 0

}
∈ Fτ .

Then E(χAχ{supt∈[τ,T ](Xt−Xτ )<ε} | Fτ ) = 0 almost surely. Hence P (A ∩
{supt∈[τ,T ](Xt −Xτ ) < ε}) = 0 and since{

sup
t∈[τ,T ]

(Xt −Xτ ) < ε
}

=
{

inf
t∈[τ,T ]

(Xτ −Xt) > −ε
}

we obtain

(2.4) inf
t∈[τ,T ]

(Xτ −Xt) ≤ −ε on A with probability one.

Let τ̃ = τ on A and τ̃ = T on Ac. Then τ̃ is a stopping time since A ∈ Fτ .
Define σ = inf{t ≥ τ̃ : Xτ̃ −Xt < −ε/2}. Clearly σ is a stopping time, and
since X is càdlàg, Xτ̃ − Xσ ≤ −ε/2 on A with probability one. We claim
that σ ≤ T almost surely on A. Indeed, otherwise P ({σ > T} ∩ A) > 0, so
P ({Xτ̃ − Xt ≥ −ε/2} ∩ A) > 0 for any t ∈ [τ̃ , T ], which contradicts (2.4).
Finally, we define the stopping time σ̃ = σ on A and σ̃ = T on Ac. Then we
have χA(Xσ̃ −Xτ̃ ) ≥ 0 almost surely and P (χA(Xσ̃ −Xτ̃ ) > 0) > 0. Hence
χAχ(τ̃ ,σ̃] is an arbitrage strategy. Note that χAχ(τ̃ ,σ̃] ∈ S+

T , which contradicts
(AA+).

Lemma 2.26. Let X be a nonnegative càdlàg process. If there exists an
equivalent probability measure Q such that X is a Q-supermartingale, then
X satisfies (AA+).

Proof. Assume that X admits a simple arbitrage strategy without short-
selling. Then by Lemma 2.2 there exists G ∈ S+

T of the form G = gχ(σ1,σ2]

such that g(Xσ2 − Xσ1) ≥ 0 P -a.e. and P{g(Xσ2 − Xσ1) > 0} > 0. Since
G ∈ S+

T , g is a nonnegative random variable, hence Xσ2 − Xσ1 ≥ 0 P al-
most everywhere and clearly EQ(Xσ2 − Xσ1 | Fσ1) ≥ 0. Moreover σ1 < σ2
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are bounded stopping times and X is a Q-supermartingale, so by the op-
tional sampling theorem we have EQ(Xσ2 − Xσ1 | Fσ1) ≤ 0. This means
that EQ(Xσ2 −Xσ1 | Fσ1) = 0 and Xσ2 −Xσ1 ≥ 0 Q-a.e., which contradicts
P{g(Xσ2 −Xσ1) > 0} > 0.

Remark 2.27. We remark that existence of a local martingale measure
implies (AA+) but not (AA) (it is well known, see e.g. [11, 1.5.19(ii)], that a
nonnegative local martingale is a supermartingale, which means that if there
exists an equivalent probability measure Q such that a nonnegative process
X is a Q-local martingale, then X is a Q-supermartingale; as we showed in
Examples 2.19, 2.20, the existence of an equivalent local martingale measure
does not imply (AA)).

2.6. Multidimensional characterization. In this section we extend
the absence of arbitrage characterization to the case of a market that consists
of a bank account and several risky assets (d > 1). First, we introduce
a sufficient condition for absence of arbitrage over simple strategies with
shortsale restrictions.

Definition 2.28. We say that an adapted càdlàg process X satisfies
condition (c) with respect to the filtration F if for any two stopping times
τ1 < τ2 ≤ T we have

P
( ⋂
j∈J
{Xj

τ2 < Xj
τ1}
∣∣∣ Fτ1) > 0 P -a.e.,

where J = {j ∈ {1, . . . , d} : P (Xj
τ2 6= Xj

τ1 | Fτ1) > 0 with positive proba-
bility}.

Lemma 2.29. Let X be an adapted càdlàg process. If X satisfies condi-
tion (c), then it satisfies condition (AA+).

Proof. Assume that X admits a simple arbitrage strategy without short-
selling. We may apply Lemma 2.2 to find G = (G1, . . . , Gd) ∈ S+

T of the form
Gj =gjχ(τ1,τ2] such that

∑d
j=1 g

j(Xj
τ2−X

j
τ1) ≥ 0 P -a.e. and P (

∑d
j=1 g

j(Xj
τ2−

Xj
τ1) > 0) > 0. Then there exists k ∈ {1, . . . , d} such that P ({gk > 0}
∩ {Xk

τ2 6= Xk
τ1}) > 0. Indeed, otherwise P ({gk = 0} ∪ {Xk

τ2 = Xk
τ1}) = 1

for all k ∈ {1, . . . , d} and
∑d

j=1 g
j(Xj

τ2 −X
j
τ1) = 0 almost surely. Note that

if P ({gk > 0} ∩ {Xk
τ2 6= Xk

τ1}) > 0 then P ({gk > 0} ∩ {Xk
τ2 6= Xk

τ1} |
Fτ1) > 0 with positive probability and because {gk > 0} ∈ Fτ1 it follows
that P (Xk

τ2 6= Xk
τ1 | Fτ1) > 0 with positive probability, which means that

k ∈ J . We now show that

P
(
{gk > 0} ∩

⋂
j∈J
{Xj

τ2 < Xj
τ1}
)

=: P (B) > 0.
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Since X satisfies condition (c) and {gk > 0} ∈ Fτ1 , we have P ({gk > 0} ∩⋂
j∈J{X

j
τ2 < Xj

τ1} | Fτ1) > 0 on {gk > 0}, which implies that P (B) > 0.
If j /∈ J , then P (Xj

τ2 6= Xj
τ1 | Fτ1) = 0 almost surely, so Xj

τ2 = Xj
τ1 almost

surely and
d∑
i=1

gi(Xi
τ2 −X

i
τ1) =

∑
j∈J

gj(Xj
τ2 −X

j
τ1).

Moreover, we have gk(Xk
τ2 −X

k
τ1) < 0 a.s. on B and gj(Xj

τ2 −X
j
τ1) ≤ 0 a.s.

on B for j ∈ J . It follows that∑
j∈J

gj(Xj
τ2 −X

j
τ1) = gk(Xk

τ2 −X
k
τ1) +

∑
j∈J
j 6=k

gj(Xj
τ2 −X

j
τ1) < 0.

So P (
∑d

j=1 g
j(Xj

τ2 −X
j
τ1) < 0) ≥ P (B) > 0 and we get a contradiction to∑d

j=1 g
j(Xj

τ2 −X
j
τ1) ≥ 0 almost surely.

We now give a sufficient condition for absence of arbitrage over ST .

Definition 2.30. We say that an adapted càdlàg process X satisfies
condition (d) with respect to the filtration F if for any two stopping times
τ1 < τ2 ≤ T we have∏

(k1,...,kd)∈{0,1}d
P
( ⋂
j∈J

{
(−1)kj (Xj

τ2 −X
j
τ1) > 0

} ∣∣∣ Fτ1) > 0 P -a.e.,

where J = {j ∈ {1, . . . , d} : P (Xj
τ2 6= Xj

τ1 | Fτ1) > 0 with positive proba-
bility}.

Lemma 2.31. Let X be an adapted càdlàg process. If X satisfies condi-
tion (d), then it satisfies condition (AA).

Proof. Assume that X admits a simple arbitrage strategy and satis-
fies (d). As proved in Lemma 2.1, there is an investment strategy G =

(G1, . . . , Gd) ∈ ST of the form Gj = gjχ(τ1,τ2] such that
∑d

j=1 g
j(Xj

τ2 −X
j
τ1)

≥ 0 P -a.e. and P (
∑d

j=1 g
j(Xj

τ2 −X
j
τ1) > 0) > 0. Note that, as in the proof

of Lemma 2.29, the inequality P (
∑d

j=1 g
j(Xj

τ2 −X
j
τ1) > 0) > 0 implies the

existence of k ∈ {1, . . . , d} such that P ({gk 6= 0} ∩ {Xk
τ2 6= Xk

τ1}) > 0.
Without loss of generality, we can assume P (A) > 0, where A = {gk > 0}
∩ {Xk

τ2 6= Xk
τ1}. It is clear that

P
( ⋃

(k1,...,kd)∈{0,1}d

⋂
j∈J\{k}

{(−1)kjgj ≥ 0}
)

= 1.
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Therefore we can assume that there are (l1, . . . , ld) ∈ {0, 1}d such that

P
(
A ∩

⋂
j∈J\{k}

{(−1)ljgj ≥ 0}
)
> 0.

Let B = {gk > 0} ∩
⋂
j∈J\{k}{(−1)ljgj ≥ 0}. Then B ∈ Fτ1 and P (B ∩

{Xk
τ2 6= Xk

τ1}) > 0. It can be shown using the same arguments as in Lem-
ma 2.29 that k ∈ J . From condition (d), we have

P
( ⋂
j∈J
{(−1)lj (Xj

τ2 −X
j
τ1) < 0}

∣∣∣ Fτ1) > 0 P -a.e.

Hence E(χBχ⋂
j∈J{(−1)lj (Xj

τ2
−Xj

τ1
)<0} | Fτ1) > 0, which implies that

P
(
B ∩ {Xk

τ2 < Xk
τ1} ∩

⋂
j∈J\{k}

{(−1)lj (Xj
τ2 −X

j
τ1) < 0}

)
> 0.

Letting C = B ∩ {Xk
τ2 < Xk

τ1} ∩
⋂
j∈J{(−1)lj (Xj

τ2 − Xj
τ1) < 0} we have

gk(Xk
τ2−X

k
τ1) < 0 a.s. on C and gj(Xj

τ2−X
j
τ1) ≤ 0 a.s. on C for j ∈ J \{k}.

Moreover, from the definition of J we infer that if j /∈ J then P (Xj
τ2 = Xj

τ1 |
Fτ1) = 1 almost surely, so Xj

τ2 = Xj
τ1 a.s. and

d∑
j=1

gj(Xj
τ2 −X

j
τ1) =

∑
j∈J

gj(Xj
τ2 −X

j
τ1).

Finally, on C we have
d∑
j=1

gj(Xj
τ2 −X

j
τ1) = gk(Xk

τ2 −X
k
τ1) +

∑
j∈J
j 6=k

gj(Xj
τ2 −X

j
τ1) < 0.

Hence P (
∑d

j=1 g
j(Xj

τ2−X
j
τ1) < 0) ≥ P (C) > 0, again contradicting the fact

that
∑d

j=1 g
j(Xj

τ2 −X
j
τ1) ≥ 0 almost surely.

2.7. Embedded discrete time market characterization. The re-
sults in this section are based on the proof of the Dalang–Morton–Willinger
theorem for a discrete-time model given in [9]. Directly from this theorem
we obtain the following characterization for absence of arbitrage over simple
strategies.

Theorem 2.32. The process X satisfies condition (AA) if and only if for
any positive integer n ≥ 2 and any sequence of stopping times 0 ≤ τ1 ≤ · · · ≤
τn ≡ T there exists an equivalent martingale measure Q such that (Xτn) is
a Q-martingale.

The following theorem is an adaptation of Kabanov and Stricker’s tech-
nique (see Theorem 1 in [9]) to the case of shortsale restrictions. Consider
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the case T = 1. Let X = (X0, X1) be an (F0,F1)-adapted Rd-valued process
and let ∆Xi = Xi

1 − Xi
0. Let K = {ξ : ξ =

∑d
i=1N

i∆Xi, N ∈ P}, where
P is the set of predictable nonnegative processes and A+

1 = K −L0
+. By Ā

+
1

we denote the closure of A+
1 in probability.

Theorem 2.33. Assume (AA+) for T = 1. Then the following conditions
are equivalent:

(i) A+
1 ∩ L0

+ = {0};
(ii) A+

1 ∩ L0
+ = {0} and A+

1 = Ā+
1 ;

(iii) Ā+
1 ∩ L0

+ = {0};
(iv) there is a probability measure Q ∼ P with dQ/dP ∈ L∞ such that

X is a Q-supermartingale.

Proof. (i)⇒(ii). We have to show that A+
1 is closed in probability. Sup-

pose that
∑d

i=1N
i
n∆Xi−rn → ζ P -a.e., where N i

n is F0-measurable nonneg-
ative and rn ∈ L0

+. Let Ω1 = {lim inf |Nn| <∞}. On Ω1 (by Lemma 2 in [9])
there is a random sequence nk(ω) such that N i

nk
(ω)→ N i(ω) for all ω. Then

necessarily rnk =
∑d

i=1N
i
nk

∆Xi − ζnk tends a.s. to
∑d

i=1N
i∆Xi − ζ = r

≥ 0 and therefore ζ ∈ A+
1 a.s. On Ω2 = {lim inf |Nn| = ∞} we define

Gn = Nn/|Nn| and hn = rn/ |Nn|. Note that Gn ⊂ Sd−1, where Sd−1 de-
notes the unit sphere in Rd, and we may (as in the proof of Theorem 1 in [9])
find F0-measurable nonnegative Gnk such that Gnk(ω) is a convergent sub-
sequence of Gn(ω) for every ω. Since

∑d
i=1G

i
n∆Xi − hn → 0 we obtain∑d

i=1G
i∆Xi = h, where Gi(ω) = limGnk(ω), which (in view of (AA+))

means that
∑d

i=1G
i∆Xi = 0. Note that there exists a partition of Ω2 into

disjoint subsets Ωi
2 ∈ F0 such that Gi 6= 0 on Ωi

2. Let βn = minGi 6=0N
i
n/G

i

on Ωi
2. Now we can define the sequence Ñ i

n = N i
n − βnGi with the prop-

erties:
∑d

i=1 Ñ
i
n∆Xi =

∑d
i=1N

i
n∆Xi and Ñ i

n ≥ 0 for i = 1, . . . , d. This
procedure leads to elimination of nonzero components of the sequence Nn,
so by iteration we can construct the desired sequence.

(ii)⇒(iii). Trivial.
(iii)⇒(iv) and (iv)⇒(i). We proceed in the same way as in the proof of

Theorem 1 in [9].

Remark 2.34. In the original paper the time horizon T ≥ 1 was consid-
ered. Here we adapt their techniques only in the case T = 1. For T > 1 their
procedure does not seem to work in the case of shortselling.

Corollary 2.35. (AA+) in discrete time is equivalent to existence of
an equivalent supermartingale measure Q.

Proof. To construct an equivalent supermartingale measure Q we use
induction on T . For T = 1 Theorem 2.33 applies. Suppose that there is an
equivalent probability measure Q1, defined on FT , such that dQ1/dP ∈ L∞
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and (Xt)
T
t=1 is a Q1-supermartingale, i.e. X1, . . . , XT ∈ L1(Ω,FT , Q1) and

EQ1(Xt+1 | Ft) ≤ Xt for t = 1, . . . , T − 1. Theorem 2.33 applied to the
probability space (Ω,F1, Q

1) gives us a probability measure Q ∼ Q1 with
dQ/dQ1 ∈ L∞ such that EQ(X1 | F0) ≤ X0. Define Q on FT by

dQ

dP
=

dQ

dQ1

dQ1

dP
.

Then since dQ/dQ1 is bounded and F1-measurable we have

EQ(Xt+1 | Ft) ≤ Xt for t ≥ 1.

We are now ready to state the main result of this section:

Theorem 2.36. The process X satisfies condition (AA+) if and only if
for any integer n ≥ 2 and any sequence of stopping times 0 ≤ τ1 ≤ · · · ≤
τn ≡ T there exists an equivalent supermartingale measure Q such that (Xτn)
is a Q-supermartingale.

3. Markets with proportional transaction costs

3.1. Problems and illustrative examples. Note that absence of ar-
bitrage over one period and absence of arbitrage over a multiperiod are not
equivalent in the case of proportional transaction costs. The following ex-
ample gives a deterministic process that satisfies weak absence of arbitrage
without shortselling (AA+

w) over any single period and has a strict arbitrage
opportunity over the whole period.

Example 3.1. Consider the deterministic model with T = 2, S0 = 1,
S1 = 2 and S2 = 3. Assume λ, µ ∈ (0, 1) are such that

(3.1)
1 + λ

1− µ
∈ (2, 3).

We first show that S admits a strict arbitrage opportunity without short-
selling. Consider the investment of buying 1

1+λ assets and borrowing −1 from
the bank account at time t = 0 with no change of portfolio at time t = 1,
so (∆x0,∆y0) = (−1, 1

1+λ) ∈ L0(−G0,F0) and (∆x1,∆y1) = (∆x2,∆y2)

= (0, 0). Then (x2, y2) = (−1, 1
1+λ) =

∑2
i=0(∆xi,∆yi) ∈ A2

+ and if 1
1+λ >

1
3(1−µ) then (x2, y2) ∈ L0(intG2,F2). But since 1+λ

1−µ < 3 by (3.1) we get the
required inequality.

We now prove (AA+
w) over the single period 0 ↔ 1. Let (x1, y1) =

(∆x0,∆y0)+(∆x1,∆y1) be a position such that (x1, y1) ∈ A1
+∩L0(G1,F1).

We have to show that (x1, y1) ∈ L0(∂G1,F1). Shortsale restrictions imply
that y1 ≥ 0 and ∆y0 ≥ 0, hence as (x1, y1) ∈ L0(G1,F1) and (∆x0,∆y0) ∈
L0(−G0,F0) we get y1 ≥ −x1

2(1−µ) and ∆y0 ≤ −∆x0
1+λ . Moreover (3.1) implies
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that −∆x0
1+λ ≤

−∆x0
2(1−µ) (note that ∆x0 ≤ 0), so we have ∆y0 ≤ −∆x0

2(1−µ) . Then

−x1

2(1− µ)
≤ y1 ≤

−∆x0

2(1− µ)
+ ∆y1,

from which it follows that ∆y1 ≥ −∆x1
2(1−µ) . On the other hand we know that

(∆x1,∆y1) ∈ L0(−G1,F1), so ∆y1 ≤ −∆x1
2(1−µ) . Consequently, ∆y1 = −∆x1

2(1−µ)

and y1 = −x1
2(1−µ) , which implies that (x1, y1) ∈ L0(∂G1,F1).

We finish by proving (AA+
w) over the single period 1↔ 2. We assume that

at time 1 we make an investment starting from (0, 0) borrowing −∆x1 from
the bank account and buying ∆y1 assets. Take any (x2, y2) = (∆x1,∆y1) +
(∆x2,∆y2) ∈ A2

1 ∩ L0(G2,F2) such that ∆y1 ≥ 0 and y2 ≥ 0. Then y2 ≥
−x2

3(1−µ) and ∆y1 ≤ −∆x1
2(1+λ) . By using (3.1) we have −∆x1

2(1+λ) ≤
−∆x1
3(1−µ) (we know

that ∆x1 ≤ 0), hence
−x2

3(1− µ)
≤ y2 ≤

−∆x1

3(1− µ)
+ ∆y2,

which means ∆y2 ≥ −∆x2
3(1−µ) . But (∆x2,∆y2) ∈ L0(−G2,F2), so ∆y2 ≤

−∆x2
3(1−µ) . Consequently, ∆y2 = −∆x2

3(1−µ) and y2 = −x2
3(1−µ) , which means that

(x2, y2) ∈ L0(∂G2,F2) (i.e. (AA+
w) holds over 1↔ 2).

Another example shows that the study of arbitrage using the strategies
without shortselling cannot be restricted to one period (as in the case without
transaction costs).

Example 3.2. Let T = 2 and S0 = 1, S1 = S0(1 + ξ1), S2 = S1(1 + ξ2),
where ξ1, ξ2 > −1 almost surely. Assume that

(i) 1 + ξi <
1+λ
1−µ with positive probability,

(ii) 1+λ
1−µ(1− δ) ≤ 1 + ξi P -a.e., where δ > 0 is such that (1− δ)2 > 1−µ

1+λ .

We claim that there is no strict arbitrage over periods 0↔ 1 and 1↔ 2.
It is sufficient to show that the position of the form

(
−1, 1

1+λ

)
∈ A+

1 is not an
arbitrage opportunity. In fact, if at t = 0 we have x0 = −1, y0 = 1

1+λ , then
liquidating it at time t = 1 we find that −1+ 1−µ

1+λ (1+ξ1) ≥ 0 P -a.s. whenever
1 + ξ1 <

1+λ
1−µ , which is not satisfied (by (i)). Consider the whole period; let

again x0 = −1, y0 = 1
1+λ ; then liquidating the position at time t = 2 (with

no change of portfolio at time t = 1) we find that −1+ 1−µ
1+λ (1+ξ1)(1+ξ2) > 0

is satisfied when (1 + ξ1)(1 + ξ2) > 1+λ
1−µ , which holds when (1− δ)2 > 1−µ

1+λ .

3.2. Sticky type conditions. Let Y = (Yt)t∈[0,T ] ∈ BT , where

Yt =
n−2∑
i=1

yiχ(τi,τi+1](t) + yn−1χ(τn−1,τn)(t) + ynχ{T}(t)
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for some integer n ≥ 2 and a sequence of F-stopping times 0 ≤ τ1 ≤ · · ·
≤ τn ≡ T . The value process generated by the simple strategy Y is given by

(3.2) W Y
T =

d∑
j=1

[ n−1∑
i=1

yji (X
j
τi+1
−Xj

τi)− λ
j

n∑
i=1

Xj
τi(y

j
i − y

j
i−1)+

− µj
n∑
i=1

Xj
τi(y

j
i − y

j
i−1)− − λj(yjn)−Xj

τn − µ
j(yjn)+Xj

τn

]
,

where yj
0

= 0 for all j = 1, . . . , d. The term
∑d

j=1[λj
∑n

i=1X
j
τi(y

j
i − y

j
i−1)+ +

µj
∑n

i=1X
j
τi(y

j
i − y

j
i−1)−] corresponds to the cost of trading. The liquidation

cost at the end of trading equals
∑d

j=1[λj(yjn)−Xj
τn + µj(yjn)+Xj

τn ]. Observe
that W Y

T = RT (xn, y
1
n, . . . , y

d
n), so we can now reformulate the definition of

strict absence of arbitrage. We say that we have a strict arbitrage opportunity
with respect to the class of simple strategies (resp. simple strategies with-
out shortselling) if there exists a simple investment strategy Y ∈ BT (resp.
Y ∈ B+

T ) with the properties

(3.3) W Y
T ≥ 0 P -a.e. and P (W Y

T > 0) > 0.

We start with the case d = 1.

Definition 3.3. We say that an adapted càdlàg process X satisfies con-
dition (S) with respect to the filtration F if for any stopping time τ ≤ T and
any ε > 0 we have

P

(
sup
τ≤t≤T

∣∣∣∣ln Xt

Xτ

∣∣∣∣ < ε

∣∣∣∣ Fτ) > 0 P -a.e.

In the next lemma we show that condition (S) is sufficient for weak
absence of arbitrage at time T . This result is based on Proposition 1 in [13].

Proposition 3.4. If the adapted càdlàg process X satisfies condition (S),
then there is no strict arbitrage at time T (i.e. (AAw) holds).

Proof. Assume Y = (Yt)t∈[0,T ] ∈ BT is an arbitrage strategy. Then the
value process W Y satisfies W Y

T ≥ 0 P -a.e. and P{W Y
T > 0} > 0. Let σ =

min{i ∈ {1, . . . , n} : yi 6= 0}. Since P{W Y
T >0} > 0, the event A = {τσ<T}

has positive probability. Observe that on the set A ∈ Fσ we can write

W Y
T =

n∑
i=σ

yi(Xτi+1 −Xτi)− λ
n+1∑
i=σ

Xτi(yi − yi−1)+ − µ
n+1∑
i=σ

Xτi(yi − yi−1)−,

where τn+1 ≡ T, y0 = 0 and yn+1 = 0. If we denote X̃τi = Xτi −Xτσ , then
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n∑
i=σ

yi(Xτi+1 −Xτi) =

n∑
i=σ

yiX̃τi+1 −
n∑
i=σ

yiX̃τi =

n+1∑
i=σ+1

yi−1X̃τi −
n+1∑
i=σ

yiX̃τi

=

n+1∑
i=σ

(yi−1 − yi)X̃τi .

Hence

W Y
T =

n+1∑
i=σ

[
(yi−1 − yi)X̃τi − λ

n+1∑
i=σ

Xτi(yi − yi−1)+ − µ
n+1∑
i=σ

Xτi(yi − yi−1)−
]
.

Note that

(yi−1 − yi)X̃τi − λXτi(yi − yi−1)+ − µXτi(yi − yi−1)−

= −(yi − yi−1)+[(1 + λ)Xτi −Xτσ ] + (yi − yi−1)−[(1− µ)Xτi −Xτσ ]

for all i ∈ {1, . . . , n+ 1}. It follows that

W Y
T =

n+1∑
i=σ

(yi−yi−1)−[(1−µ)Xτi−Xτσ ]−
n+1∑
i=σ

(yi−yi−1)+[(1+λ)Xτi−Xτσ ].

Since X satisfies condition (S), the event

Bε = A ∩
{

sup
τσ≤t≤T

∣∣∣∣ln Xt

Xτσ

∣∣∣∣ < ε

}
has positive probability for any ε > 0. Observe that on Bε,

1

1 + λ
<
Xτi

Xτσ

<
1

1− µ
for all i ∈ {σ, . . . , n+ 1}

whenever ε < min
{

ln(1 + λ), ln
(

1
1−µ
)}
. Moreover, on A there is i ∈ {σ, . . . ,

n + 1} such that (yi − yi−1)− 6= 0 or (yi − yi−1)+ 6= 0 (by the definition
of A and σ). Therefore W Y

T < 0 on Bε, which contradicts the assumption
P{W Y

T ≥ 0} = 1.

Remark 3.5. Under (S) we also have (AA+
w) (clearly, if there is a strict

arbitrage opportunity without shortselling, then there is a strict arbitrage).

Remark 3.6. Under (b) we also have (AA+
w) (absence of arbitrage with-

out transaction costs implies weak absence of arbitrage: observe that

W Y
T ≤

n−1∑
i=1

yi(Xτi+1 −Xτi) = (Ỹ ·X)T ,

so if Y ∈ B+
T satisfies (3.3), then the simple strategy Ỹ =

∑n−1
i=1 yiχ(τi,τi+1](t)

is an arbitrage opportunity without shortselling).

The following lemma has important consequences for characterization of
weak absence of arbitrage under shortsale restrictions.
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Lemma 3.7. Let ξ0, ξ1, . . . , ξn be a sequence of nonnegative random vari-
ables on a probability space (Ω,F , P ), and η0, η1, . . . , ηn be a sequence of
nonnegative random variables with ηn = 0. Then⋂

i,j∈{0,...,n}
i<j

{(1− µ)ξj < (1 + λ)ξi} ⊂ {Wξ0,ξ1,...,ξn(η0, η1 . . . , ηn) < 0},

where λ, µ ∈ (0, 1) and

Wξ0,ξ1,...,ξn(η0, . . . , ηn) =

n∑
i=1

ηi−1(ξi − ξi−1)− λη0ξ0 −
n−1∑
i=1

λ(ηi − ηi−1)+ξi

−
n−1∑
i=1

µ(ηi − ηi−1)−ξi − µηn−1ξn

for n ≥ 2 and

Wξ0,ξ1(η0, η1) = η0(ξ1 − ξ0)− λη0ξ0 − µη0ξ1.

Proof. We use induction on n. First we prove the statement for n = 1.
Since η0 ≥ 0 we have

Wξ0,ξ1(η0, η1) = η0[(1− µ)ξ1 − (1 + λ)ξ0] < 0

on the set {(1 − µ)ξ1 < (1 + λ)ξ0}. Now suppose that the assertion holds
true for k − 1. Observe that

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk) = η0[(1 + λ)ξ1χ{η1>η0} + (1− µ)ξ1χ{η1<η0}]

− η0(1 + λ)ξ0 +

k−2∑
i=1

ηi[(1 + λ)ξi+1χ{ηi+1>ηi} + (1− µ)ξi+1χ{ηi+1<ηi}]

−
k−2∑
i=1

ηi[(1 + λ)ξiχ{ηi>ηi−1} + (1− µ)ξiχ{ηi<ηi−1}]

+ ηk−1[(1− µ)ξk − (1 + λ)ξk−1χ{ηk−1>ηk−2} − (1− µ)ξk−1χ{ηk−1<ηk−2}].

We consider first the process Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η0=η1}. Clearly

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η0=η1} = Wξ0,ξ2,...,ξk(η1, . . . , ηk)χ{η0=η1}

and ⋂
i,j∈{0,...,k}

i<j

{(1− µ)ξj < (1 + λ)ξi} ⊂
⋂

i,j∈{0,...,n}\{1}
i<j

{(1− µ)ξj < (1 + λ)ξi},
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so by the inductive hypothesis we have

(3.4)
⋂

i,j∈{0,...,k}
i<j

{(1− µ)ξj < (1 + λ)ξi}

⊂ {Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η0=η1} < 0}.

The next step is to consider the process

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1<η0} = χ{η1<η0}

{
η0[(1− µ)ξ1 − (1 + λ)ξ0]

+ η1[(1 + λ)ξ2χ{η2>η1} + (1− µ)ξ2χ{η2<η1}]

− η1(1− µ)ξ1 +

k−2∑
i=2

ηi[(1 + λ)ξi+1χ{ηi+1>ηi} + (1− µ)ξi+1χ{ηi+1<ηi}]

−
k−2∑
i=2

ηi[(1 + λ)ξiχ{ηi>ηi−1} + (1− µ)ξiχ{ηi<ηi−1}]

+ ηk−1[(1− µ)ξk − (1 + λ)ξk−1χ{ηk−1>ηk−2} − (1− µ)ξk−1χ{ηk−1<ηk−2}]
}
.

Note that

η0[(1− µ)ξ1 − (1 + λ)ξ0] < η1[(1− µ)ξ1 − (1 + λ)ξ0]

on the set {(1− µ)ξ1 < (1 + λ)ξ0} ∩ {η1 < η0}, from which it follows that

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1<η0} < χ{η1<η0}

{
−η1(1 + λ)ξ0

+ η1[(1 + λ)ξ2χ{η2>η1} + (1− µ)ξ2χ{η2<η1}]

+
k−2∑
i=2

ηi[(1 + λ)ξi+1χ{ηi+1>ηi} + (1− µ)ξi+1χ{ηi+1<ηi}]

−
k−2∑
i=2

ηi[(1 + λ)ξiχ{ηi>ηi−1} + (1− µ)ξiχ{ηi<ηi−1}]

+ ηk−1[(1− µ)ξk − (1 + λ)ξk−1χ{ηk−1>ηk−2} − (1− µ)ξk−1χ{ηk−1<ηk−2}]
}
.

Observe that the right hand side represents Wξ0,ξ2,...,ξk(η1, . . . , ηk) on the set
{η1 < η0} and hence⋂
i,j∈{0,...,k}

i<j

{
(1− µ)ξj < (1 + λ)ξi

}
⊂
{
Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1<η0} < Wξ0,ξ2,...,ξk(η1, . . . , ηk)χ{η1<η0}

}
.
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By the induction hypothesis we have⋂
i,j∈{0,...,k}\{1}

i<j

{
(1− µ)ξj < (1 + λ)ξi

}
⊂
{
Wξ0,ξ2,...,ξk(η1, . . . , ηk) < 0

}
,

which means that

(3.5)
⋂

i,j∈{1,...,k}
i<j

{
(1− µ)ξj < (1 + λ)ξi

}
⊂
{
Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1<η0} < 0

}
.

Now we turn to the process Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1>η0}. Let l =
max{s : η1 < · · · < ηs−1}. We remark that l is well defined because we
assumed that η0, η1, . . . , ηk are nonnegative random variables and ηk = 0.
Clearly,

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1>η0}

= χ{η1>η0}

{ l̃−2∑
i=0

ηi[(1 + λ)ξi+1 − (1 + λ)ξi]

+ ηl̃−1[(1− µ)ξl̃ − (1 + λ)ξl̃−1]

+ ηl̃[(1 + λ)ξl̃+1χ{ηl̃+1>ηl̃} + (1− µ)ξl̃+1χ{ηl̃+1<ηl̃} − (1− µ)ξl̃]

+
k−2∑
i=l̃+1

ηi[(1 + λ)ξi+1χ{ηi+1>ηi} + (1− µ)ξi+1χ{ηi+1<ηi}]

−
k−2∑
i=l̃+1

ηi[(1 + λ)ξiχ{ηi>ηi−1} + (1− µ)ξiχ{ηi<ηi−1}]

+ ηk−1[(1− µ)ξk − (1 + λ)ξk−1χ{ηk−1>ηk−2} − (1− µ)ξk−1χ{ηk−1<ηk−2}]
}

on the set {l = l̃} for some l̃ ∈ {1, . . . , k}. Since

ηl̃−1[(1− µ)ξl̃ − (1 + λ)ξl̃−1] < ηl̃[(1− µ)ξl̃ − (1 + λ)ξl̃−1]

on the set {l = l̃} ∩ {(1− µ)ξl̃ < (1 + λ)ξl̃−1} we have

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1>η0}χ{l=l̃}

< χ{η1>η0}χ{l=l̃}

{ l̃−2∑
i=0

ηi[(1 + λ)ξi+1 − (1 + λ)ξi]

+ ηl̃[(1 + λ)ξl̃+1χ{ηl̃+1>ηl̃} + (1− µ)ξl̃+1χ{ηl̃+1<ηl̃} − (1 + λ)ξl̃−1]
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+
k−2∑
i=l̃+1

ηi[(1 + λ)ξi+1χ{ηi+1>ηi} + (1− µ)ξi+1χ{ηi+1<ηi}]

−
k−2∑
i=l̃+1

ηi[(1 + λ)ξiχ{ηi>ηi−1} + (1− µ)ξiχ{ηi<ηi−1}]

+ ηk−1[(1− µ)ξk − (1 + λ)ξk−1χ{ηk−1>ηk−2} − (1− µ)ξk−1χ{ηk−1<ηk−2}]
}
.

This means that

Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1>η0}χ{l=l̃}

< Wξ0,...,ξl̃−1,ξl̃+1,...,ξk
(η0, . . . , ηl̃−2, ηl̃, . . . , ηk)χ{η1>η0}χ{l=l̃}

on
⋂
i,j∈{0,...,k}, i<j{(1− µ)ξj < (1 + λ)ξi} and by induction we have

(3.6)
⋂

i,j∈{0,...,k}
i<j

{(1− µ)ξj < (1 + λ)ξi}

⊂ {Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk)χ{η1>η0}χ{l=l̃} < 0}.

Summing up, we have shown (by (3.4)–(3.6)) that⋂
i,j∈{0,...,k}

i<j

{(1− µ)ξj < (1 + λ)ξi} ⊂ {Wξ0,ξ1,...,ξk(η0, η1, . . . , ηk) < 0},

which proves the lemma.

Definition 3.8. We say that a process X satisfies condition (D) with
respect to the filtration F if for any stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T
we have

P
(⋂
i<j

{(1− µ)Xτj < (1 + λ)Xτi}
)
> 0.

Theorem 3.9. If X is a process satisfying condition (D), then it satisfies
(AA+

w) (weak absence of arbitrage without shortselling).

Proof. Apply Lemma 3.7 to the sequence of nonnegative random vari-
ables

Xτ1 , Xτ2 , . . . Xτn−1 , Xτn , Xτn+1

where τn ≡ τn+1 ≡ T , and the sequence of nonnegative random variables

y1, . . . , yn+1,

where yn+1 = 0.

We now define the multidimensional extension of condition (S) and show
that it is sufficient for weak absence of arbitrage for a multi-asset model (see
Proposition 1 in [13]).
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Definition 3.10. We say that an adapted càdlàg process X satisfies
condition (Sd) with respect to the filtration F if for any stopping time τ ≤ T
and any ε > 0 we have

P

( d⋂
j=1

{
sup
τ≤t≤T

∣∣∣∣ln Xj
t

Xj
τ

∣∣∣∣ < ε

} ∣∣∣∣ Fτ) > 0 P -a.e.

Proposition 3.11. If the adapted càdlàg process X satisfies condition
(Sd), then it satisfies (AAw) (no strict arbitrage).

Proof. The idea of the proof is the same as for the case d = 1. Suppose
to the contrary that there is a strategy Y = (Yt)t∈[0,T ] ∈ BT such that
W Y
T ≥ 0 P -a.e. and P{W Y

T > 0} > 0. Let σ = min{i ∈ {1, . . . , n} : yji 6= 0,
j = 1, . . . , d}. Since P{W Y

T > 0} > 0, the event A = {τσ < T} has positive
probability. Note that on the set A ∈ Fτσ we can write

W Y
T =

d∑
j=1

( n∑
i=σ

yji (X
j
τi+1
−Xj

τi)

− λj
n+1∑
i=σ

Xj
τi(y

j
i − y

j
i−1)+ − µj

n+1∑
i=σ

Xj
τi(y

j
i − y

j
i−1)−

)
,

where τn+1 ≡ T, yj0 = 0 and yjn+1 = 0 for j = 1, . . . , d. As observed in the
proof of Lemma 3.4, the value process can be expressed by

W Y
T =

d∑
j=1

[ n+1∑
i=σ

(yji − y
j
i−1)−[(1− µj)Xj

τi −X
j
τσ ]

−
n+1∑
i=σ

(yji − y
j
i−1)+[(1 + λj)Xj

τi −X
j
τσ ]
]
.

Since X satisfies condition (Sd), the event

Bε = A ∩
d⋂
j=1

{
sup

τσ≤t≤T

∣∣∣∣ln Xj
t

Xj
τσ

∣∣∣∣ < ε

}
has positive probability for any ε > 0. Note that on Bε, (1 − µj)Xj

τi < Xj
τσ

and (1 + λj)Xj
τi > Xj

τσ for all i ∈ {σ, . . . , n + 1}, j ∈ {1, . . . , d} whenever
ε < min

{
ln(1 + λj), ln

(
1

1−µj
)}

. Moreover, on A there are i ∈ {σ, . . . , n+ 1}
and j ∈ {1, . . . , d} such that (yji − y

j
i−1)− 6= 0 or (yji − y

j
i−1)+ 6= 0 (by the

definition of A and σ). Therefore W Y
T < 0 on Bε, which contradicts the

assumption P{W Y
T ≥ 0} = 1.
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As an extension of Theorem 3.9 to the multidimensional case, we give a
sufficient condition for weak absence of arbitrage with shortsale restrictions.

Definition 3.12. We say that a process X satisfies condition (Dd) with
respect to the filtration F if for any stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T
we have

P
( d⋂
j=1

⋂
i<k

{(1− µj)Xj
τk
< (1 + λj)Xj

τi}
)
> 0.

Theorem 3.13. If X is a process satisfying condition (Dd), then it sat-
isfies (AA+

w) (weak absence of arbitrage without shortselling).

Proof. Assume Y = (Yt)t∈[0,T ]) ∈ B+
T is an arbitrage strategy. Then the

value process generated by Y with shortsales restrictions, given by

W Y
T =

d∑
j=1

[ n∑
i=1

yji (X
j
τi+1
−Xj

τi)− λ
jyj1X

j
τ1 + λj

n∑
i=2

Xj
τi(y

j
i − y

j
i−1)+

− µj
n∑
i=2

Xj
τi(y

j
i − y

j
i−1)− − µjyjnXj

τn

]
,

where τn = τn+1 ≡ T , satisfies W Y
T ≥ 0 P -a.e. and P{W Y

T > 0} > 0. Note
that

W Y
T =

d∑
j=1

W
Xj
τ1
,...,Xj

τn ,X
j
τn+1

(yj1, . . . , y
j
n+1),

and by Lemma 3.7,

d⋂
j=1

⋂
i,k∈{1,...,n}

i<k

{(1− µj)Xj
τk
< (1 + λj)Xj

τi}

⊂
d⋂
j=1

{W
Xj
τ1
,...,Xj

τn ,X
j
τn+1

(yj1, . . . , y
j
n+1) < 0}.

As X satisfies (Dd), we have P (
⋂d
j=1{WXj

τ1
,...,Xj

τn+1
(yj1, . . . , y

j
n+1) < 0}) > 0.

Hence the set {W Y
T < 0} has positive probability, contrary to W Y

T ≥ 0
almost surely.

3.3. Embedded discrete time market approach. The positive dual
cone of a cone G ⊂ Rd+1 is defined as

G∗ = {v ∈ Rd+1 : 〈v, w〉 ≥ 0 for all w ∈ G}.
Denote by MT

0 (G∗ \ {0}) the set of martingales Z = (Zt)
T
t=0 such that

Zt ∈ L0(G∗t \ {0},Ft) for all t = 0, . . . , T .
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For a discrete time model, [5] and [12] give criteria for (AAw) in the
two-dimensional case.

Theorem 3.14. Let d = 1. Then (AAw) holds iff

MT
0 (G∗ \ {0}) 6= ∅.

Let us recall the result of [10] about the characterization of (AAs) in a
discrete time model.

Theorem 3.15. (AAs) holds iff there exists Z ∈MT
0 (G∗\{0}) such that

ZT ∈ L0(intG∗T ,FT ).

Remark 3.16. Note that in the case of shortsale restrictions similar
criteria do not seem to be true. It is therefore an open problem to find a
proper equivalent characterization for absence of arbitrage on the market
without shortselling and with proportional transaction costs.

Let 0 ≤ τ1 ≤ · · · ≤ τn ≡ T be a sequence of stopping times and denote
by M{τ1,...,τn}(G∗ \ {0}) the set of martingales Z = (Zτn) such that Zτi ∈
L0(G∗τi \ {0},Fτi) for all i = 1, . . . , n. Using Theorems 3.14 and 3.15 we
obtain

Theorem 3.17. Let d = 1. Then AT ∩ L0(R2,FT ) = {0} if and only
if M{τ1,...,τn}(G∗ \ {0}) 6= ∅ for any integer n ≥ 2 and for any sequence of
stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T .

Theorem 3.18. AT ∩ L0(GT ,FT ) = {0} if and only if for any integer
n ≥ 2 and for any sequence of stopping times 0 ≤ τ1 ≤ · · · ≤ τn ≡ T there
exists Z ∈M{τ1,...,τn}(G∗ \ {0}) such that ZT ∈ L0(intG∗T ,FT ).
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