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TARGET ACHIEVING PORTFOLIO UNDER MODEL
MISSPECIFICATION: QUADRATIC OPTIMIZATION

FRAMEWORK

Abstract. We incorporate model uncertainty into a quadratic portfolio
optimization framework. We consider an incomplete continuous time market
with a non-tradable stochastic factor. Two stochastic game problems are for-
mulated and solved using Hamilton–Jacobi–Bellman–Isaacs equations. The
proof of existence and uniqueness of a solution to the resulting semilinear
PDE is also provided. The latter can be used to extend many portfolio op-
timization results.

1. Introduction. Since Markowitz published his famous paper, qua-
dratic optimization has gained a lot of attraction in asset allocation and ac-
tive portfolio management. A major weakness of portfolio optimization is its
huge sensitivity to estimation errors and model misspecification. Among the
articles dedicated to quadratic problems there are also papers which try to
incorporate error robustness (or model risk) into the Markowitz framework.
However, most of those works concern one-period and static optimization
problems. The purpose of this paper is to consider both model uncertainty
and quadratic optimization in a dynamic setting with an intertemporal trad-
ing. The investor trades between a riskless bond and a risky asset whose price
is a diffusion with dynamics affected by a correlated non-tradable stochastic
factor. It is worth mentioning that this model includes stochastic volatility
models, and it is usually used to describe weather influence on electricity
and gas prices. Instead of supposing that the trader knows the exact model,
we assume here that he knows that the model belongs to a certain wide
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class of models. Here this class is represented by a set Q of equivalent mea-
sures. Therefore, it is reasonable to consider an optimality criterion based
on minimizing the functional

(1.1) X 7→ sup
Q∈Q

EQ(X −D)2,

where D is a predefined target to reach. To overcome drawbacks of that
model the Maenhout [11] penalty method is introduced. This method is
based on the functional

(1.2) X 7→ sup
Q∈Q

EQh(Q,P )(X −D)2,

where h(Q,P ) is a multiplicative penalty term which should measure the
distance between Q and a reference probability P . The measure P can be
interpreted as the best guess for the real model and is usually determined by
empirical data. The above functionals are motivated by several works con-
cerning robust optimization problems, where a utility function is used rather
than the quadratic deviation as an objective function. It is worth mention-
ing here: Cvitanić and Karatzas [1], Gundel [6], Hernández and Schied [7],
Mataramvura and Øksendal [13], Øksendal and Sulem [14], [15], Schied [18],
Schied and Wu [19], Talay and Zheng [20], Zawisza [24]. Part of these pa-
pers are based on duality arguments, others use stochastic control theory or
differential games and Isaacs equations.

Static and one-period quadratic optimization involving model uncer-
tainty was considered for instance by Tütüncu and Koenig [21] and Goldfarb
and Iyengar [5]. In classical dynamic portfolio selection problems (without
model risk), the quadratic deviation was used as an objective function by
many authors. For recent contributions see for example Xie [22] and the
references therein. The classical analogue of our problem was completely
solved by Laurent and Pham [10]. To our knowledge, in our paper for the
first time model uncertainty is incorporated into a quadratic and continuous
time portfolio optimization problem. Our solution to the robust investment
problem is closest to those of Hernández and Schied [7] and Zawisza [24].
In the former the authors use a specific class of risk preferences, namely the
HARA utility function (U(x) = xγ). This allows them to combine the dual-
ity results of Schied and Wu [18] with the stochastic control approach and
determine the robust optimal strategy. In the latter paper, an exponential
utility (U(x) = −e−γx) is used as an objective function and the problem
of robust hedging is solved by using stochastic differential game theory and
Isaacs equations.

In the current paper we also formulate the problem as a stochastic game
between the market and the investor. The main result consists of two parts:
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Theorems 3.4 and 4.1. The first one is a summary of Section 2, where the
problem concerning (1.1) is solved. The second one is a solution to (1.2). It is
worth pointing out also Proposition 5.1 together with Corollary 5.3, which
concern existence and uniqueness of a solution to the resulting PDE and
are strong enough to extend many results from the standard optimization
portfolio theory (for example Pham [16]).

2. Model description. Let (Ω,F , P ) be a probability space with fil-
tration (Ft, 0 ≤ t ≤ T ) (possibly enlarged to satisfy the usual assumptions)
generated by two independent Brownian motions (W 1

t , 0 ≤ t ≤ T ), (W 2
t , 0 ≤

t ≤ T ); P is the best aproximation of a real world probability measure. Our
economy consists of two primitive securities: a bond (Bt, 0 ≤ t ≤ T ) and a
share (St, 0 ≤ t ≤ T ). We also assume that the price of the share is mod-
ulated by one non-tradable (but observable) factor (Yt, 0 ≤ t ≤ T ). This
factor can represent an additional source of uncertainty such as: stochas-
tic volatility, varying economic conditions or non-financial risk (for instance
weather risk). The processes mentioned above are solutions of the system of
stochastic differential equations

(2.1)


dBt = rBtdt,

dSt = b(Yt)Stdt+ σ(Yt)StdW
1
t ,

dYt = g(Yt)dt+ a(Yt)(ρdW
1
t + ρ̄dW 2

t ), ρ2 + ρ̄2 = 1.

The coefficients b, σ > 0, g, a are continuous functions and they are assumed
to satisfy all the necessary regularity conditions, in order to guarantee that
there exists a unique strong solution to (2.1). The coefficient r > 0 is a
deterministic interest rate and ρ ∈ [−1, 1] is a correlation coefficient. The
assumption of time-independent coefficients is for notational convenience
only and can easily be relaxed.

We assume that the investor faces a model risk. This means that the
model (probability measure) is not precisely known and the investor knows
only a class of possible measures. Following Cvitanić and Karatzas [1] and
Hernández and Schied [7], we will consider the class

Q :=

{
Q ∼ P

∣∣∣∣ dQdP = E
(�
ηt1 dW

1
t + ηt2 dW

2
t

)
T

, (η1, η2) ∈M
}
,

where E(·)t denotes the Doléans-Dade exponential and M denotes the set
of all bounded, progressively measurable processes η = (η1, η2) taking val-
ues in a fixed set Γ ⊂ R2. Usually it is assumed that Γ is a compact and
convex set. However in Section 3 we allow Γ to be R2. The measure deter-
mined by η ∈M is denoted later by Qη, and the corresponding expectation
by Eη.
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The dynamics of the investor’s wealth process (X̄ π̄
t , 0 ≤ t ≤ T ) is given

by the stochastic differential equation

(2.2)
{
dX̄t = (rX̄t + π̄t(b(Yt)− r))dt+ π̄tσ(Yt)dW

1
t ,

X̄s = x̄,

where x̄ denotes the current wealth of the investor.

Definition 2.1. A control (or strategy) π̄ = (π̄s, t ≤ s ≤ T ) is admis-
sible on the time interval [t, T ], written π̄ ∈ At, if it satisfies the following
assumptions:

(1) π̄ is progressively measurable with respect to the filtration (Fs, t ≤
s ≤ T ),

(2) the stochastic process (2.2) exists and

Eηy,t sup
t≤s≤T

(X̄ π̄
s )2 <∞ for all y ∈ R and η ∈M.

The admissible control π̄ can be interpreted as part of the wealth invested
in St. More precisely if ht denotes the number of shares in the portfolio, then
π̄t = htSt. Note that π̄ as well as the portfolio wealth X̄ π̄

T are allowed to be
negative.

Formulation of the problem. Let us define an objective function

(2.3) J π̄,η(x̄, y, t) := Eηx̄,y,t(X̄
π̄
T −D)2.

The investor’s objective is to

(2.4) minimize sup
η∈M

J π̄,η(x̄, y, t)

over the class At of admissible strategies. This means that the aim of the
investor is to control the investment of a given wealth via dynamic asset
allocation, taking into account model uncertainty, in such a way that the
performance of the investment follows as closely as possible the prescribed
target D. The quadratic function does not allow the investor’s wealth to
outperform the target, and this can be considered as a drawback to the
model. However, once the target is reached, there is no reason for further
exposure to risk, and therefore it is no good to have any additional surplus.
The idea that people act by following subjective targets is accepted in the
decision theory literature (see for example the prospect theory of Kahneman
and Tversky [9]).

It is convenient for us to introduce T -forward values of π̄ and X̄ π̄
t . Let

Xπ
t := er(T−t)X̄ π̄

t , πt := er(T−t)π̄t.

Instead of (2.3) we use the objective

Jπ,η(x, y, t) := Eηx,y,t(X
π
T −D)2,
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where the dynamics of the new wealth process Xπ is given by

dXt = πt(b(Yt)− r)dt+ πtσ(Yt)dW
1
t .

Note that J π̄,η(x, y, t) = J π̄,η(x̄, y, t) and π is admissible if and only if π̄ is
admissible.

Remark. Using (2.3), we are able to cover also the objective

Eηx,y,tX
π
T − βE

η
x,y,t(X

π
T −B)2 = −βEηx,y,t

(
Xπ
T −

(
B +

1

2β

))2

+B +
1

4β
.

By using such an objective, we assume that the investor wants to maxi-
mize his expected wealth while controlling the risk which is measured by a
quadratic deviation from a predefined target B. This is a modification of
the Markowitz problem, where the risk is usually measured by the variance.
Such a modification is accepted in financial and insurance optimization the-
ory (see Delong [2] and references therein); moreover it is usually used as an
auxiliary problem in finding a solution to the original Markowitz problem
(see Zhou and Li [25]). It should also be mentioned that this modification
leads to time-consistent optimal strategies, which is not generally the case
for solutions to the continuous time Markowitz problem.

The problem (2.4) is considered as a zero-sum stochastic differential game
problem. The measure Q is the control of player 1 (the “market”), while the
portfolio π is the control of player 2 (the “investor”). We are looking for a
saddle point (π∗, η∗) ∈ At ×M and a value function V (x, y, t) such that

(2.5) Jπ
∗,η(x, y, t) ≤ Jπ∗,η∗(x, y, t) ≤ Jπ,η∗(x, y, t),

and
V (x, y, t) = Jπ

∗,η∗(x, y, t).

Stochastic control theory gives us a motivation to seek optimal strategies
in the feedback form ((π(Xt, Yt, t), η(Xt, Yt, t)), 0 ≤ t ≤ T ) (η determines
the measure Qη), π(x, y, t), η(x, y, t) are Borel functions and Xt and Yt are
solutions to the system{

dXt = π(Xt, Yt, t)(b(Yt)− r)dt+ π(Xt, Yt, t)σ(Yt)dW
1
t ,

dYt = g(Yt)dt+ a(Yt)(ρdW
1
t + ρ̄dW 2

t ).

Such controls are often called Markov controls and are denoted simply by
(π(x, y, t), η(x, y, t)).

3. HJBI equations, Verification Theorem and solution to the
minimax problem. The robust investment problem stated in the previous
section can be solved by applying the HJB theory. In this section we estab-
lish a link between Hamilton–Jacobi–Bellman–Isaacs equations and a saddle
point of our initial problem.
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Let Lπ,η denote the differential operator given by

Lπ,ηV (x, y, t) := Vt + 1
2a

2(y)Vyy + 1
2π

2σ2(y)Vxx + ρπσ(y)a(y)Vxy

+ π(b(y)− r + η1σ(y))Vx + (ρη1 + ρ̄η2)a(y)Vy + g(y)Vy.

We will use a suitable version of the Verification Theorem. Its proof in a
more general form is presented in the Appendix.

Theorem 3.1. Suppose there exists a function V ∈ C2,2,1(R2 × [0, T )) ∩
C(R2× [0, T ]) and an admissible Markov control (π∗(x, y, t), η∗(x, y, t)) such
that

Lπ∗(x,y,t),ηV (x, y, t) ≤ 0,(3.1)

Lπ,η∗(x,y,t)V (x, y, t) ≥ 0,(3.2)

Lπ∗(x,y,t),η∗(x,y,t)V (x, y, t) = 0,(3.3)

V (x, y, T ) = (x−D)2 for all η ∈ Γ, π ∈R, (x, y, t)∈R2× [0, T ),(3.4)

and

(3.5) Eηx,y,t
(

sup
t≤s≤T

|V (Xπ
s , Ys, s)|

)
<∞

for all (x, y, t) ∈ R2 × [0, T ], π ∈ At, η ∈M.

Then

Jπ
∗,η(x, y, t) ≤ V (x, y, t) ≤ Jπ,η∗(x, y, t) for all π ∈ At, η ∈M,

and
V (x, y, t) = Jπ

∗,η∗(x, y, t).

Let us point out that conditions (3.1)–(3.4) hold if the upper and the
lower Hamilton–Jacobi–Bellman–Isaacs equations are satisfied:

min
π∈R

max
η∈Γ
Lπ,ηV (x, y, t) = max

η∈Γ
min
π∈R
Lπ,ηV (x, y, t) = 0,

V (x, y, T ) = (x−D)2.

To find the saddle point it is more convenient for us to use the lower
Isaacs equation

max
η∈Γ

min
π∈R
Lπ,ηV (x, y, t) = 0.

Once we verify that it has a unique solution V , it is also necessary to prove
that V is also a solution to the upper equation. To do that we use a minimax
theorem proved by Fan ([3, Theorem 2]).

Theorem 3.2. Let X be a compact Hausdorff space and Y an arbitrary
set (not topologized). Let f be a real-valued function on X × Y such that, for
every η ∈ Y , f(π, η) is lower semicontinuous on X. If f is concave on X



Target achieving portfolio 431

and convex on Y , then

max
η∈X

inf
π∈Y

f(π, η) = inf
π∈Y

max
η∈X

f(π, η).

Derivation of the optimal strategy. As announced, to find explicit
forms of the saddle point (η∗(x, y, t), π∗(x, y, t)), we start with the lower
Isaacs equation

max
η∈Γ

min
π∈R
Lπ,ηV (x, y, t) = 0,

i.e.

(3.6) Vt + 1
2a

2(y)Vyy + max
(η1,η2)∈Γ

min
π∈R

(
1
2π

2σ2(y)Vxx + ρπσ(y)a(y)Vxy

+ π(b(y)− r + η1σ)Vx + (ρη1 + ρ̄η2)a(y)Vy
)

+ g(y)Vy = 0,

with the terminal condition V (x, y, T ) = (x−D)2.
Note that if there exists V ∈ C2,2,1(R2 × [0, T )) with Vxx > 0, then the

minimum over π in (3.6) is well defined and achieved at

(3.7) π∗(x, y, t, η) = −ρa(y)

σ(y)

Vxy
Vxx
− b(y) + η1σ(y)

σ2(y)

Vx
Vxx

.

The appearance of the terminal condition V (x, y, T ) = (x −D)2 motivates
us to seek a solution of the form

(3.8) V (x, y, t) := (x−D)2F (y, t).

Substituting (3.7) and (3.8) in (3.6) yields

(3.9) π∗(x, y, t, η) = −ρa(y)(x−D)

σ(y)

Fy
F
− (λ(y) + η1)(x−D)

σ(y)
,

where λ(y) := b(y)−r
σ(y) and F should solve

(3.10) Ft + 1
2a

2(y)Fyy − ρ2a2(y)
F 2
y

F
+ (g(y)− 2ρa(y)λ(y))Fy

+ max
η∈Γ

(
−η1ρa(y)Fy + η2ρ̄a(y)Fy − (η1 + λ(y))2F

)
= 0

together with the terminal condition F (y, T ) = 1.

Existence and uniqueness of a solution to equation (3.10) is studied in
Section 4.

If there exists a smooth solution to (3.10) then in order to determine
the saddle point (π∗(x, y, t), η∗(x, y, t)) we should find a Borel measurable
η∗(x, y, t) such that

max
η∈Γ

min
π∈R
Lπ,ηV (x, y, t) = min

π∈R
Lπ,η∗(x,y,t)V (x, y, t)



432 D. Zawisza

and a Borel measurable π∗(x, y, t) such that

min
π∈R

max
η∈Γ
Lπ,ηV (x, y, t) = max

η∈Γ
Lπ∗(x,y,t),ηV (x, y, t).

From (3.6)–(3.10), it follows that η∗(x, y, t) does not depend on x and
is equal to a maximizer of (3.10). Moreover, π∗(x, y, t) = π∗(x, y, t, η∗(y, t)),
where π∗(x, y, t, η) is given by (3.9). The last claim is a consequence of the
minimax equality

max
η∈Γ

min
π∈R
Lπ,ηV (x, y, t) = min

π∈R
max
η∈Γ
Lπ,ηV (x, y, t) = Lπ∗(x,y,t),η∗(x,y,t)V (x, y, t),

and the fact that Lπ∗(x,y,t),η∗(x,y,t)V (x, y, t) = minπ Lπ,η
∗(x,y,t)V (x, y, t) and

therefore π∗(x, y, t) is a unique solution to the equation

Lπ,η∗(x,y,t)V (x, y, t) = Lπ∗(x,y,t),η∗(x,y,t)V (x, y, t).

We can now summarize our preparatory calculations.

Corollary 3.3. Suppose that there exists a strictly positive solution F
to problem (3.10) and let the maximum in (3.10) be attained at η∗(y, t) =
(η∗1(y, t), η∗2(y, t)). Then

Lπ∗,ηV (x, y, t) ≤ Lπ∗,η∗V (x, y, t) = 0 ≤ Lπ,η∗V (x, y, t),

where

V (x, y, t) = (x−D)2F (y, t),

π∗(x, y, t) = −ρa(y)(x−D)

σ(y)

Fy
F
− (λ(y) + η∗1(y, t))(x−D)

σ(y)
.

If a ≡ 1, g is Lipschitz continuous, and λ is Lipschitz continuous and
bounded, then by Proposition 5.3, all assertions of Corollary 3.3 are satisfied.

Theorem 3.4. Suppose a, ay, g, λ are Lipschitz continuous functions,
a, λ are bounded and a(y) > ε > 0. Then there exists a saddle point
(π∗(x, y, t), η∗(x, y, t)) such that

π∗(x, y, t) = −ρa(y)(x−D)

σ(y)

Fy
F
− (λ(y) + η∗1(y, t))(x−D)

σ(y)
,

where η∗ is a Borel measurable function which realizes the maximum
in (3.10).

Proof. First we need to show that we can limit ourselves to the case
a ≡ 1. Notice that, if a is C1 and bounded, and a(y) > ε > 0, then applying
the Itô formula to the function f(y) :=

	y
0

1
a(z) dz and to the process Y with

the dynamics
dYt = g(Yt)dt+ a(Yt)(ρdW

1
t + ρ̄dW 2

t ),
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we can rewrite the dynamics of our model (2.1) as follows:
dBt = rBtdt,

dSt = b(Zt)Stdt+ σ(Zt)StdW
1
t ,

dZt =

(
g(Yt)

a(Yt)
− 1

2
ay(Yt)

)
dt+ (ρdW 1

t + ρ̄dW 2
t ), Yt = f−1(Zt).

Moreover if λ, g/a, ay are bounded or Lipschitz continuous then the same is
true for λ(f−1(z)), g(f−1(z))/a(f−1(z)), ay(f−1(z)).

The second part of the proof needs the assumption a ≡ 1. It follows from
Proposition 5.3 that there exists a positive function F , bounded away from
zero and bounded together with the first y-derivative, which satisfies

(3.11) Ft + 1
2a

2(y)Fyy − ρ2a2(y)
F 2
y

F
+ (g(y)− 2ρa(y)λ(y))Fy

+ max
η∈Γ

(
−η1ρa(y)Fy + η2ρ̄a(y)Fy − (η1 + λ(y))2F

)
= 0

together with the terminal condition F (y, T ) = 1.

By the classical measurable selection theorem there exists a Borel mea-
surable η∗(y, t) ∈ Γ that achieves the maximum in (3.11).

If we set

V (x, y, t) := (x−D)2F (y, t),

π∗(x, y, t) := −ρa(y)(x−D)

σ(y)

Fy
F
− (λ(y) + η∗1(y, t))(x−D)

σ(y)
,

then due to Corollary 3.3, we only need to prove that (π∗(x, y, t), η∗(x, y, t))
is an admissible Markov saddle point and condition (3.5) holds. Let

ζ(y, t) := −ρa(y)

σ(y)

Fy
F
− λ(y) + η∗1(y, t)

σ(y)
.

Note that ζ · (b − r) and ζ · σ are bounded functions since λ and λ2 are
bounded. Therefore, the process Zt := Xπ∗

t −D is a unique solution to the
equation

dZt = ζ(Yt, t)(b(Yt)− r)Ztdt+ η1ζ(Yt, t)σ(Yt)Ztdt+ ζ(Yt, t)σ(Yt)ZtdW
η,

where W η denotes the Brownian motion determined by the Girsanov trans-
formation and the measure Qη. This is a linear equation with bounded
stochastic coefficients, which implies that

Eηx,y,t
(

sup
t≤s≤T

(Xπ∗
s −D)2

)
<∞

for all η ∈M. This confirms the admissibility of π∗(x, y, t).
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Condition (3.5) is satisfied because F is bounded and for any admissible
strategy π and for any x, y ∈ R, t ≥ 0,

Eηx,y,t
(

sup
t≤s≤T

|V (Xπ
s , Ys, s)|

)
= Eηx,y,t

(
sup
t≤s≤T

(Xπ
s −D)2|F (Ys, s)|

)
<∞.

Two prominent examples. We can apply our main result to the fol-
lowing stochastic volatility models:

• Scott model: {
dSt = bdt+

√
eγYt + ε dW 1

t , ε > 0,

dYt = (a− θYt)dt+ ρdW 1
t + ρ̄dW 2

t .

• Stein and Stein model:{
dSt = bdt+ (|Yt|+ ε)dW 1

t , ε > 0,

dYt = (a− θYt)dt+ ρdW 1
t + ρ̄dW 2

t .

Note that in fact we propose an ε-modification of the original models.
We need it to ensure Lipschitz continuity and boundedness of the market
price of risk λ.

4. Penalty method. According to the worst-case method presented in
the previous sections, all scenarios (all measures Q) have equal chance to oc-
cur in reality. This might result in putting too much trust in very pessimistic
scenarios and consequently in very pessimistic solutions. For example, sup-
pose that the market price of risk satisfies −λ(y) ∈ Pr1 Γ for all y ∈ R
(Pr1 is the projection on the first coordinate). In this case it is easy to
check that F ≡ 1 is a solution to (3.11). Therefore η∗1(y, t) = −λ(y) and
π∗(x, y, t) = 0 is a saddle point of the game.

Therefore it might be reasonable to modify our method so as to take into
account the fact that measures which are more distant from the reference
measure P are less likely to occur in reality. To do that, the minimax criterion
is rewritten using a penalty function H(Q,P ). The task of H(Q,P ) is to
measure the distance between two measures and usually it is assumed that
the penalty is equal to the entropic function ln dQ

dP . In the quadratic case it
can be useful to use an objective of the form

(4.1) Eηx,y
(
(Xπ

T −D)2 − θH(Qη, P )
)

= Eηx,y
(

(Xπ
T −D)2 − θ ln

dQη

dP

)
.

Note that in our model

Eη ln
dQη

dP
= Eη

1

2

T�

0

|ηs|2 ds.

The parameter θ > 0 can be interpreted as an ambiguity aversion (model
risk aversion) index. The lower θ > 0, the higher the degree of ambiguity
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aversion. The objective function (4.1) leads to the following Isaacs equation:

max
η∈Γ

min
π∈R

(
Vt + 1

2a
2(y)Vyy + 1

2π
2σ2(y)Vxx + ρπσ(y)a(y)Vxy

+π(b(y)− r+ η1σ(y))Vx + (ρη1 + ρ̄η2)a(y)Vy + g(y)Vy− 1
2θ(η

2
1 + η2

2)
)

= 0.

Unfortunately, it is impossible to find a tractable analytical solution to
this equation. To overcome this obstacle we adopt here Maenhout’s [11] idea,
i.e. we replace the penalty term θ(η2

1 + η2
2) by θ(η2

1 + η2
2)V . This method

is accepted in financial literature and it was applied for example to price
catstrophy bonds by Zhu [26] or to value defaultable bonds by Jaimungal and
Sigloch [8]. We can also define a new objective function which corresponds
to the resulting equation:

(4.2) Kπ,η(x, y, t) := Eηx,y,t
(
e−

1
2
θ
	T
t |ηs|

2 ds(Xπ
T −D)2

)
.

The term e−
1
2
θ
	T
t |ηs|

2 ds may be treated as a multiplicative form of a
penalty function. Our task is to find a saddle point for (4.2). The solution
to this game can be found just as the solution to (2.4). The Isaacs equation
for (4.2) has the form

max
η∈Γ

min
π∈R

(
Vt + 1

2a
2(y)Vyy + 1

2π
2σ2(y)Vxx + ρπσ(y)a(y)Vxy

+π(b(y)−r+η1σ(y))Vx+(ρη1 + ρ̄η2)a(y)Vy+g(y)Vy− 1
2θ(η

2
1 + η2

2)V
)

= 0.

Remark. Note that for this equation one can also allow the set Γ to
be R2. In that case the magnitude of ambiguity aversion is only controlled
by θ > 0. In our opinion this is a convenient assumption and it is discussed
later with a few more details.

The Verification Theorem for (4.2) is given in the Appendix. To solve the
above equation the well known substitution V (x, y, t) = (x−D)2F (y, t) can
be applied to obtain a candidate for optimal investment policy:

π∗(x, y, t) = −ρa(y)(x−D)

σ(y)

Fy
F
− (λ(y) + η∗1(y, t))(x−D)

σ(y)
,

where F is the solution to the equation

(4.3) Ft + 1
2a

2(y)Fyy − ρ2a2(y)
F 2
y

F
+ (g(y)− 2ρa(y)λ(y))Fy

+ max
η∈Γ

(
−η1ρa(y)Fy + ρ̄a(y)η2Fy − (η1 + λ(y))2F − 1

2θ(η
2
1 + η2

2)F
)

= 0

with the terminal condition F (y, T ) = 1.
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If we assume that Γ = R2 then the solution to the problem is even more
tractable because it is given by

π∗(x, y, t) = −(1 + θ)ρa(y)(x−D)

(2 + θ)σ(y)

Fy
F
− θλ(y)(x−D)

(2 + θ)σ(y)
,

η∗1(x, y, t) = −2λ(y)

2 + θ
− ρa(y)

2 + θ

Fy
F
,

η∗2(x, y, t) =
a(y)p̄

θ

Fy
F
,

where F is the unique classical solution to

(4.4) Ft + 1
2a

2(y)Fyy+

[
ρ2

2(2 + θ)
+
ρ̄2

2θ
− ρ2

]
a2(y)

F 2
y

F

+ (g(y)− (1 + θ)ρa(y)λ(y))Fy − 1
2θλ

2(y)F = 0

with the terminal condition F (y, T ) = 1.
In the following theorem we summarize the findings of this section. The

proof is omitted since it is the repetition of the steps of the proof of Theo-
rem 3.4.

Theorem 4.1. Suppose that a, ay, g, λ are Lipschitz continuous func-
tions, a, λ are bounded and a(y) > ε > 0. Then there exists a Markov saddle
point (π∗(x, y, t), η∗(y, t)) for the objective (4.2) such that

π∗(x, y, t) = −ρa(y)(x−D)

σ(y)

Fy
F
− (λ(y) + η∗1(y, t))(x−D)

σ(y)
,

where F is the unique classical solution to (4.3) (or (4.4) if Γ = R2),
bounded together with Fy, and the maximum in (4.3) is achieved at η∗(y, t).

5. Smooth solution to the resulting PDE. In this section, we use
stochastic methods to derive existence and uniqueness results for classical
solutions of semilinear parabolic partial differential equations which play
a key role in solving our initial problem. To the best of our knowledge,
the subsequent results on classical solutions have not appeared in print so
far under the assumptions given here. Moreover, they are strong enough to
extend results of Hernández and Schied [7] and Schied [18] and even Pham
[16], because to ensure existence and uniqueness of a solution, we do not
need the differentiability of the equation coefficients. Let us recall the shape
of our equation once more:

(5.1) Ft + 1
2a

2(y)Fyy − ρ2a2(y)
F 2
y

F
+ (g(y)− 2ρa(y)λ(y))Fy

+ max
η∈Γ

(
−η1ρa(y)Fy + ρ̄a(y)η2Fy − (η1 + λ(y))2F − θ(η2

1 + η2
2)F

)
= 0

with the terminal condition F (y, T ) = 1.
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First we apply the exponential transformation F (y, t) = eα(y,t). Straight-
forward calculations show that α should solve

(5.2) αt + 1
2a

2(y)αyy + (1/2− ρ2)a2(y)α2
y + (g(y)− 2ρa(y)λ(y))αy

+ max
η∈Γ

(
−η1ρa(y)αy + ρ̄a(y)η2αy − (η1 + λ(y))2 − θ(η2

1 + η2
2)
)

= 0

together with the terminal condition α(y, T ) = 0.

Remark. The nonlinear term F 2
y /F can also be removed from (5.1) by

applying transformations of the form F (y, t) = (α(y, t))δ (see Zariphopou-
lou [23], Zawisza [24]). However this substitution works only in the case when
y is one-dimensional. As we would like to have also a possibility to extend
our problem to some multifactor models, we apply a more sophisticated
reasoning.

Let us rewrite equation (5.2) in a more general form:

(5.3) αt + 1
2a

2(y)αyy + ca2(y)α2
y + f(y)αy + max

η∈Γ
(i(y, η)αy +h(y, η)) = 0.

Assume that there exists a solution α to (5.3) with bounded derivative αy.
In this case there exists R > 0 such that

max
q∈[−R,R]

(−ca2(y)q2 + 2ca2(y)αyq) = ca2(y)α2
y for c ≥ 0,

min
q∈[−R,R]

(−ca2(y)q2 + 2ca2(y)αyq) = ca2(y)α2
y for c < 0.

Therefore, it is worth considering equations of the form

(5.4) αt+
1
2a

2(y)αyy + min
q∈[−R,R]

(−ca2(y)q2 +2ca2(y)αyq)+f(y)αy

+ max
η∈Γ

(i(y, η)αy + h(y, η)) = 0.

Up to the end of this section we consider only the case c < 0. The reasoning
for c ≥ 0 is analogous.

Proposition 5.1. Suppose that a, f , h, i are continuous functions and
there exists L ≥ 1 such that

|f(y1)− f(y2)| ≤ L|y1 − y2|,
|i(y1, η)− i(y2, η)| ≤ L|y1 − y2|,
|h(y1, η)− h(y2, η)| ≤ L|y1 − y2|,

|a2(y1)− a2(y2)| ≤ e−2LT

4L|c|T 2
|y1 − y2|.

In addition, suppose that for R = 2LTeLT there exists a bounded solution to
(5.4) with the terminal condition α(y, T ) = 0. Then there exists a solution
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to (5.3) with the terminal condition α(y, T ) = 0, which is bounded together
with the first y-derivative.

Proof. Using standard verification theorems (see for instance The-
orem 6.1) we obtain a stochastic representation of a solution to (5.4):

(5.5) α(y, t) = max
η∈M

min
q∈N

E
[T�
t

(
h(Y η,q

s (y, t), s)− cq2
sa

2(Y η,q
s (y, t))

)
ds
]
,

whereN is the set of all progressively measurable processes q taking values in
[−R,R],M is the set of all progressively measurable processes η = (η1, η2)
taking values in Γ , and the process Y η,q(y, t) is a unique strong solution
to (1) {

dYs = [f(Ys) + i(Ys, ηs) + 2ca2(Ys)qs]dt+ a(Ys)dW
1
t ,

Yt = x.

We have the following estimate:

|α(y1, t)− α(y2, t)|

≤ T
(
L+

e−2LT

4L|c|T 2
|c|R2

)
max
η∈Γ

max
q∈[−R,R]

E sup
t≤s≤T

|Y η,q
s (y1, t)− Y η,q

s (y2, t)|

≤ 2LTE sup
t≤s≤T

|Y η,q
s (y1, t)− Y η,q

s (y2, t)|.

In addition, using Theorem 1.3.16 from Pham [17] we get

E sup
t≤s≤T

|Y η,q
s (y1, t)− Y η,q

s (y2, t)|

≤ 2LT exp

(
T max

(
L, 2R|c| e

−2LT

4L|c|T 2

))
|y1 − y2| = eLT |y1 − y2|.

Therefore, |αy| ≤ 2LTeLT = R and so a solution to (5.4) is also a solution
to

(5.6) αt+
1
2a

2(y)αyy+ca2(y)α2
y+f(y)αy+max

η∈Γ
(i(y, η)αy+h(y, η)) = 0.

Remark. From the stochastic representation (5.5) uniqueness in the
class of functions bounded together with the first y-derivative can also be
obtained for solution to (5.6).

To ensure existence and uniqueness of a solution to (5.4) we use a classical
result proved by Friedman [4].

Theorem 5.2. Suppose that H(t, y, u, p) is uniformly Lipschitz continu-
ous in (y, u, p) and uniformly Hölder continuous in t in compact subsets of

(1) It is more convenient here to change our convention and use Y η,q(y, t) under E
instead of a symbol Ey,t.
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[0, T ]× R× R× R, and let H satisfy

H(t, y, 0, 0) ≤ K,(5.7)
H(t, y, u, 0)−H(t, y, ū, 0) ≤ K(u− ū) if u > ū,(5.8)
H(t, y, u, p)−H(t, y, ū, p) ≤ KR(u− ū) if |u|, |ū| ≤ R, u > ū,(5.9)
|H(t, y, u, p)−H(t, ȳ, u, p)| ≤ KR(1 + |p|)|y − ȳ| if |u| ≤ R,(5.10)
|H(t, y, u, p)−H(t, y, u, p̄)| ≤ KR(1 + |y|)|p− p̄| if |u| ≤ R,(5.11)

for any R > 0 and 0 ≤ t ≤ T , y, ȳ, p, p̄ ∈ R. Moreover, let ϕ be a bounded and
uniformly Lipschitz continuous function. Then there exists a unique solution
u of the Cauchy problem{

ut + 1
2uyy +H(t, y, u, uy) = 0,

u(y, T ) = ϕ(y),

which is bounded together with the derivative uy.

Collecting the above results together we easily get:

Proposition 5.3. If a ≡ 1, i, f are continuous functions, h is continu-
ous and bounded and there exists L > 0 such that

|f(y1)− f(y2)| ≤ L|y1 − y2|,
|i(y1, η)− i(y2, η)| ≤ L|y1 − y2|,
|h(y1, η)− h(y2, η)| ≤ L|y1 − y2|,

then there exists a solution to

(5.12) Ft+
1
2a

2(y)Fyy+ca2(y)
F 2
y

F
+f(y)Fy+max

η∈Γ
(i(y, η)Fy+h(y, η)F ) = 0

with the terminal condition F (y, T ) = 1, which is positive, bounded together
with Fy and bounded away from zero.

Proof. Consider the function
H(t, y, u, p) := max

η∈Γ
k1(t, y, u, p, η) + min

q∈[−R,R]
k2(t, y, u, p, q),

where
k1(t, y, u, p, η) := i(y, η)p+ h(y, η),

k2(t, y, u, p, q) := f(y)− (1/2 + c)a2(y)q2 + 2(1/2 + c)a2(y)pq.

The functions k1 and k2 do not depend on u and are linear with respect
to p. Therefore, from the assumed regularity of i and h and well known
inequalities

|max
η

k(z, η)−max
η

k(z̄, η)| ≤ max
η
|k(z, η)− k(z̄, η)|,

|min
q
k(z, q)−min

q
k(z̄, q)| ≤ max

q
|k(z, q)− k(z̄, q)|,

it follows that H satisfies all conditions of Theorem 5.2.
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Therefore there exists a classical solution to
αt + 1

2a
2(y)αyy +

(
1
2 + c

)
a2(y)α2

y + f(y)αy + max
η∈Γ

(i(y, η)αy + h(y, η)) = 0

with the terminal condition α(y, T ) = 0, bounded together with the y-deri-
vative.

Simple differentiation shows that F (y, t) := eα(y,t) is a positive solution
to (5.12), bounded together with the y-derivative and bounded away from
zero.

6. Appendix. Let us recall the objective function of our game:

Kπ,η(x, y, t) := Eηx,y,t
(
e−

1
2
θ
	T
t |ηs|

2 ds(Xπ
T −D)2

)
.

It is also useful to write here a general form of the differential operator
which was used to solve our game problems:

Hπ,ηV (x, y, t) := Vt + 1
2a

2(y)Vyy + 1
2π

2σ2(y)Vxx + ρπσ(y)a(y)Vxy

+ π(b(y)− r + η1σ(y))Vx + (ρη1 + ρ̄η2)a(y)Vy + g(y)Vy.

If θ = 0, then Jπ,η(x, y, t) = Kπ,η(x, y, t) and Hπ,η = Lπ,η and the proof
of the Verification Theorem, given below, is valid also for Theorem 3.1. In
fact, we do not give all details, since this is only a modification of standard
results.

Theorem 6.1. Suppose there exists a function V ∈ C2,2,1(R2 × [0, T )) ∩
C(R2× [0, T ]) and an admissible Markov control (π∗(x, y, t), η∗(x, y, t)) such
that

Hπ∗(x,y,t),ηV (x, y, t) ≤ 0,(6.1)

Hπ,η∗(x,y,t)V (x, y, t) ≥ 0,(6.2)

Hπ∗(x,y,t),η∗(x,y,t)V (x, y, t) = 0,(6.3)

V (x, y, T ) = (x−D)2 for all η ∈ Γ , π ∈R, (x, y, t) ∈ R2× [0, T ),(6.4)

and

(6.5) Eηx,y,t
(

sup
t≤s≤T

e−
1
2
θ
	s
t |ηs|

2 ds|V (Xπ
s , Ys, s)|

)
<∞

for all (x, y, t) ∈ R2 × [0, T ], π ∈ At, η ∈M.

Then

Kπ∗,η(x, y, t) ≤ V (x, y, t) ≤ Kπ,η∗(x, y, t) for all π ∈ At, η ∈M,

and
V (x, y, t) = Kπ∗,η∗(x, y, t).



Target achieving portfolio 441

Proof. Fix (x, y, t) ∈ R2 × [0, T ). Fix η ∈M and consider the system

(6.6)
{
dXt = π∗(Xt, Yt, t)(b(Yt)− r)Xtdt+ π∗(Xt, Yt, t, )Xtσ(Yt)dW

1
t ,

dYt = g(Yt)dt+ a(Yt)(ρdW
1
t + ρ̄dW 2

t ).

Using the Girsanov transformation we get the Qη-dynamics of the sys-
tem (6.6):

(6.7)

{
dXt = π∗t ((b(Yt)− r) + σ(Yt)η1t)Xtdt+ π∗t σ(Yt)XtdW

1η
t ,

dYt = (g(Yt) + a(Yt)(ρη1t + ρ̄η2t))dt+ a(Yt)(ρdW
1η
t + ρ̄dW 2η

t ),

where π∗t = π∗(Xt, Yt, t), and (W 1η
t ,W 2η

t )T is the Qη-Brownian motion given
by {

dW 1η
t = dW 1

t − η1tdt,

dW 2η
t = dW 2

t − η2tdt.

If we apply the Itô formula to (6.7), the function V and the process
e−

1
2
θ
	s
t |ηk|

2dk, we get

Eηx,y,t(e
− 1

2
θ
	(T−ε)∧Tεn
t |ηk|2dkV (X(T−ε)∧T εn , Y(T−ε)∧T εn , (T − ε)∧T

ε
n)) = V (x, y, t)

+ Eηx,y,t
(T−ε)∧T εn�

t

e−
1
2
θ
	s
t |ηk|

2dkHπ∗s ,ηsV (Xs, Ys, s) ds+ Eηx,y,t
(T−ε)∧T εn�

t

M ε
sdW

η
s ,

where (T εn, n = 1, 2, . . .) (T εn →∞) is a localizing sequence of stopping times
such that

Eηx,y,t
(T−ε)∧T εn�

t

M ε
s dW

η
s = 0.

Applying (6.1) yields

Eηx,y,t(e
− 1

2
θ
	(T−ε)∧Tεn
t |ηk|2dkV (X(T−ε)∧T εn , Y(T−ε)∧T εn , (T−ε)∧T

ε
n)) ≥ V (x, y, t).

Since (6.5) holds, we can apply the dominated convergence theorem. Let-
ting n→∞, ε→ 0 and using (6.4) we obtain

V (x, y, t) ≥ Kπ∗,η(x, y, t).
If we replace η by η∗ and apply (6.3), we get

V (x, y, t) = Kπ∗,η∗(x, y, t).
Next we choose π ∈ At and apply the Itô formula to the system{

dXt = πt(b(Yt)− r) + σ(Yt)η
∗
1t)Xtdt+ πtσ(Yt)XtdW

1η∗

t dt,

dYt = (g(Yt) + a(Yt)(ρη
∗
1t + η∗2tρ̄))dt+ a(Yt)(ρdW

1η∗

t + ρ̄dW 2η∗

t ).

Repeating the procedure above and using (6.2), we get

V (x, y, t) ≤ Kπ,η∗(x, y, t).
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