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BLOW-UP FOR THE ENERGY-CRITICAL NONLINEAR

WAVE EQUATION AND SCHRÖDINGER EQUATION WITH

INVERSE-SQUARE POTENTIAL

Abstract. We give a sufficient condition under which the solutions of
the energy-critical nonlinear wave equation and Schrödinger equation with
inverse-square potential blow up. The method is a modified variational ap-
proach, in the spirit of the work by Ibrahim et al. [Anal. PDE 4 (2011),
405–460].

1. Introduction. Consider the Cauchy problem

(1.1)


∂2t u+ Pau = |u|1+4/(d−2), (t, x) ∈ R× Rd,
u(0, x) = u0(x) ∈ Ḣ1(Rd),
∂tu(0, x) = u1(x) ∈ L2(Rd),

(1.2)

{
i∂tv − Pav = −|v|4/(d−2)v, (t, x) ∈ R× Rd,
v(0, x) = v0(x) ∈ Ḣ1(Rd),

where Pa = −∆ + a/|x|2, d ≥ 3, u is a real-valued function and v is a
complex valued function defined on some space-time slab.

The wave equation (1.1) arises from the study of wave propagation
on conic manifolds [4], while the Schrödinger equation (1.2) is a model
used in quantum mechanics (see for example [2, 3, 6]). The operator Pa =
−∆+ a/|x|2 has been studied in combustion theory (see [17]).

Planchon et al. [13] proved that Strichartz-type Lp estimates hold for the
linear wave equation with inverse-square potential, under the assumption
that the Cauchy data are spherically symmetric. Then these authors used
these estimates to obtain the global well-posedness for the energy-critical
nonlinear wave equation. In [14], they established a dispersive estimate for
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the wave equation with inverse-square potential. Furthermore, Burq et al. [1]
proved spacetime weighted L2 estimates for the Schrödinger and wave equa-
tion with inverse-square potential, and then deduced Strichartz estimate for
these equations.

Miao et al. [11] studied maximal estimates for solutions to an initial
value problem for the Schrödinger equation with inverse-square potential,
and obtained the corresponding pointwise convergence result. In [12] they
further studied Strichartz-type estimates of the solution for the linear wave
equation with inverse-square potential and improved the range of admis-
sible pairs under some condition. As an application, they showed the global
well-posedness of the semilinear inverse-square potential wave equation with
some small power in the radial case.

By a limiting argument, energy solutions of (1.1) and (1.2), respectively,
obey the following energy conservation laws:

E(u, ∂tu)(t)

:=
�

Rd

[
1

2
|∇u(x, t)|2 +

1

2
|∂tu(x, t)|2 +

a

2

|u(x, t)|2

|x|2
− 1

2∗
|u(x, t)|2∗

]
dx

≡ E(u0, u1),

E(v(t)) :=
�

Rd

[
1

2
|∇v(x, t)|2 +

a

2

|v(x, t)|2

|x|2
− 1

2∗
|v(x, t)|2∗

]
dx ≡ E(v0).

For the energy-critical nonlinear Schrödinger equation without potential,

(1.3) iut +∆u = −|u|4/(d−2)u,
Kenig and Merle [7] first obtained the blow-up and scattering theory of the
radial solutions with energy below that of the ground state of

−∆W = |W |4/(d−2)W.(1.4)

Subsequently, Killip and Visan [10] made use of a double Duhamel argument
from [9, 15] to remove the radial assumption. In these works, a finite time
blow-up result was proved by a virial argument with the assumption that
the corresponding energy is below the ground state and ‖∇u0‖2 ≥ ‖∇W‖2.
For the energy-critical nonlinear wave equation without potential, a similar
scattering and blow-up result was established by Kenig and Merle [8].

For the nonlinear wave and Schrödinger equation with inverse-square
potential, there is a stationary solution W satisfying

(1.5) PaW = |W |1+4/(d−2).

The existence and uniqueness of solutions to (1.5) has been proved in [16].
In particular, the uniqueness in L2∗(B1) ∪ L2∗(Rd ∩ B1) was shown for a ∈
(−(d− 2)2/4, 0], where B1 is a unit ball in Rd, and it was pointed out that
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under the same condition, the infimum

(1.6) Sa = inf
u∈D1,2\{0}

Q(u)

‖u‖22∗
is attained at W .

Basing on the result for stationary solutions in [16], we shall give a
sufficient condition for blow-up in our context.

1.1. Variational setting. Define the static energy

H(ϕ) =
�

Rd

(
1

2
|∇ϕ|2 +

a

2

|ϕ|2

|x|2
− 1

2∗
|ϕ|2∗

)
dx,

the functional

K(ϕ) =
�

Rd

(
|∇ϕ|2 + a

|ϕ|2

|x|2
− |ϕ|2∗

)
dx,

and the quadratic form

Q(ϕ) =
�

Rd

(
|∇ϕ|2 + a

|ϕ|2

|x|2

)
dx.

Note that K : H → R is Fréchet differentiable.

Define

mc = inf{H(ϕ); 0 6= ϕ ∈ Ḣ1, K(ϕ) = 0}.(1.7)

Our main results are the following:

Theorem 1.1. Assume a ∈ (−(d− 2)2/4, 0]. Let (u0, u1) ∈ Ḣ1 × L2.
Define

W− = {(u0, u1) ∈ Ḣ1 × L2; E(u0, u1) < mc, K(u0) < 0}.

If (u0, u1) ∈ W−, then the corresponding solution u of (1.1) blows up in
finite time.

Theorem 1.2. Assume a ∈ (−(d− 2)2/4, 0]. Let v0 ∈ H1. Define

S− = {v0 ∈ Ḣ1; E(v0) < mc, K(v0) < 0}.

Let v0 ∈ S− and assume that either xv0 ∈ L2 or v0 ∈ H1 is radial. Then the
corresponding solution v of (1.2) blows up in finite time.

This paper is organized as follows. In Section 3, we shall show some
variational estimates. The main theorems are proved in Section 4.

2. Preliminaries. In this section, we introduce notation and recall
some known results.
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2.1. Notation. We write X . Y or Y & X whenever X ≤ CY for
some constant C > 0. We use O(Y ) to denote any quantity X such that
|X| . Y . We use the notation X ∼ Y whenever X . Y . X.

2.2. Local theory. The small data global existence for the wave equa-
tion with inverse-square potential,

(2.8)


∂2t u+ Pau = ±|u|k, (t, x) ∈ R× Rd,
u(0, x) = u0(x) ∈ Ḣsc(Rd),
∂tu(0, x) = u1(x) ∈ Ḣsc−1(Rd),

has been established in [13, Theorem 4.1]. We shall consider the energy-
critical case, that is, sc = 1 and k = 1 + 4/(d− 2). First we summarize the
result of [13]:

Theorem 2.1 (Small data global existence for NLW). Let d ≥ 3, and
suppose (u0, u1) ∈ Ḣ1×L2(Rd) with small norms. Then there exists a unique
solution to (1.1) such that u(t, x) ∈ Ct(R; Ḣ1(Rd)), ∂tu(t, x) ∈ Ct(R;L2(Rd)).

A similar result holds true for the Schrödinger equation (1.2) (see [11]):

Theorem 2.2 (Small data global existence for NLS). Let d ≥ 3, and
suppose v0 ∈ Ḣ1(Rd) with small norm. Then there exists a unique solution
to (1.2) such that v(t, x) ∈ Ct(R; Ḣ1(Rd)).

Now we give some estimates which will be used in our proof.

Lemma 2.1. Let (u0, u1) ∈ Ḣ1 × L2 with ‖(u0, u1)‖Ḣ1×L2 ≤ A. Assume
that I is the maximal lifespan of the corresponding solution to (1.2). There
exists ε0 > 0 such that if for some M > 0 and 0 < ε < ε0, we have	
|x|≥M (|∇xu0|2 + |u1|2) dx ≤ ε, then for all t ∈ I+ = [0,∞) ∩ I,

�

|x|≥3M/2+t

(
|u|2

|x|2
+ |∇xu(x, t)|2 + |∂tu(x, t)|2

)
dx ≤ Cε.

The proof of this lemma can be found in [8, Lemma 2.17]. We will also
need the following weighted radial Sobolev embedding inequality:

Lemma 2.2 (Weighted radial Sobolev embedding, [10]). Let ω and f be
radial functions and 0 ≤ ω . 1. Then∥∥|x|(d−1)/2ω1/4f

∥∥2
L∞x (Rd)

. ‖f‖L2
x(Rd)‖ω1/2∇f‖L2

x(Rd).

3. Variational estimates. In this section, we define the energy thresh-
old mc by the variational method, and we prove various estimates for so-
lutions with energy below mc. First, to study the behavior of K near the
origin we set some notation. By the definitions of K and Q, we have

K(ϕ) = Q(ϕ) +N(ϕ),
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where

Q(ϕ) =
�

Rd

(
|∇ϕ|2 + a

|ϕ|2

|x|2

)
dx and N(ϕ) = −

�

Rd

|ϕ|2∗ dx.

Lemma 3.1. For any ϕ ∈ Ḣ1(Rd), set ϕλ = edλϕ(e2λ). Then

lim
λ→−∞

Q(ϕλ) = 0.

Proof. This is obvious by the definition of Q.

Lemma 3.2. For any bounded sequence ϕn ∈ Ḣ1(Rd) \ {0} with

lim
n→∞

Q(ϕn) = 0,

for large n we have
K(ϕn) > 0.

Proof. From Q(ϕn)→ 0 and the Hardy inequality
�

Rd

a
|ϕn|2

|x|2
dx . ‖∇ϕn‖2L2 ,

we know that
lim
n→∞

‖∇ϕn‖2L2 = 0.

Then by the Sobolev inequality, we have

‖ϕn‖2
∗

L2∗
x

. ‖∇ϕn‖2
∗

L2
x

= o(‖∇ϕn‖2L2).

Hence, for large n,

K(ϕn) =
�

Rd

(
|∇ϕn|2 + a

|ϕn|2

|x|2
− |ϕn|2

∗
)
dx ≈

�

Rd

|∇ϕn|2 dx > 0.

According to the above analysis, we will replace the functional H in (1.7)
with a positive functional J , and the constraint K(ϕ) = 0 with K(ϕ) ≤ 0.
Let

J (ϕ) = H(ϕ)− 1

2
K(ϕ) =

1

d

�

Rd

|ϕ|2∗ dx.

Then J (ϕ) ≥ 0.
Now we can characterize the minimization problem (1.7) by making use

of J .

Lemma 3.3. For the infimum mc in (1.7), we have

mc = inf{J (ϕ); 0 6= ϕ ∈ Ḣ1, K(ϕ) ≤ 0}.
Moreover, mc is attained at Φ, the solution to (1.5).

Proof. Denote the right hand side above by m1. Obviously, m1 ≤ mc,
since H(ϕ) = J (ϕ) whenever K(ϕ) = 0. It now suffices to show m1 ≥ mc.
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For all ϕ with K(ϕ) < 0, set ϕλ = edλϕ(e2λ); then there exists a λ0 < 0 such
that

K(ϕλ0) = 0.

This implies that H(ϕλ0) ≥ mc. So, J (ϕλ0) ≥ mc. Note that J (ϕλ) is
nondecreasing in λ. Thus,

J (ϕ) ≥ J (ϕλ0) ≥ mc,

which gives m1 ≥ mc.

Now we give another characterization of mc in (1.7).

Lemma 3.4. The energy threshold satisfies

mc = inf
0 6=ϕ

1

d

�

Rd

|ϕ|2∗ dx = inf
0 6=ϕ

1

d

(
Q(ϕ)

‖ϕ‖2∗2∗

) 2∗
2∗−2 �

Rd

|ϕ|2∗ dx =
1

d
Sd/2a .

Proof. Let

m̃ , inf
06=ϕ

1

d

(
Q(ϕ)

‖ϕ‖2∗2∗

) 2∗
2∗−2 �

Rd

|ϕ|2∗ dx.

First, we prove mc ≥ m̃. By the definition of K(ϕ), we have Q(ϕ)/‖ϕ‖2∗2∗ ≤ 1.
Thus

1

d

(
Q(ϕ)

‖ϕ‖2∗2∗

) 2∗
2∗−2 �

Rd

|ϕ|2∗ dx ≤ 1

d

�

Rd

|ϕ|2∗ dx.

Taking the infimum on both sides we obtain mc ≥ m̃.

Next, we prove mc ≤ m̃. By the definition of m̃, for every ε ∈ (0, 1),
there exists ϕ such that

m̃+ ε >
1

d

(
Q(ϕ)

‖ϕ‖2∗2∗

) 2∗
2∗−2 �

Rd

|ϕ|2∗ dx.

By homogeneity and scaling ϕ 7→ µϕ, we know

1

d

(
Q(ϕ)

‖ϕ‖2∗2∗

) 2∗
2∗−2 �

Rd

|ϕ|2∗ dx =
1

d

(
Q(µϕ)

‖µϕ‖2∗2∗

) 2∗
2∗−2 �

Rd

|µϕ|2∗ dx.(3.9)

If we let

µ =

(
1− ε

mc

)− 1
2∗
(
Q(ϕ)

‖ϕ‖2∗2∗

) 1
2∗−2

,

then (
Q(µϕ)

‖µϕ‖2∗2∗

) 2∗
2∗−2

= 1− ε

mc
.
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Thus,

m̃+ ε >
1

d

(
1− ε

m c

) �

Rd

|µϕ|2∗ dx

≥
(

1− ε

m c

)
inf
06=ϕ

1

d

�

Rd

|µϕ|2∗ dx = mc − ε.

Then we obtain m̃ ≥ mc − 2ε, and letting ε→ 0 yields the desired result.
The last equality of the statement is obtained by a direct computation

and the definition of Sa in (1.6).

Lemma 3.5. Suppose (u0, u1) ∈ W−. Then the corresponding solution
u with maximal lifespan I satisfies u(t) ∈ W− for all t ∈ I. An analogous
result holds true for a solution v to the Schrödinger equation (1.2).

Proof. This is a consequence of the energy conservation law and the
continuity of the nonlinear flow of (1.1).

To end this section, we give uniform bounds on the Fréchet derivative K
with energy belowmc, which plays an important role for the blow-up analysis
in Section 4.

Lemma 3.6. Let (u0, u1) ∈W−, and let u be the corresponding solution
of (1.1) with maximal lifespan I. Then K(u) ≤ −4(mc − E(u, ∂tu)) for all
t ∈ I. An analogous result holds true for a solution v to the Schrödinger
equation (1.2).

Proof. Denote h(λ) = H(uλ), where uλ = edλu(e2λx). Then

h′(λ) = 2e4λ‖∇u‖22 + 2e4λ‖x−1u‖22 − 2e2·2
∗λ‖u‖2∗2∗ ,

h′′(λ) = 8e4λ‖∇u‖22 + 8e4λ‖x−1u‖22 − 42∗e2·2
∗λ‖u‖2∗2∗

= 4h′(λ)− 16

d− 2
e2·2

∗λ‖u‖2∗2∗ ,

which implies

(3.10) h′′(λ) ≤ 4h′(λ).

By Lemmas 3.1 and 3.2, and the continuity of K in λ, there exists λ0 < 0 such
that K(uλ0) = 0 and K(uλ) < 0 for λ0 < λ ≤ 0. Therefore, H(uλ0) ≥ H(Q).
Thus, integrating (3.10) over (λ0, 0), we obtain

K(u) ≤ 4(H(u)−H(uλ0)).

Since H(uλ0) = J(uλ0) + 1
2K(uλ0) = J(uλ0) ≥ mc, and H(u) ≤ E(u), we

obtain the desired result.

4. Finite time blow-up. In this section, we prove Theorems 1.1 and
1.2.
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4.1. The proof of Theorem 1.1. We first give the proof of Theo-
rem 1.1 under the assumption that u0 ∈ L2.

Theorem 4.1. Let (u0, u1) ∈ Ḣ1×L2, u0 ∈ L2, and let u be the solution
of (1.1) with maximal lifespan I. Assume that E(u0, u1) < mc and K(u0)
< 0. Then I is a finite interval.

Proof. Define

y(t) =
�

Rd

|u(x, t)|2 dx.

Then y′(t) = 2
	
Rd uut dx and

y′′(t) = 2
�

Rd

(
(ut)

2 + |u|2∗ − a |u|
2

|x|2
− |∇u|2

)
dx = 2

�

Rd

(ut)
2 dx− 2K(u).

Since K(u) < 0, we have

y′′(t) ≥ 2
�

Rd

(ut)
2 dx.

Assume now that [0,∞) ⊆ I. Then, as y′′(t) > 0, there exists t0 such that
y′(t0) > 0, and hence y′(t) > 0 for t > t0.

Hence, for t > t0,

y′′(t)y(t) ≥ 2
�

Rd

(ut)
2 dx

�

Rd

u2 dx ≥ 2
( �

Rd

uut dx
)2

= 2y′(t)2,

so that, for t ≥ t0,
y′′(t)

y′(t)
≥ 2

y′(t)

y(t)
, i.e. (log y′(t))′ ≥ 2(log y(t))′.

Consequently, for t ≥ t0, we have

either log y′ ≥ 2 log y − C0, or y′ ≥ Cy2,
which leads to finite-time blow-up of y, contradicting the hypothesis [0,∞)
⊆ I.

Remark 4.1. Notice that Theorem 1.1 is an extension of Theorem 4.1.

Now, we are in a position to complete the proof of Theorem 1.1:

Proof of Theorem 1.1. Take φ ∈ C∞0 (B2) such that φ ≡ 1 for |x| < 1,
and 0 ≤ φ ≤ 1. Define

yR(t) =
�
φ

(
x

R

)
u2(t, x) dx.

Then

y′R(t) = 2
�

Rd

φ

(
x

R

)
u∂tu dx
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and

y′′R(t) = 2
�

Rd

(∂tu)2φ

(
x

R

)
dx+ 2

�

Rd

φ

(
x

R

)
u

(
∆u− a u

|x|2
+ |u|1+

4
d−2

)
dx

= 2
�

Rd

(∂tu)2φ

(
x

R

)
dx+ 2

�

Rd

φ

(
x

R

)
|u|2∗ − 2

�

Rd

φ

(
x

R

)
|∇u|2 dx

+
1

R2

�

Rd

|u|2(∆φ)

(
x

R

)
dx− 2a

�

Rd

φ

(
x

R

)
|u|2

|x|2
dx

= 2
�

Rd

(∂tu)2φ

(
x

R

)
dx− 2

�

Rd

(
|∇u|2 + a

|u|2

|x|2
− |u|2∗

)
dx

+ 2
�

Rd

(
1− φ

(
x

R

))(
|∇u|2 + a

|u|2

|x|2
− |u|2∗

)
dx

+
1

R2

�

Rd

|u|2(∆φ)

(
x

R

)
dx.

By our choice of φ(x), we have supp∆φ(x/R) ⊂ {R < |x| ≤ 2R}, and ∆φ
is bounded. Then

1

R2

�

Rd

|u|2(∆φ)

(
x

R

)
dx .

1

R2

�

R<|x|≤2R

|u|2 dx .
�

|x|>R

|u|2

|x|2
dx.

Thus,

y′′R(t) = 2
�

Rd

(∂tu)2φ

(
x

R

)
dx(4.11)

− 2
�

Rd

(
|∇u|2 + a

|u|2

|x|2
− |u|2∗

)
dx+Or(R),

where

Or(R) = O

( �

|x|>R

(
|∇u|2 +

|u|2

|x|2
+ |u|2∗

)
dx

)
.

By Lemma 3.6, we know that K(u) ≤ −4(mc − E(u)). Then −2K(u) ≥
8(mc − E(u)) , δ. Recall (Lemma 2.1) that there exists ε0 > 0 such that,
for 0 < ε < ε0, there exists M0 = M0(ε) so that

�

|x|≥M0+t

(
|∇u|2 +

|u|2

|x|2
+ |u|2∗

)
dx ≤ ε

for t ∈ I+ = [0,∞)∩ I, where I is the maximal lifespan of the solution. Now
we choose ε1 small and R so large that R > 2M0 and Or(R) ≤ ε1 ≤ 1

2δ.
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Then, for 0 < t < 1
2R,

y′′R(t) ≥ 1

2
δ and y′′R(t) ≥ 2

�

Rd

(∂tu)2φ

(
x

R

)
dx.(4.12)

Note also that

yR(0) ≤ CM2
0A

2 + ε1R
2 and |y′R(0)| ≤ CM0A

2 + ε1R.(4.13)

Now we define

T =
2CM2

0A
2 + 2ε1R

2 + 2CM0A
2 + 2ε1R

δ
.

Then, if T < 1
2R,

y′R(t) ≥ y′R(0) +
1

2
Tδ ≥ CM2

0A
2 + ε1R

2.

Thus, there exists 0 < t1 < T such that y′R(t1) = CM2
0A

2 + ε1R
2. And for

0 < t < t1, we have y′R(t) ≤ CM2
0A

2 + ε1R
2. Note that, if t1 ≤ t ≤ 1

2R, then
y′R(t) > y′R(t1), and also

yR(t1) = yR(0) +

t1�

0

y′R dt ≤ yR(0) + t1y
′
R(t1).

By the second inequality of (4.12),

y′′R(t)yR(t) ≥ 2
�

Rd

(∂tu)2φ

(
x

R

)
dx

�

Rd

|u|2φ
(
x

R

)
dx(4.14)

≥ 2

( �

Rd

(∂tu)uφ

(
x

R

)
dx

)2

= 2(y′R(t))2.

When t1 < t < 1
2R,

y′′R(t)

y′R(t)
≥
y′R(t)

yR(t)
.

Integration from t1 to t gives

y′R(t)

y2R(t)
≥
y′R(t1)

y2R(t1)
.

A direct computation yields

yR(t) ≥ 1

1
yR(t1)

+ (t1 − t)
y′R(t)

y2R(t)

,

which leads to blow-up in finite time.
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4.2. The proof of Theorem 1.2. To prove that the solution v blows
up in finite time (in either of the two cases described in Theorem 1.2), we
will use the convexity method [5, 18].

Proof of Theorem 1.2. Let us first treat the case when xv0 ∈ L2
x(Rd).

Define the virial quantity

V (t) =
�

Rd

|x|2|v(t, x)|2 dx.

A direct calculation gives

∂2t V (t) = 8
�

Rd

(|∇v(t, x)|2 + |x|−2|v(t, x)|2 − |v(t, x)|2∗) dx.

By Lemma 3.6, we have

∂2t V (t) = 8K(v) ≤ −32(mc − E(v)) < 0.

Thus, v has to blow up in finite time.

We next consider the case when v0 ∈ H1
x(Rd) is radial. Blow-up for the

energy-critical nonlinear Schrödinger equation was addressed by Killip and
Visan [10]. We define the truncated virial quantity

VR(t) =
�

Rd

ψR(x)|v(t, x)|2 dx,

where ψR(x) = R2ψ(|x|/R), ψ′′(x/R) < 0, and ψ is a radially smooth cut-off
function with

ψ(x) =

{
|x|2/2, |x| ≤ 2,

0, |x| ≥ 3.

Then by direct computations and the choice of a,

(4.15) ∂2t VR(t)

=
�

Rd

(−∆2)ψR(x)|v(t, x)|2 dx+ 4<
�

Rd

∂jkψR(x)v̄jvk dx

+ 4a
�

Rd

∂jψR(x)
xj
|x|4
|v|2 dx− 4

d

�

Rd

∆ψR(x)|v|2∗ dx

=
1

R2
O
( �

|x|∼R

|v(t, x)|2 dx
)

+ 4
�

|x|<2R

(
|∇v|2 + a

|v|2

|x|2
− |v|2∗

)
dx

+ 4
�

|x|≥2R

(
ψ′′
(
x

R

)
|∇v|2 + a

R

r
ψ′
(
x

R

)
|v|2

|x|2
− 1

d
ψ′′
(
x

R

)
|v|2∗

)
dx
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=
1

R2
O
( �

|x|∼R

|v(t, x)|2 dx
)

+ 4
�

Rd

(
|∇v|2 + a

|v|2

|x|2
− |v|2∗

)
dx

− 4
�

|x|>2R

(
|∇v|2 + a

|v|2

|x|2
− |v|2∗

)
dx

+ 4
�

|x|≥2R

(
ψ′′
(
x

R

)
|∇v|2 + a

R

r
ψ′
(
x

R

)
|v|2

|x|2
− 1

d
ψ′′
(
x

R

)
|v|2∗

)
dx

=
1

R2
O
( �

|x|∼R

|v(t, x)|2 dx
)

+ 4K(v)

+ 4
�

|x|>2R

(|∇v|2 − |v|2∗)
(
ψ′′
(
x

R

)
− 1

)
dx

+ 4
�

|x|>2R

a

(
|v|2

|x|2

(
R

r
ψ′
(
x

R

)
− 1

))
dx

+ 4
�

|x|>2R

(
|v|2∗

(
1− 1

d

)
ψ′′
(
x

R

))
dx

=: I1 + 4K(v) + I2 + I3 + I4.

As ψ′′(x/R) ≤ 0, we have I4 ≤ 0. Since v ∈ L2
x(Rd), we can choose R

sufficiently large (depending on the mass of v) so that I1 is less than ζ,
where K(v) ≤ −4(mc − E(u)) , −ζ. For the estimate of I3,

I3 = 4
�

|x|>2R

a
|v|2

|x|2

(
R

r
ψ′
(
x

R

)
− 1

)
dx

≤
�

Rd

|a| |v|
2

4R2

(∣∣∣∣12ψ′
(
x

R

)∣∣∣∣+ 1

)
dx .

1

R2

�

Rd

|v|2 dx.

Thus I3 can be made arbitrarily small by choosing R sufficiently large.
Now, we estimate I2. Let ω(x) = 1 − ψ′′(x/R). Note that 0 ≤ ω . 1

is radial with supp(ω) ⊆ {|x| ≥ 2R}. Then by the weighted radial Sobolev
embedding inequality (2.2), we have

�

Rd

|v(x, t)|2∗ω(x) dx . ‖ω1/4u(t)‖
4

d−2

L∞x

�

Rd

|u(t, x)|2 dx

. R−
2(d−1)
d−2

∥∥|x| d−1
2 ω1/4u(t)

∥∥ 4
d−2

L∞x
‖u0‖2L2

x

. R−
2(d−1)
d−2 ‖ω1/2∇u(t)‖

2
d−2

L2
x
‖u0‖

2(d−1)
d−2

L2
x

. (R−1‖u0‖L2
x
)
2(d−1)
d−2 (‖ω1/2∇u(t)‖2L2

x
+ 1).
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Noting that u0 ∈ L2
x(Rd), I2 can also be made small enough by taking R

sufficiently large depending on the mass of u. Thus (4.15) yields ∂ttVR < 0.
This finishes the proof of the theorem.
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